
Verifikation von C-Programmen
Vorlesung 4 vom 13.11.2014: MISRA-C: 2004

Guidelines for the use of the C language in critical systems

Christoph Lüth

Universität Bremen

Wintersemester 2014/15

04.12.2014 1 [37]

MISRA-Standard

I Beispiel für eine Codierrichtlinie

I Erste Version 1998, letzte Auflage 2004

I Kostenpflichtig (£40,-/£10,-)

I Kein offener Standard

I Regeln: 121 verbindlich (required), 20 empfohlen (advisory)

2 [37]

Gliederung

§1 Background: The use of C and issues with it
§2 MISRA-C: The vision
§3 MISRA-C: Scope
§4 Using MISRA-C
§5 Introduction to the rules
§6 Rules

3 [37]

Anwendung von MISRA-C (§4)

I §4.2: Training, Tool Selection, Style Guide

I §4.3: Adopting the subset

I Produce a compliance matrix which states how each rule is enforced

I Produce a deviation procedure

I Formalise the working practices within the quality management system

4 [37]

MISRA Compliance Matrix

5 [37]

Die Regeln (§5)

I Classification of rules:

I Required (§5.1.1): “C code which is claimed to conform to this document
shall comply with every required rule”

I Advisory (§5.1.2):“should normally be followed”, but not mandatory.
“Does not mean that these items can be ignored, but that they should be
followed as far as is reasonably practical.”

I Organisation of rules (§5.4)

I Terminology (§5.5) — from C standard

I Scope(§5.6) : most can be checked for single translation unit

6 [37]

Environment

1.1 (req) All code shall conform to ISO 9899:1990 “Pro-
gramming languages — C”, amended and cor-
rected by ISO/IEC 9899/COR1:1995, ISO/IEC
9899/AMD1:1995, and ISO/IEC 9899/COR2:1996 .

1.2 (req) No reliance shall be placed on undefined or unspecified
behaviour .

2

1.3 (req) Multiple compilers and/or languages shall only be
used if there is a common defined interface standard
for object code to which the languages/compilers/as-
semblers conform.

1

1.4 (req) The compiler/linker shall be checked to ensure that
31 character significance and case sensitivity are sup-
ported for external identifiers.

1

1.5 (adv) Floating-point implementations should comply with a
defined floating-point standard .

1

7 [37]

Language extensions

2.1 (req) Assembly language shall be encapsulated and isolated. 1
2.2 (req) Source code shall only use /* ... */ style comments. 2
2.3 (req) The character sequence /* shall not be used within a

comment.
2

2.4 (adv) Sections of code should not be “commented out”. 2

8 [37]

Documentation

3.1 (req) All usage of implementation-defined behaviour shall
be documented.

3

3.2 (req) The character set and the corresponding encoding
shall be documented

1

3.3 (adv) The implementation of integer division in the chosen
compiler should be determined, documented and ta-
ken into account.

1

3.4 (req) All uses of the #pragma directive shall be documen-
ted and explained.

1

3.5 (req) The implementation-defined behaviour and packing
of bitfields shall be documented if being relied upon.

1

3.6 (req) All libraries used in production code shall be written
to comply with the provisions of this document, and
shall have been subject to appropriate validation .

1

9 [37]

Character sets

4.1 (req) Only those escape sequences that are defined in the
ISO C standard shall be used.

1

4.2 (req) Trigraphs shall not be used. 1

10 [37]

Identifiers

5.1 (req) Identifiers (internal and external) shall not rely on the
significance of more than 31 characters.

1

5.2 (req) Identifiers in an inner scope shall not use the same
name as an identifier in an outer scope, and therefore
hide that identifier.

1

5.3 (req) A typedef name shall be a unique identifier. 2
5.4 (req) A tag name shall be a unique identifier. 2
5.5 (adv) No object or function identifier with static storage

duration should be reused.
2

5.6 (adv) No identifier in one name space should have the same
spelling as an identifier in another name space, with
the exception of structure member and union member
names.

2

5.7 (adv) No identifier name should be reused. 2

11 [37]

Types

6.1 (req) The plain char type shall be used only for storage and
use of character values.

2

6.2 (req) signed and unsigned char type shall be used only for
the storage and use of numeric values.

2

6.3 (adv) typedefs that indicate size and signedness should be
used in place of the basic numerical types.

2

6.4 (req) Bit fields shall only be defined to be of type unsigned
int or signed int.

1

6.5 (req) Bit fields of signed type shall be at least 2 bits long. 1

12 [37]

Constants

7.1 (req) Octal constants (other than zero) and octal escape
sequences shall not be used.

2

13 [37]

Declarations and definitions (I)

8.1 (req) Functions shall have prototype declarations and the
prototype shall be visible at both the function defini-
tion and call.

1

8.2 (req) Whenever an object or function is declared or defined,
its type shall be explicitly stated.

1

8.3 (req) For each function parameter the type given in the
declaration and definition shall be identical, and the
return types shall also be identical.

2

8.4 (req) If objects or functions are declared more than once
their types shall be compatible.

2

8.5 (req) There shall be no definitions of objects or functions
in a header file.

