

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 3:

The Software Development Process

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Software Development
Models

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

Software Development Process

A software development process is the structure imposed on
the development of a software product.

We classify processes according to models which specify

 the artefacts of the development, such as

 the software product itself, specifications, test
documents, reports, reviews, proofs, plans etc;

 the different stages of the development;

 and the artefacts associated to each stage.

Different models have a different focus:

 Correctness, development time, flexibility.

What does quality mean in this context?

 What is the output? Just the software product, or more?
(specifications, test runs, documents, proofs…)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Artefacts in the Development Process
Planning:
• Document plan
• V&V plan
• QM plan
• Test plan
• Project manual

Specifications:

• Requirements
• System specification
• Module specification
• User documents

Implementation:

• Source code
• Models
• Documentation

Possible formats:
• Documents:

• Word documents
• Excel sheets
• Wiki text
• Database (Doors)

• Models:
• UML/SysML

diagrams
• Formal languages: Z,

HOL, etc.
• Matlab/Simulink or

similar diagrams
• Source code

Verification & validation:

• Code review protocols
• Test cases, procedures,

and test results
• Proofs

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Waterfall Model (Royce 1970)

Classical top-down sequential workflow with strictly
separated phases.

Unpractical as actual workflow (no feedback between
phases), but even the original paper did not really suggest
this.

Requirement

Implementation

Design

Maintenance

Verification

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Spiral Model (Böhm, 1986)

 Incremental development guided by risk factors

Four phases:

 Determine objectives

 Analyse risks

 Development and test

 Review, plan next iteration

See e.g.

 Rational Unified Process (RUP)

Drawbacks:

 Risk identification is the key, and can be quite difficult

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Model-Driven Development (MDD, MDE)

Describe problems on abstract level using a modeling language
(often a domain-specific language), and derive implementation by
model transformation or run-time interpretation.

Often used with UML (or its DSLs, eg. SysML)

 Variety of tools:

 Rational tool chain, Enterprise Architect, Rhapsody, Papyrus,
Artisan Studio, MetaEdit+, Matlab/Simulink/Stateflow*

 EMF (Eclipse Modelling Framework)

 Strictly sequential development

Drawbacks: high initial investment, limited flexibility

* Proprietary DSL – not related to UML

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Agile Methods

Prototype-driven development

 E.g. Rapid Application Development

 Development as a sequence of prototypes

 Ever-changing safety and security requirements

Agile programming

 E.g. Scrum, extreme programming

 Development guided by functional requirements

 Process structured by rules of conduct for developers

 Rules capture best practice

 Less support for non-functional requirements

Test-driven development

 Tests as executable specifications: write tests first

 Often used together with the other two

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

V-Model

Evolution of the waterfall model:

 Each phase is supported by a corresponding testing
phase (verification & validation)

 Feedback between next and previous phase

Standard model for public projects in Germany

 … but also a general term for models of this „shape“

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Software Development Models

Structure

F
le

x
ib

il
it

y

from S. Paulus: Sichere Software

Spiral model

Prototype-based
developments

Agile

Methods

Waterfall

model

V-model

Model-driven

developement

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Development Models for
Safety-Critical Systems

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Development Models for Critical Systems

Ensuring safety/security needs structure.

 …but too much structure makes developments
bureaucratic, which is in itself a safety risk.

 Cautionary tale: Ariane-5

Standards put emphasis on process.

 Everything needs to be planned and documented.

 Key issues: auditability, accountability, traceability.

Best suited development models are variations of the V-
model or spiral model.

A new trend?

 V-Model for initial developments of a new product

 Agile models (e.g. Scrum) for maintenance and product
extensions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Auditability and Accountability

Version control and configuration management is mandatory
in safety-critical development (auditability).

Keeping track of all artifacts contributing to a particular
instance (build) of the system (configuration), and their
versions.

Repository keeps all artifacts in all versions.

 Centralised: one repository vs. distributed (every developer
keeps own repository)

 General model: check out – modify – commit

 Concurrency: enforced lock, or merge after commit.

