

Systeme hoher Sicherheit und Qualität Universität Bremen, WS 2017/2018

Lecture 11:

Model Checking

Christoph Lüth, Dieter Hutter, Jan Peleska

Where are we?

- 01: Concepts of Quality
- 02: Legal Requirements: Norms and Standards
- 03: The Software Development Process
- 04: Hazard Analysis
- 05: High-Level Design with SysML
- 06: Formal Modelling with OCL
- 07: Testing
- 08: Static Program Analysis
- 09: Software Verification with Floyd-Hoare Logic
- 10: Correctness and Verification Condition Generation
- 11: Model Checking
- 12: Tools for Model Checking
- 13: Conclusions

Introduction

- In the last lectures, we were verifying program properties with the Floyd-Hoare calculus (or verification condition generation). Program verification translates the question of program correctness into a proof in program logic (the Floyd-Hoare logic), turning it into a deductive problem.
- Model-checking takes a different approach: instead of directly working with the (source code) of the program, we work with an **abstraction** of the system (the system **model**). Because we build an abstraction, this approach is also applicable at higher verification levels. (It is also complimentary to deductive verification.)
- The key questions are: how do these models look like? What properties do we want to express, and how do we express and prove them?

Model Checking in the Development Cycle

Introduction

- Model checking operates on (abstract) state machines
 - Does an abstract system satisfy some behavioral property e.g. liveness (deadlock) or safety properties
 - consider traffic lights in Requirement Engineering
 - Example: "green must always follow red"
- Automatic analysis if state machine is finite
 - Push-button technology
 - User does not need to know logic (at least not for the proof)
- Basis is satisfiability of boolean formula in a finite domain (SAT). However, finiteness does not imply efficiency – all interesting problems are at least NP-complete, and SAT is no exception (Cook's theorem).

The Model-Checking Problem

The **Basic Question**:

Given a model $\mathcal M$ and property ϕ , we want to know if $\mathcal M \vDash \phi$

• What is \mathcal{M} ? A finite-state machine or Kripke structure.

- What is ϕ ? Temporal logic
- How to prove it?
 - By enumerating the states and thus construct a model (hence model checking)
 - The basic problem: state explosion

Finite State Machine (FSM)

Definition: Finite State Machine (FSM) A FSM is given by $\mathcal{M} = \langle \Sigma, I, \rightarrow \rangle$ where • Σ is a finite set of **states**, • $I \subseteq \Sigma$ is a set of **initial** states, and • $\rightarrow \subseteq \Sigma \times \Sigma$ is a **transition relation**, s.t. \rightarrow is left-total: $\forall s \in \Sigma. \exists s' \in \Sigma. s \rightarrow s'$

Variations of this definition exists, e.g. no initial states.

- Note there is no final state, and no input or output (this is the key difference to automata).
- ► If → is a function, the FSM is deterministic, otherwise it is nondeterministic.

Systeme hoher Sicherheit und Qualität, WS 17/18

Example: A Simple Oven

- The oven has states and operations: open and close door, turn oven on and off, warm up, cook, ...
 - Operation names are for decoration purposes only.

Questions to ask

We want to answer **questions** about the system **behaviour** like

- If the cooker heats, then is the door closed?
- When the start button is pushed, will the cooker eventually heat up?
- When the cooker is correctly started, will the cooker eventually heat up?
- When an error occurs, will it be still possible to cook?

We are interested in questions on the development of the system over time, i.e. possible **traces** of the system given by a succession of states.

Temporal Logic

Expresses properties of possible succession of states

Linear Time

- Every moment in time has a unique successor
- Infinite sequences of moments
- Linear Temporal Logic LTL

Branching Time

- Every moment in time has several successors
- Infinite tree
- Computational Tree Logic CTL

Kripke Structures

In order to talk about propositions, we label the states of a FSM with propositions which hold there. This is called a Kripke structure.

