
    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -  

Systeme hoher Sicherheit und Qualität 
Universität Bremen, WS 2017/2018 

Christoph Lüth, Dieter Hutter, Jan Peleska 

Lecture 11: 
 
Model Checking 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -  

Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09: Software Verification with Floyd-Hoare Logic  

 10: Correctness and Verification Condition Generation 

 11: Model Checking 

 12: Tools for Model Checking 

 13: Conclusions 

 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -  

Introduction 

 In the last lectures, we were verifying program properties with the 
Floyd-Hoare calculus (or verification condition generation). Program 
verification translates the question of program correctness into a 
proof in program logic (the Floyd-Hoare logic),  turning it into a 
deductive problem. 

 

Model-checking takes a different approach: instead of directly 
working with the (source code) of the program, we work with an 
abstraction of the system (the system model). Because we build an 
abstraction, this approach is also applicable at higher verification 
levels. (It is also complimentary to deductive verification.) 

 

 The key questions are: how do these models look like? What 
properties do we want to express, and how do we express and 
prove them? 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -  

Model Checking in the Development Cycle 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -  

Introduction 

Model checking operates on (abstract) state machines 

 Does an abstract system satisfy some behavioral property 
e.g. liveness (deadlock) or safety properties  

 consider traffic lights in Requirement Engineering 

 Example: “green must always follow red” 

 

Automatic analysis if state machine is finite 

 Push-button technology 

 User does not need to know logic (at least not for the 
proof) 

 

Basis is satisfiability of boolean formula in a finite domain (SAT). 
However, finiteness does not imply efficiency – all interesting 
problems are at least NP-complete, and SAT is no exception (Cook’s 
theorem). 

 

 

 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -  

The Model-Checking Problem 

What is ℳ?    A finite-state machine or Kripke structure. 

What is 𝜙?     Temporal logic 

How to prove it? 

 By enumerating the states and thus construct a model 

(hence model checking) 

 The basic problem: state explosion 

The Basic Question:  
Given a model ℳ and property 𝜙, we want to know if 

 ℳ ⊨ 𝜙 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -  

Finite State Machine (FSM) 

Variations of this definition exists, e.g. no initial states. 

 

Note there is no final state, and no input or output (this is the 
key difference to automata). 

 

 If  is a function, the FSM is deterministic, otherwise it is non-
deterministic. 

Definition: Finite State Machine (FSM) 

A FSM is given by ℳ = Σ, 𝐼, →  where 

• Σ is a finite set of states,  

• 𝐼 ⊆ Σ is a set of initial states, and 
• →⊆ Σ × Σ   is a transition relation, s.t. → is left-total: 

∀𝑠 ∈ Σ. ∃𝑠′ ∈ Σ. 𝑠 → 𝑠′ 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -  

Example: A Simple Oven 

The oven has states and operations: 
open and close door, turn oven on 
and off, warm up, cook, …  

 Operation names are for 
decoration purposes only. 

FSM: 

cook 

start 
oven 

open  
door 

open  
door 

close  
door 

start 
oven 

close  
door 

open  
door 

warmup 

done 

s1 

s6 s5 

s4 s3 s2 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -  

Questions to ask 

We want to answer questions about the system behaviour like 
 

 If the cooker heats, then is the door closed? 

When the start button is pushed, will the cooker eventually 
heat up? 

When the cooker is correctly started, will the cooker 
eventually heat up? 

When an error occurs, will it be still possible to cook? 

 

We are interested in questions on the development of the 
system over time, i.e. possible traces of the system given by a 
succession of states. 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -  

Temporal Logic 

Expresses properties of possible succession of states 

Linear Time 
 
 Every moment in time has a 

unique successor 
 Infinite sequences of moments 
 Linear Temporal Logic  LTL 

Branching Time 
 
 Every moment in time has several 

successors 
 Infinite tree 
 Computational Tree Logic  CTL 

s1 

s3 s2 

s1 

s1 s6 

s3 

s1 

s5 

s1 

s3 s2 

s6 s1 s5 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -  

Kripke Structures 
 

 In order to talk about propositions, we label the states of a FSM with 
propositions which hold there. This is called a Kripke structure. 