Well-known systems:

 Commercial: ClearCase, Perforce, Bitkeeper…

 Open Source: Subversion (centr.); Git, Mercurial (distr.)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Traceability

The idea of being able to follow requirements (in particular,
safety requirements) from requirement spec to the code (and
possibly back).

On the simplest level, an Excel sheet with (manual) links to
the program.

More sophisticated tools include DOORS.

 Decompose requirements, hierarchical requirements

 Two-way traceability: from code, test cases, test
procedures, and test results back to requirements

 E.g. DO-178B requires all code derives from requirements

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Development Model in IEC 61508

 IEC 61508 in principle allows any development model, but:

 It requires safety-directed activities in each phase of the
life cycle (safety life cycle).

 Development is one part of the life cycle.

The only development model mentioned is a V-model:

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

The Safety Life Cycle (IEC 61508)

Planning

Realisation

Operation

E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

Development Model in DO-178B

DO-178B defines different processes in the SW life cycle:

 Planning process

 Development process, structured in turn into

 Requirements process

 Design process

 Coding process

 Integration process

 Verification process

 Quality assurance process

 Configuration management process

 Certification liaison process

 There is no conspicuous diagram, but the Development Process has
sub-processes suggesting the phases found in the V-model as well.

 Implicit recommendation of the V-model.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Development Model for Hardware

Specification

System Model

RTL Model

Gate Level

Layout

Transistor Level

Silicone

always @(posedge clk)

 if (rst) out <= 0;

 else

 if (! ctrl) out <= s0 | in;

 else out <= s0 & in;

Register-Transfer-Ebene: Verilog

Gate Level

Textual description

of the electric

connections

(“Schaltplan”)

During chip design:

Description of the

connections between

different modules, such

as logic gates and

memory blocks

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Development Model for Hardware

Equivalence Check

Test

Property Check
Specification

System Model

RTL Model

Gate Level

Layout

Transistor Level

Silicone

Simulation

Emulation

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

Basic Notions of Formal
Software Development

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Formal Software Development

 In a formal development, properties are stated in a rigorous way
with a precise mathematical semantics.

 Formal specification requirements can be proven.

Advantages:

 Errors can be found early in the development process.

 High degree of confidence into the system.

 Recommend use of formal methods for high SILs/EALs.

Drawbacks:

 Requires a lot of effort and is thus expensive.

 Requires qualified personnel (that would be you).

 There are tools which can help us by

 finding (simple) proofs for us (model checkers), or

 checking our (more complicated) proofs (theorem provers).

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Formal Semantics

States and transitions between them:

Operational semantics describes relation between states
and transitions:

Formal proofs; e.g. proving

 x := y + 4; z := y - 2 yields the same final state as
 z := y - 2; x := y + 4

x 5

y 3

z 8

x 7

y 3

z 8

x := y + 4 z := y - 2
x 7

y 3

z 1

s0 s1 s2

s ` e n

s ` x := e s[x / n]

s0 ` y + 4 7

s0 ` x := y + 4 s1
hence:

System run

Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -

Semantics of Programs and Requirements

Set of all possible system runs

Requirements related to safety and security:

 Requirements on single states ?

 Requirements on system runs ?

 Requirements on sets of system runs ?

x 5

y 3

z 8

x 7

y 3

z 8

x := y + 4 z := y - 2
x 7

y 3

z 1

s0 s1 s2

…

Alpern & Schneider (1985, 1987)
Clarkson & Schneider (2008)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -

Some Notions

 Let b, t be two traces then

 b ≤ t iff ∃𝑡′. 𝑡 = 𝑏 ⋅ 𝑡′ i.e. b is a finite prefix of t

A property is a set of infinite execution traces (like a program)

 Trace t satisfies property P, written 𝑡 ⊨ 𝑃, iff 𝑡 ∈ 𝑃

A hyperproperty is a set of sets of infinite execution traces (like a

set of programs)

 A system (set of traces) S satisfies H iff S H

 An observation Obs is a finite set of finite traces

 Obs ≤ S (Obs is a prefix of S) iff Obs is an observation and

 m Obs. t S. m ≤ t

Systeme hoher Sicherheit und Qualität, WS 17/18 - 26 -

Requirements on States: Safety Properties

Safety property S: „Nothing bad happens“

 i.e. the system will never enter a bad state

 E.g. “Lights of crossing streets do not go
green at the same time”

A bad state:

 can be immediately recognized;

 cannot be sanitized by following states.