Definition: Kripke structure

Given a set *Prop* of **propositions**, then a Kripke structure is given by $K = \langle \Sigma, I, \rightarrow, V \rangle$ where

- Σ is a finite set of states,
- $I \subseteq \Sigma$ is a set of initial states,
- $\rightarrow \subseteq \Sigma \times \Sigma$ is a left-total transition relation, and
- $V: Prop \rightarrow 2^{\Sigma}$ is a valuation function mapping propositions to the set of states in which they hold

• Equivalent formulation: for each state, set of propositions which hold in this state, i.e. $V': \Sigma \rightarrow 2^{Prop}$

Kripke Structure: Example

Semantics of Kripke Structures (Prop)

- We now want to define a logic in which we can formalize temporal statements, i.e. statements about the behaviour of the system and its changes over time.
- The basis is open propositional logic (PL): negation, conjunction, disjunction, implication*.
- ► With that, we define how a PL-formula ϕ holds in a Kripke structure *K* at state *s*, written as $K, s \models p$.
- Let $K = \langle \Sigma, I, \rightarrow, V \rangle$ be a Kripke structure, $s \in \Sigma$, and ϕ a formula of propositional logic, then
 - $\blacktriangleright K, s \vDash p \qquad \text{if } p \in Prop \text{ and } s \in V(p)$
 - $\blacktriangleright K, s \vDash \neg \phi \qquad \text{if not } K, s \vDash \phi$
 - ► $K, s \models \phi_1 \land \phi_2$ if $K, s \models \phi_1$ and $K, s \models \phi_2$
 - ► $K, s \models \phi_1 \lor \phi_2$ if $K, s \models \phi_1$ or $K, s \models \phi_2$

* Note implication is derived: $\phi_1 \rightarrow \phi_2 = \neg \phi_1 \lor \phi_2$

Linear Temporal Logic

The formulae of LTL are given as
φ ::= p | ¬φ | φ₁ ∧ φ₂ | φ₁ ∨ φ₂ | X φ | G φ | F φ | φ₁ U φ₂
X p: in the next moment p holds

Propositional formulae Temporal operators

► G p: p holds in all moments

F p: there is a moment in the future when p will hold

p U q: p holds in all moments until q holds

Examples of LTL formulae

- ► If the cooker heats, then is the door closed? $G(H \rightarrow C)$
- Is it possible to cook (first starting up, then heating)?

 $F(S \land X H)$ S_1 Whenever an error occurs, will it still ¬S, ¬C be possible to cook? <u>−</u>Η, −Ε start open $G (E \to F(S \land X H))$ door oven open S2 close S_4 S_3 door door S, ¬C, ¬S, C, ¬S, C, No, need to add cook −H, E −H, −E Н, ¬Е done a transition. open close start door door oven s_6 reset warmup Sς S, C, ¬H, -S. ¬C. −H,

Paths in an FSM/Kripke Structure

- A path in an FSM (or Kripke structure) is a sequence of states starting in one of the initial states and connected by the transition relation (essentially, a run of the system).
- Formally: for an FSM $M = \langle \Sigma, I, \rightarrow \rangle$ or a Kripke structure $K = \langle \Sigma, I, \rightarrow, V \rangle$, a **path** is given by a sequence $s_1 s_2 s_3 \dots \in \Sigma^*$ such that $s_1 \in I$ and $s_i \rightarrow s_{i+1}$.

For a path $p = s_1 s_2 s_3 \dots$, we write

- \triangleright p_i for **selecting** the *i*-th element s_i and
- ▶ p^i for the **suffix** starting at position i, $s_i s_{i+1} s_{i+2}$...