 

 

 

 

 

 

 

 

 

 

 Equivalent formulation: for each state, set of propositions which 
hold in this state, i.e. 𝑉′: Σ → 2𝑃𝑟𝑜𝑝  

 

Definition: Kripke structure 
Given a set 𝑃𝑟𝑜𝑝 of propositions, then a Kripke structure 
is given by K =  〈Σ, 𝐼, →, 𝑉〉 where 
• Σ is a finite set of states,  
• 𝐼 ⊆ Σ is a set of initial states, 
• →⊆ Σ × Σ is a left-total transition relation, and 
• 𝑉: 𝑃𝑟𝑜𝑝 → 2Σ is a valuation function mapping 

propositions to the set of states in which they hold 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -  

Kripke Structure: Example 

 

 Example: Cooker 

 Propositions: 

 Cooker is starting: S 

 Door is closed:       C 

 Cooker is heated:  H 

 Error occurred:      E 

 

 Kripke structure: 
 Σ = {𝑠1, … , 𝑠6} 

 𝐼 = 𝑠1  

 → = { 𝑠1, 𝑠2 , 𝑠2, 𝑠5 , 𝑠5, 𝑠2 , (𝑠1, 𝑠3) 

            𝑠3, 𝑠1 , 𝑠3, 𝑠6 , 𝑠6, 𝑠4 , 𝑠4, 𝑠4 ,  
            𝑠4, 𝑠3 , (𝑠4, 𝑠1)}  

 V S =  {𝑠2, 𝑠5, 𝑠6},  
V C =  {𝑠3, 𝑠4, 𝑠5, 𝑠6}, 
V H =  {𝑠4}, V E =  {𝑠2} 

 

cook 

start 
oven 

open  
door 

open  
door 

close  
door 

start 
oven 

close  
door 

open  
door 

warmup 

done 

:S, : C,  
: H, : E 

S, C,  
: H, : E 

:S, C,  
: H, : E 

S, C,  
: H, :E 

S, : C,  
: H,  E 

:S, C,  
H, : E 

s1 

s6 s5 

s4 s3 s2 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -  

Semantics of Kripke Structures (Prop) 

We now want to define a logic in which we can formalize 
temporal statements, i.e. statements about the behaviour of 
the system and its changes over time. 

The basis is open propositional logic (PL): negation, 
conjunction, disjunction, implication*. 

With that, we define how a PL-formula 𝜙 holds in a Kripke 
structure 𝐾 at state 𝑠 , written as 𝐾, 𝑠 ⊨ 𝑝. 

Let 𝐾 = 〈Σ, 𝐼, →, 𝑉〉 be a Kripke structure,  𝑠 ∈ Σ, and  
𝜙 a formula of propositional logic, then 

 𝐾, 𝑠 ⊨ 𝑝   if 𝑝 ∈ 𝑃𝑟𝑜𝑝 and 𝑠 ∈ 𝑉(𝑝) 

 𝐾, 𝑠 ⊨ ¬𝜙    if not 𝐾, 𝑠 ⊨ 𝜙  

 𝐾, 𝑠 ⊨ 𝜙1 ∧ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 and 𝐾, 𝑠 ⊨ 𝜙2 

 𝐾, 𝑠 ⊨ 𝜙1 ∨ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 or 𝐾, 𝑠 ⊨ 𝜙2 

* Note implication is derived: 𝜙1 → 𝜙2= ¬𝜙1 ∨ 𝜙2 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -  

Linear Temporal Logic 

 The formulae of LTL are given as 

      𝜙 ∷=  𝑝  ¬ 𝜙  𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2            Propositional formulae 
                  𝑋 𝜙   𝐺 𝜙   𝐹  𝜙  𝜙1 𝑈 𝜙2           Temporal operators 

 X p:  in the next moment p holds 

 

 

G p: p holds in all moments 

 

 

 F p:  there is a moment in the future when p will hold 

 

 

 p U q:  p holds in all moments until q holds 

p 

p 

p p p p p p 

p p p q 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -  

Examples of LTL formulae 

 If the cooker heats, then is the door closed? 

   𝐺(𝐻 → 𝐶) 

 Is it possible to cook (first starting up, then 
heating)? 

𝐹 (𝑆 ∧ 𝑋 𝐻) 

Whenever an error occurs, will it still 
be possible to cook? 