S is a safety property iff

 ∀𝑡. 𝑡 ∉ 𝑆 → ∃ 𝑡1, 𝑡2. 𝑡 = 𝑡1⋅ 𝑡2 → ∀ 𝑡3. 𝑡1⋅ 𝑡3 ∉ 𝑆

𝑡1 𝑡2

Systeme hoher Sicherheit und Qualität, WS 17/18 - 27 -

Satisfying Safety Properties

Safety properties are typically proven by induction

 Base case: initial states are good (= not bad)

 Step case: each transition transforms a good state again
in a good state

Safety properties can be enforced by run-time monitors

 Monitor checks following state in advance
and allows execution only if it is a good state

Systeme hoher Sicherheit und Qualität, WS 17/18 - 28 -

Requirements on Runs: Liveness Properties

Liveness property L:

 „Good things will happen eventually“

 E.g. “my traffic light will go green
eventually * ”

A good thing is always possible and possibly infinite.

L is a liveness property iff

 ∀ 𝑡. finite(𝑡) → ∃ 𝑡1. 𝑡 ⋅ 𝑡1 ∈ 𝐿

 i.e. all finite traces t can be extended to a trace in L.

* Achtung: “eventually” bedeutet “irgendwann” oder “schlussendlich”
 aber nicht “eventuell” !

Systeme hoher Sicherheit und Qualität, WS 17/18 - 29 -

Satisfying Liveness Properties

Liveness properties cannot (!) be enforced by run-time
monitors.

Liveness properties are typically proven by the help of
well-founded orderings

 Measure function m on states s

 Each transition decreases m
 t 2 L if we reach a state with minimal m

E.g. measure denotes the number of transitions for the light
to go green

Systeme hoher Sicherheit und Qualität, WS 17/18 - 30 -

Requirements on Sets of Runs:
Safety Hyperproperties

 Safety hyperproperty: „System never behaves bad“

 No bad thing happens in a finite set of finite traces

 (the prefixes of) different system runs do not exclude each other

 E.g. “the traffic light cycle is always the same”

A bad system can be recognized by a bad observation (set of finite
runs)

 A bad observation cannot be sanitized regards less how we
continue it or add additional system runs

 E.g. two system runs having different traffic light cycles

 S is a safety hyperproperty iff
 T S . (Obs ≤ T. T‘. Obs ≤ T‘) T‘ S)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 31 -

Requirements on Sets of Runs:
Liveness Hyperproperties

 Liveness hyperproperty S:
„The system will eventually develop to a good system“

 Considering any finite part of a system behavior, the system
eventually develops into a “good” system (by continuing
appropriately the system runs or adding new system runs)

 E.g. “Green light for pedestrians can always be omitted”

 L is liveness hyperproperty iff T . (G. T ≤ G G L)

 T is a finite set of finite traces (observation)

 Each observation can be explained by a system G satisfying L

 Example:

 Average response time

 Closure operations in information flow control

Systeme hoher Sicherheit und Qualität, WS 17/18 - 32 -

Landscape of (Hyper)Properties

 Each (hyper-) property can be represented as a combination of
safety and liveness (hyper-) properties.

Safety

Hyperproperties
Liveness

Hyperproperties

Safety

Properties
Liveness

Properties

Invariants
Guaranteed

Service

Average

Response
Non-

Interference

Closure

 Predicates Observational

determinism

Systeme hoher Sicherheit und Qualität, WS 17/18 - 33 -

Structuring the
Formal Development

Systeme hoher Sicherheit und Qualität, WS 17/18 - 34 -

The Global Picture

Informal Specification

Safety/Security

Requirements

Composite Specification

Abstract Specification

Refined Specification

Decomposition

Refinement /
Decomposition

Safety/Security

Requirements

Satisfies

Satisfies

Satisfies

Satisfies

Test
Program analysis
Model checking
Formal proof

Systeme hoher Sicherheit und Qualität, WS 17/18 - 35 -

Structuring the Development

Horizontal structuring:

 Modularization into components

 Composition and Decomposition

 Aggregation

 Vertical structuring:

 Abstraction and refinement
from design specification to implementation

 Declarative vs. imparative specification

 Inheritance of properties

 Views:

 Addresses multiple aspects of a system

 Behavioral model, performance model, structural model,
analysis model(e.g. UML, SysML)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 36 -

Horizontal Structuring (informal)

Composition of components

 Dependent on the individual layer of abstraction

 E.g. modules, procedures, functions,…

Example:

Systeme hoher Sicherheit und Qualität, WS 17/18 - 37 -

Modular Structuring of Requirements

System Requirements

Component 1

Requirement

Component n

Requirement

Component 1

Guarantees

Component n

Guarantees

System Guarantees

…

…

Decomposition of requirements

Composition of guarantees

Verification of requirements

Systeme hoher Sicherheit und Qualität, WS 17/18 - 38 -

Mutual Dependencies: Assume/Guarantee

Safety requirement: Queue does not loose any items.

Components depend on each other!

 Initialization ?

Loop:
 if s1 = a1 {
 send(x, in); s1 = not s1 }

Loop:
 if s1 != a1 and |q| < max {
 enq(q, in); a1 = not a1; }
 if s2 = a2 and |q| > 0 {
 deq(q, out); s2 != not s2 }

Loop:
 if s2 != a2 then {
 read(y, out); a2 = not a2;
 consume(y) }

in out

s1 s2

a2 a1

q

Producer Queue Consumer

Fixed capacity

Systeme hoher Sicherheit und Qualität, WS 17/18 - 39 -

Composition of Security Guarantees

Only complete bicycles are allowed to pass the gate.

Secure ! Secure !

Systeme hoher Sicherheit und Qualität, WS 17/18 - 40 -

Composition of Security Guarantees

Insecure !

Only complete bicycles are allowed to pass the gate.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 41 -

Vertical Structuring - Refinement

 Idea: start at an abstract description and add
details step by step

 From abstract specification to an implementation

What shall be refined?

 Algorithm: algebraic refinement

 Data: data refinement

 Process: process refinement

 Events: action refinement

Systeme hoher Sicherheit und Qualität, WS 17/18 - 42 -

Algebraic Refinement

nil: list cons(int, list):list
first(list):int tail(list):int
…

first(nil) = -1 first(cons(x, y)) = x
tail(nil) = nil tail(cons(x, y)) = y

List

empty: stack; push(int, stack):stack
pop(stack):stack

pop(empty) = empty; pop(push(x, y)) = y

Stack

li_empty = nil
li_push(x, y) = cons(x, y)
li_pop(x) = tail(x)

Implementing
stacks by lists

li_pop(li_empty) = li_empty
Li_pop(li_push(x, y)) = y

To prove:

Refinement preserves
properties of stack by
transitivity of the logic !

Refinement Satisfies

Systeme hoher Sicherheit und Qualität, WS 17/18 - 43 -

Even More Refinements

Data refinement

 Abstract datatype is „implemented“ in terms of the
more concrete datatype

 Simple example: define stack with lists

Process refinement

 Process is refined by excluding certain runs

 Refinement as a reduction of underspecification by
eliminating possible behaviours

Action refinement

 Action is refined by a sequence of actions

 E.g. a stub for a procedure is refined to an executable
procedure

Systeme hoher Sicherheit und Qualität, WS 17/18 - 44 -

Conclusion & Summary

Software development models: structure vs. flexibility

Safety standards such as IEC 61508, DO-178B suggest
development according to V-model.

 Specification and implementation linked by verification
and validation.

 Variety of artefacts produced at each stage, which have to
be subjected to external review.

Safety / Security Requirements

 Properties: sets of traces

 Hyperproperties: sets of properties

Structuring of the development:

 Horizontal – e.g. composition

 Vertical – refinement (e.g. algebraic, data, process…)