Semantics of LTL in Kripke Structures

Let $K = \langle \Sigma, I, \rightarrow, V \rangle$ be a Kripke Structure and ϕ an LTL formula, then we say $K \models \phi$ (ϕ holds in K), if $K, s \models \phi$ for all paths $s = s_1 s_2 s_3 \dots$ in K, where:

- ► $K, s \models p$ if $p \in Prop, s_1 \in V(p)$
- $K, s \models \neg \phi$ if not $K, s \models \phi$
- ► $K, s \models \phi_1 \land \phi_2$ if $K, s \models \phi_1$ and $K, s \models \phi_2$
- ► $K, s \models \phi_1 \lor \phi_2$ if $K, s \models \phi_1$ or $K, s \models \phi_2$
- $\blacktriangleright K, s \models X \phi \qquad \text{if } K, s^2 \models \phi$
- $K, s \models G \phi$ if $K, s^n \models \phi$ for all n > 0
- $K, s \models F \phi$ if $K, s^n \models \phi$ for some n > 0

► $K, s \models \phi U \psi$ if $K, s^n \models \psi$ for some n > 0, and for all i, 0 < i < n, we have $K, s^i \models \phi$

More examples in the cooker

- Question: does the cooker work?
- Specifically, cooking means that first the door is open, then the oven heats up, cooks, then the door is open again, and all without an error.
 - ► $c = \neg C \land X(S \land X(H \land F \neg C)) \land G \neg E$ not quite.
 - ► $c = (\neg C \land \neg E) \land X(S \land \neg E \land X(H \land \neg E \land F(\neg C \land \neg E)))$ better
- So, does the cooker work?
 - There is at least one path s.t. c holds eventually.
 - This is not F c, which says that all paths must eventually cook (which might be too strong).
 - We cannot express this in LTL; this is a principal limitation.

Computational Tree Logic (CTL)

- LTL does not allow us the quantify over paths, e.g. assert the existence of a path satisfying a particular property.
- ► To a limited degree, we can solve this problem by negation: instead of asserting a property ϕ , we check whether $\neg \phi$ is satisfied; if that is not the case, ϕ holds. But this does not work for mixtures of universal and existential quantifiers.
- Computational Tree Logic (CTL) is an extension of LTL which allows this by adding universal and existential quantifiers to the modal operators.
- The name comes from considering paths in the computational tree obtained by unwinding the transition relation of the FSM/Kripke structure.

Computational Tree Logic (CTL)

The formulae of CTL are given as

 $\phi ::= p \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2$ $\mid AX \phi \mid EX \phi \mid AG \phi \mid EG \phi$ $\mid AF \phi \mid EF \phi \mid \phi_1 AU \phi_2 \mid \phi_1 EU \phi_2$

Propositional formulae

Temporal operators

- Note that CTL formulae can be considered to be a LTL formulae with a modality (A or E) added to each temporal operator.
 - Generally speaking, the A modality says the temporal operator holds for all paths, and the E modality says it only holds for all least one path.
- Hence, we do not define a satisfaction for a single path p, but with respect to a specific state in an FSM.

Computational Tree Logic CTL

Specifying possible paths by combination

- Branching behavior
 All paths: A, exists path: E
- Succession of states in a path Temporal operators X, G, F, U

► For example:

- AX p: in all paths the next state satisfies p
- EX p: there is an path in which the next state satisfies p
- p AU q : in all paths p holds as long as q does not hold
- EF p : there is an path in which eventually p holds

Semantics of CTL in Kripke Structures

For a Kripke structure $K = \langle \Sigma, I, \rightarrow, V \rangle$ and a CTL-formula ϕ , we say $K \models \phi$ (ϕ holds in K) if $K, s \models \phi$ for all $s \in I$, where $K, s \models \phi$ is defined inductively as follows (omitting the clauses for propositional operators p, \neg, Λ, V):