𝐺 (𝐸 → 𝐹 𝑆 ∧ 𝑋 𝐻 ) 

 

No, need to add 
a transition. 

cook 

start 
oven 

open  
door 

open  
door 

close  
door 

start 
oven 

close  
door 

open  
door 

warmup 

done 

:S, : C,  
: H, : E 

S, C,  
: H, : E 

:S, C,  
: H, : E 

S, :C,  
: H, :E 

S, : C,  
: H,  E 

:S, C,  
H, : E 

s1 

s6 s5 

s4 s3 s2 

reset 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -  

Paths in an FSM/Kripke Structure 

A path in an FSM (or Kripke structure) is a sequence of states 
starting in one of the initial states and connected by the 
transition relation (essentially, a run of the system). 

 

Formally: for an FSM 𝑀 = Σ, 𝐼, →  or a Kripke structure 
𝐾 = Σ, 𝐼, →, 𝑉 , a path is given by a sequence 𝑠1𝑠2𝑠3 … ∈ Σ∗ 
such that 𝑠1 ∈ 𝐼 and 𝑠𝑖 → 𝑠𝑖+1. 

 

For a path p = 𝑠1𝑠2𝑠3 …, we write  

 𝑝𝑖 for selecting the 𝑖-th element 𝑠𝑖 and  

 𝑝𝑖 for the suffix starting at position i, 𝑠𝑖𝑠𝑖+1𝑠𝑖+2 … 

 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -  

Semantics of LTL in Kripke Structures 

Let 𝐾 = 〈Σ, 𝐼, →, 𝑉〉 be a Kripke Structure and 𝜙 an LTL formula, 
then we say 𝐾 ⊨ 𝜙 (𝝓 holds in 𝑲),  if 𝐾, 𝑠 ⊨ 𝜙 for all paths  
𝑠 = 𝑠1𝑠2𝑠3 … in 𝐾, where: 

 𝐾, 𝑠 ⊨ 𝑝    if 𝑝 ∈ 𝑃𝑟𝑜𝑝, 𝑠1 ∈ 𝑉(𝑝) 

 𝐾, 𝑠 ⊨ ¬𝜙    if not 𝐾, 𝑠 ⊨ 𝜙  

 𝐾, 𝑠 ⊨ 𝜙1 ∧ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 and 𝐾, 𝑠 ⊨ 𝜙2 

 𝐾, 𝑠 ⊨ 𝜙1 ∨ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 or 𝐾, 𝑠 ⊨ 𝜙2 

 

 𝐾, 𝑠 ⊨ 𝑋 𝜙    if 𝐾, 𝑠2 ⊨ 𝜙 

 𝐾, 𝑠 ⊨ 𝐺 𝜙    if 𝐾, 𝑠𝑛 ⊨ 𝜙 for all 𝑛 > 0 

 𝐾, 𝑠 ⊨ 𝐹 𝜙    if 𝐾, 𝑠𝑛 ⊨ 𝜙 for some 𝑛 > 0 

 𝐾, 𝑠 ⊨ 𝜙 𝑈 𝜓     if 𝐾, 𝑠𝑛 ⊨ 𝜓 for some 𝑛 > 0,  
                               and for all 𝑖, 0 < 𝑖 < 𝑛, we have 𝐾, 𝑠𝑖 ⊨ 𝜙 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -  

More examples in the cooker 

Question: does the cooker work? 

Specifically, cooking means that first the door is open, then the 
oven heats up, cooks, then the door is open again, and all 
without an error. 

 𝑐 = ¬𝐶 ∧ 𝑋 𝑆 ∧ 𝑋(𝐻 ∧ 𝐹¬𝐶) ∧ 𝐺 ¬𝐸 – not quite. 

 𝑐 = ¬𝐶 ∧  ¬𝐸 ∧  𝑋 𝑆 ∧ ¬𝐸 ∧ 𝑋(𝐻 ∧ ¬𝐸 ∧ 𝐹(¬𝐶 ∧ ¬𝐸 )) – 
better 

 

So, does the cooker work? 

 There is at least one path s.t. 𝑐 holds eventually. 

 This is not 𝐹 𝑐, which says that all paths must eventually 
cook (which might be too strong). 

