
Systeme hoher Sicherheit und Qualität, WS 19/20 - 1 -

Systeme hoher Sicherheit und Qualität

WS 2019/2020

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 12:

Tools for Model Checking

Systeme hoher Sicherheit und Qualität, WS 19/20 - 2 -

Organisatorisches

 Prüfungstermine

 06.03.2020, 12- 18 Uhr

 02.04.2020, ganztägig

 Scheinbedingungen:

 Note aus der mündlichen Prüfung

 Benotung der Übungsblätter: A = 1.3, B = 2.3, C = 3.3

 Kann als Bonus (nicht Malus) mit 20% hinzugerechnet werden.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 3 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic

 10: Verification Condition Generation

 11: Foundations of Model Checking

 12: Tools for Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 19/20 - 4 -

Introduction

 In the last lecture, we saw the basics of model-checking: how to
model systems on an abstract level with FSM or Kripke structures,
and how to specify their properties with temporal logic (LTL and
CTL).

 This was motivated by the promise of “efficient tool support”.

 So how does this tool support look like, and how does it work? We will
hopefully answer these two questions in the following…

 Brief overview:

 An Example: The Railway Crossing.

 Modelchecking with NuSMV and Spin.

 Algorithms for Model Checking.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 6 -

The Railway Crossing

Quelle: Wikipedia

Systeme hoher Sicherheit und Qualität, WS 19/20 - 7 -

First Abstraction

Systeme hoher Sicherheit und Qualität, WS 19/20 - 8 -

The Model

States of the train:States of the car:

States of the gate:

Systeme hoher Sicherheit und Qualität, WS 19/20 - 9 -

The Finite State Machine

 The states of the FSM is given by mapping variables 𝑐𝑎𝑟, 𝑡𝑟𝑎𝑖𝑛, 𝑔𝑎𝑡𝑒 to the
domains

Σ𝑐𝑎𝑟 = 𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑙𝑣𝑛𝑔, 𝑎𝑤𝑎𝑦
Σ𝑡𝑟𝑎𝑖𝑛 = 𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑙𝑣𝑛𝑔, 𝑎𝑤𝑎𝑦
Σ𝑔𝑎𝑡𝑒 = 𝑜𝑝𝑒𝑛, 𝑐𝑙𝑠𝑑

 Or alternatively, states are a 3-tuples
𝑠 ∈ Σ = Σ𝑐𝑎𝑟 × Σ𝑡𝑟𝑎𝑖𝑛 × Σ𝑔𝑎𝑡𝑒

 The transition relation is given by
𝑎𝑤𝑎𝑦, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛 → 𝑎𝑝𝑝𝑟, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛
𝑎𝑝𝑝𝑟, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛 → 𝑥𝑖𝑛𝑔, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛
𝑎𝑝𝑝𝑟, 𝑎𝑝𝑝𝑟, 𝑐𝑙𝑠𝑑 → 𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑐𝑙𝑠𝑑
𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑐𝑙𝑠𝑑 → 𝑎𝑝𝑝𝑟, 𝑙𝑣𝑛𝑔, 𝑐𝑙𝑠𝑑
𝑎𝑝𝑝𝑟, 𝑙𝑣𝑛𝑔, 𝑐𝑙𝑠𝑑 → 𝑎𝑝𝑝𝑟, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛
…

Systeme hoher Sicherheit und Qualität, WS 19/20 - 10 -

Properties of the Railway Crossing

 We want to express properties such as

 Cars and trains may never cross at the same time.

 The car can always leave the crossing.

 Approaching trains may eventually cross.

 It is possible for cars to cross the tracks.

 The first two are safety properties, the last two are liveness properties.

 To formulate these in temporal logic, we first need the basic propositions
which talk about the variables of the state.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 11 -

Basic Propositions

 The basic propositions 𝑃𝑟𝑜𝑝 are given as equalities over the state variables:

𝑐𝑎𝑟 = 𝑣 ∈ 𝑃𝑟𝑜𝑝 mit 𝑣 ∈ Σ𝑐𝑎𝑟,
𝑡𝑟𝑎𝑖𝑛 = 𝑣 ∈ 𝑃𝑟𝑜𝑝 mit 𝑣 ∈ Σ𝑡𝑟𝑎𝑖𝑛,

𝑔𝑎𝑡𝑒 = 𝑣 ∈ 𝑃𝑟𝑜𝑝 mit 𝑣 ∈ Σ𝑔𝑎𝑡𝑒

 The Kripke structure valuation 𝑉 maps each basic proposition to all states
where this equality holds.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 12 -

The Properties

 Cars and trains never cross at the same time:
𝐺¬ 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔 ∧ 𝑡𝑟𝑎𝑖𝑛 = 𝑥𝑖𝑛𝑔

 A car can always leave the crossing:

𝐺 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔 → 𝐹 𝑐𝑎𝑟 = 𝑙𝑣𝑛𝑔

 Approaching trains may eventually cross:

𝐺 𝑡𝑟𝑎𝑖𝑛 = 𝑎𝑝𝑝𝑟 → 𝐹 𝑡𝑟𝑎𝑖𝑛 = 𝑥𝑖𝑛𝑔

 There are cars which are crossing the tracks:
𝐸𝐹 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔

 Not expressible in LTL, 𝐹 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔 means something stronger („there is
always a car which eventually crosses“)

Systeme hoher Sicherheit und Qualität, WS 19/20 - 13 -

Model-Checking Tools: NuSMV2

 NuSMV is a reimplementation of SMV, the first model-checker to use BDDs.
NuSMV2 also adds SAT-based model checking.

 Systems are modelled as synchronous FSMs (Mealy automata) or asynchronous
processes*.

 Properties can be formulated in LTL and CTL.

 Written in C, open source. Latest version 2.6.0 from Oct. 2015.

 Developed by Fondazione Bruno Kessler, Carnegie Mellon University, the
University of Genoa and the University of Trento.

* This is apparently depreciated now.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 14 -

Model-Checking Tools: Spin

 Spin was originally developed by Gerard Holzmann at Bell Labs in the 80s.

 Systems modelled in Promela (Process Meta Language): asynchronous
communication, non-deterministic automata.

 Spin translates the automata into a C program, which performs the actual
model-checking.

 Supports LTL and CTL.

 Latest version 6.4.7 from August 2017.

 Spin won the ACM System Software Award in 2001.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 29 -

Conclusions

 Tools such as NuSMV2 and Spin make model-checking feasible for
moderately sized systems.

 This allows us to find errors in systems which are hard to find by testing alone.

 The key ingredient is efficient state abstraction.

 But careful: abstraction must preserve properties.