- $K, s \models AX \phi$ iff for all s' with $s \rightarrow s'$, we have $K, s' \models \phi$
- ► $K, s \models EX \phi$ iff for some s' with $s \rightarrow s'$, we have $K, s' \models \phi$
- $K, s \models AG \phi$ iff for all paths p with $p_1 = s$, we have $K, p_i \models \phi$ for all $i \ge 2$.
- ► $K, s \models EG \phi$ iff for some path p with $p_1 = s$, we have $K, p_i \models \phi$ for all $i \ge 2$. (continued on next slide)

Semantics of Kripke Structures (CTL)

Given a Kripke structure $K = \langle \Sigma, I, \rightarrow, V \rangle$, $s \in \Sigma$, ϕ a CTL-formula, then:

- ► $K, s \models AF \phi$ iff for all paths p with $p_1 = s$, we have $K, p_i \models \phi$ for some i
- $K, s \models EF \phi$ iff for some path p with $p_1 = s$, we have $K, p_i \models \phi$ for some i
- $K, s \models \phi AU \psi$ iff for all paths p with $p_1 = s$, there is i with $K, p_i \models \psi$ and for all $j < i, K, p_j \models \phi$
- $K, s \models \phi EU \psi$ iff for some path p with $p_1 = s$, there is i with $K, p_i \models \psi$ and for all $j < i, K, p_j \models \phi$

Examples CTL

► If the cooker heats, then is the door closed

 $AG (\neg H \lor C)$

It is always possible that the cooker will eventually warmup.

 $AG(EF(\neg H \land EX H))$

LTL, CTL and CTL*

- CTL is more expressive than LTL, but (surprisingly) there are also properties we can express in LTL but not in CTL:
 - ► The formula $(F\phi) \rightarrow F\psi$ cannot be expressed in CTL
 - "When ϕ occurs somewhere, then ψ also occurs somewhere."
 - ▶ Not: $AF\phi \rightarrow AF\psi$, nor $AG(\phi \rightarrow AF\psi)$
 - The formula AG ($EF\phi$) cannot be expressed in LTL
 - For all paths, it is always the case that there is some path on which φ is eventually true."
- CTL* Allow for the use of temporal operators (X, G, F, U) without a directly preceded path quantifiers (A, E)
 - e.g. AGF φ is allowed
- CTL* subsumes both LTL and CTL.

Complexity and State Explosion

- Even our small oven example has 6 states with 4 labels each. If we add one integer variable with 32 bits (e.g. for the heat), we get 2³² additional states.
- Theoretically, there is not much hope. The basic problem of deciding whether a formula holds (satisfiability problem) for the temporal logics we have seen has the following complexity:
 - LTL without U is NP-complete;
 - LTL is PSPACE-complete;
 - CTL (and CTL*) are EXPTIME-complete.
- This is known as state explosion.
- ▶ But at least it is **decidable**. Practically, state abstraction is the key technique, so e.g. for an integer variable *i* we identify all states with $i \leq 0$, and those with 0 < i.

Safety and Liveness Properties

Safety: nothing bad ever happens

- E.g. "x is always not equal 0"
- Safety properties are falsified by a bad (reachable) state
- Safety properties can falsified by a finite prefix of an execution trace
- Liveness: something good will eventually happen
 - E.g. "system is always terminating"
 - Need to keep looking for the good thing forever
 - Liveness properties can be falsified by an infinite-suffix of an execution trace: e.g. finite list of states beginning with the initial state followed by a cycle showing you a loop that can cause you to get stuck and never reach the "good thing"

Summary

- Model-checking allows us to show to show properties of systems by enumerating the system's states, by modelling systems as finite state machines, and expressing properties in temporal logic.
- We considered Linear Temporal Logic (LTL) and Computational Tree Logic (CTL). LTL allows us to express properties of single paths, CTL allows quantifications over all possible paths of an FSM.
- The basic problem: the system state can quickly get huge, and the basic complexity of the problem is horrendous, leading to so-called state explosion. But the use of abstraction and state compression techniques make model-checking bearable.
- Next week:
 - Practical model-checking (with NuSMV and/or Spin).