 We cannot express this in LTL; this is a principal limitation.  



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -  

Computational Tree Logic (CTL) 

LTL does not allow us the quantify over paths, e.g. assert the 
existence of a path satisfying a particular property. 

To a limited degree, we can solve this problem by negation: 
instead of asserting a property 𝜙, we check whether  ¬𝜙 is 
satisfied; if that is not the case,  𝜙 holds. But this does not 
work for mixtures of universal and existential quantifiers.  

Computational Tree Logic (CTL) is an extension of LTL which 
allows this by adding universal and existential quantifiers to 
the modal operators. 

The name comes from considering paths in the computa-
tional tree obtained by unwinding the transition relation of 
the FSM/Kripke structure.  



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -  

Computational Tree Logic (CTL) 

The formulae of CTL are given as 
      𝜙 ∷= 𝑝  ¬ 𝜙  𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2                             Propositional formulae 

                𝐴𝑋 𝜙  𝐸𝑋 𝜙  𝐴𝐺 𝜙  𝐸𝐺 𝜙 
                   𝐴𝐹 𝜙  𝐸𝐹 𝜙  𝜙1 𝐴𝑈 𝜙2  𝜙1𝐸𝑈 𝜙2           Temporal operators 

 

Note that CTL formulae can be considered to be a LTL 
formulae with a modality (A or E) added to each temporal 
operator. 

 Generally speaking, the A modality says the temporal 
operator holds for all paths, and the E modality says it 
only holds for all least one path. 

Hence, we do not define a satisfaction for a single path p, 
but with respect to a specific state in an FSM. 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -  

Computational Tree Logic CTL 
 
Specifying possible paths by combination 

 Branching behavior 
All paths:  A,  exists path: E 

 Succession of states in a path 
Temporal operators X, G, F, U 

 

For example: 

 AX p :   in all paths the next state satisfies p 

 EX p :    there is an path in which the next state satisfies p 

 p AU q :  in all paths p holds as long as q does not hold 

 EF p :    there is an path in which eventually p holds  

 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -  

Semantics of CTL in Kripke Structures 

For a Kripke structure 𝐾 = Σ, 𝐼, →, 𝑉  and a CTL-formula 𝜙, we 
say 𝐾 ⊨ 𝜙 (𝝓 holds in 𝑲) if 𝐾, 𝑠 ⊨ 𝜙 for all 𝑠 ∈ 𝐼, where 𝐾, 𝑠 ⊨ 𝜙 is 
defined inductively as follows (omitting the clauses for 
propositional operators 𝑝,¬,  ∧, ∨): 

 

 𝐾, 𝑠 ⊨ 𝐴𝑋 𝜙   iff for all 𝑠′ with 𝑠 → 𝑠′,  we have  𝐾, 𝑠′ ⊨ 𝜙 

 𝐾, 𝑠 ⊨ 𝐸𝑋 𝜙   iff for some 𝑠′ with 𝑠 → 𝑠′,  we have  𝐾, 𝑠′ ⊨ 𝜙 

 𝐾, 𝑠 ⊨ 𝐴𝐺 𝜙   iff for all paths 𝑝 with 𝑝1 = 𝑠,  
                                           we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for all 𝑖 ≥ 2.  

 𝐾, 𝑠 ⊨ 𝐸𝐺 𝜙   iff for some path 𝑝 with 𝑝1 = 𝑠,  
                                           we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for all 𝑖 ≥ 2.  

(continued on next slide) 

 

 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -  

Semantics of Kripke Structures (CTL) 

Given a Kripke structure 𝐾 = 〈Σ, 𝐼, →, 𝑉〉, 𝑠 ∈ Σ,  𝜙 a CTL-formula, 
then: 

 

 𝐾, 𝑠 ⊨ 𝐴𝐹 𝜙      iff for all paths 𝑝 with 𝑝1 = 𝑠,  
                                                we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for some 𝑖 

 𝐾, 𝑠 ⊨ 𝐸𝐹 𝜙       iff for some path 𝑝 with 𝑝1 = 𝑠,  
                                                 we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for some 𝑖 

 𝐾, 𝑠 ⊨ 𝜙 𝐴𝑈 𝜓   iff for all paths 𝑝 with 𝑝1 = 𝑠,  
                             there is i with 𝐾, 𝑝𝑖 ⊨ 𝜓 and for all 𝑗 < 𝑖, 𝐾, 𝑝𝑗 ⊨ 𝜙 

 𝐾, 𝑠 ⊨ 𝜙 𝐸𝑈 𝜓   iff for some path 𝑝 with 𝑝1 = 𝑠,  
                             there is i with 𝐾, 𝑝𝑖 ⊨ 𝜓 and for all 𝑗 < 𝑖, 𝐾, 𝑝𝑗 ⊨ 𝜙 

 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -  

Examples CTL 

 If the cooker heats, then is the door closed 

 

                 𝐴𝐺 (¬𝐻 ∨ 𝐶)   

 

 It is always possible  that  the  
cooker will eventually warmup. 

 

             𝐴𝐺 𝐸𝐹 ¬𝐻 ∧ 𝐸𝑋 𝐻   

cook 

reset 

start 
oven 

open  
door 

open  
door 

close  
door 

start 
oven 

close  
door 

open  
door 

warmup 

done 

:S, : C,  
: H, : E 

S, C,  
: H, : E 

:S, C,  
: H, : E 

S, :C,  
: H, :E 

S, : C,  
: H,  E 

:S, C,  
H, : E 

s1 

s6 s5 

s4 s3 s2 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -  

LTL, CTL and CTL*  

CTL is more expressive than LTL, but (surprisingly) there are 
also properties we can express in LTL but not in CTL:  

 The  formula 𝐹𝜙 → 𝐹𝜓 cannot be expressed in CTL 

 “When 𝜙 occurs somewhere, then 𝜓 also occurs 
somewhere.”  

 Not: 𝐴𝐹𝜙 → 𝐴𝐹𝜓, nor 𝐴𝐺(𝜙 → 𝐴𝐹 𝜓)  

 The  formula 𝐴𝐺 𝐸𝐹𝜙  cannot be expressed in LTL 

 “For all paths, it is always the case that there is some 
path on which 𝜙 is eventually true.” 

CTL* -  Allow for the use of temporal operators (X, G, F, U) 
without a directly preceded path quantifiers (A, E) 

 e.g.  AGF φ is allowed 

CTL* subsumes both LTL and CTL.  



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 26 -  

Complexity and State Explosion 

Even our small oven example has 6 states with 4 labels each. 
If we add one integer variable with 32 bits (e.g. for the heat), 
we get 232 additional states. 

Theoretically, there is not much hope. The basic problem of 
deciding whether a formula holds (satisfiability problem) for 
the temporal logics we have seen has the following 
complexity: 

 LTL without 𝑈 is NP-complete; 

 LTL is PSPACE-complete; 

 CTL (and CTL*) are EXPTIME-complete. 

This is known as state explosion. 

But at least it is decidable. Practically, state abstraction is the 
key technique, so e.g. for an integer variable 𝑖 we identify all 
states with 𝑖 ≤ 0, and those with 0 < 𝑖. 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 27 -  

Safety and Liveness Properties 

 Safety: nothing bad ever happens 

 E.g. “x is always not equal 0” 

 Safety properties are falsified by a bad (reachable) state 

 Safety properties can falsified by a finite prefix of an execution 
trace 

 

 Liveness: something good will eventually happen 

 E.g. “system is always terminating” 

 Need to keep looking for the good thing forever 

 Liveness properties can be falsified by an infinite-suffix of an 
execution trace:  e.g. finite list of states beginning with the 
initial state followed by a cycle showing you a loop that can 
cause you to get stuck and never reach the “good thing” 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 28 -  

Summary 

Model-checking allows us to show to show properties of 
systems by enumerating the system’s states, by modelling 
systems as finite state machines, and expressing properties 
in temporal logic. 

We considered Linear Temporal Logic (LTL) and Computational 
Tree Logic (CTL). LTL allows us to express properties of single 
paths, CTL allows quantifications over all possible paths of an 
FSM. 

The basic problem: the system state can quickly get huge, and 
the basic complexity of the problem is horrendous, leading to 
so-called state explosion. But the use of abstraction and state 
compression techniques make model-checking bearable. 

Next week: 

 Practical model-checking (with NuSMV and/or Spin). 

 