2

14 [37]

Declarations and definitions (II)
8.6 (req) Functions shall be declared at file scope. 1
8.7 (req) Objects shall be defined at block scope if they are

only accessed from within a single function.
2

8.8 (req) An external object or function shall be declared in one
and only one file.

2

8.9 (req) An identifier with external linkage shall have exactly
one external definition.

2

8.10 (req) All declarations and definitions of objects or functions
at file scope shall have internal linkage unless external
linkage is required.

3

8.11 (req) The static storage class specifier shall be used in defi-
nitions and declarations of objects and functions that
have internal linkage.

3

8.12 (req) When an array is declared with external linkage, its
size shall be stated explicitly or defined implicitly by
initialisation.

2

15 [37]

Initialisation

9.1 (req) All automatic variables shall have been assigned a va-
lue before being used.

3

9.2 (req) Braces shall be used to indicate and match the struc-
ture in the non-zero initialisation of arrays and struc-
tures.

1

9.3 (req) In an enumerator list, the “=” construct shall not be
used to explicitly initialise members other than the
first, unless all items are explicitly initialised.

1

16 [37]

Arithmetic type conversions (I)

10.1 (req) The value of an expression of integer type shall not
be implicitly converted to a different underlying type
if:

a) it is not a conversion to a wider integer
type of the same signedness, or

b) the expression is complex, or
c) the expression is not constant and is a

function argument, or
d) the expression is not constant and is a

return expression.

2

17 [37]

Arithmetic type conversions (II)

10.2 (req) The value of an expression of floating type shall not
be implicitly converted to a different type if:

a) it is not a conversion to a wider
floating type, or

b) the expression is complex, or
c) the expression is a function argument,

or
d) the expression is a return expression.

1

18 [37]

Arithmetic type conversions (II)

10.3 (req) The value of a complex expression of integer type shall
only be cast to a type of the same signedness that is
no wider than the underlying type of the expression.

2

10.4 (req) The value of a complex expression of floating type
shall only be cast to a floating type which is narrower
or of the same size.

1

10.5 (req) If the bitwise operators ˜ and < < are applied to an
operand of underlying type unsigned char or unsigned
short, the result shall be immediately cast to the un-
derlying type of the operand.

2

10.6 (req) A “U” suffix shall be applied to all constants of unsi-
gned type.

2

19 [37]

Pointer type conversions

11.1 (req) Conversions shall not be performed between a pointer
to a function and any type other than an integral type.

1

11.2 (req) Conversions shall not be performed between a pointer
to object and any type other than an integral type,
another pointer to object type or a pointer to void.

1

11.3 (adv) A cast should not be performed between a pointer
type and an integral type.

1

11.4 (adv) A cast should not be performed between a pointer to
object type and a different pointer to object type.

1

11.5 (req) A cast shall not be performed that removes any const
or volatile qualification from the type addressed by a
pointer.

1

20 [37]

Expressions (I)

12.1 (adv) Limited dependence should be placed on C’s operator
precedence rules in expressions.

3 -

12.2 (req) The value of an expression shall be the same under
any order of evaluation that the standard permits.

3

12.3 (req) The sizeof operator shall not be used on expressions
that contain side effects.

3

12.4 (req) The right-hand operand of a logical && or || operator
shall not contain side effects.

3

12.5 (req) The operands of a logical && or || shall be primary-
expressions.

3

12.6 (adv) The operands of logical operators (&&, || and !)
should be effectively Boolean. Expressions that are
effectively Boolean should not be used as operands to
operators other than (&&, ||, !, =, ==, !=, and ?:).

3

21 [37]

Expressions (II)

12.7 (req) Bitwise operators shall not be applied to operands
whose underlying type is signed.

2

12.8 (req) The right-hand operand of a shift operator shall lie
between zero and one less than the width in bits of
the underlying type of the left-hand operand.

3

12.9 (req) The unary minus operator shall not be applied to an
expression whose underlying type is unsigned.

2

12.10 (req) The comma operator shall not be used. 1
12.11 (adv) Evaluation of constant unsigned integer expressions

should not lead to wrap-around.
3

12.12 (req) The underlying bit representations of floating-point
values shall not be used.

3

12.13 (adv) The increment (++) and decrement (–) operators
should not be mixed with other operators in an ex-
pression.

1

22 [37]

Control statement expressions

13.1 (req) Assignment operators shall not be used in expressions
that yield a Boolean value.

1

13.2 (adv) Tests of a value against zero should be made explicit,
unless the operand is effectively Boolean.

3

13.3 (req) Floating-point expressions shall not be tested for
equality or inequality.

1

13.4 (req) The controlling expression of a for statement shall not
contain any objects of floating type.

1

13.5 (req) The three expressions of a for statement shall be con-
cerned only with loop control.

1

13.6 (req) Numeric variables being used within a for loop for
iteration counting shall not be modified in the body
of the loop.

3

13.7 (req) Boolean operations whose results are invariant shall
not be permitted.

3

23 [37]

Control flow (I)

14.1 (req) There shall be no unreachable code. 3 -

14.2 (req) All non-null statements shall either:
a) have at least one side effect however executed, or
b) cause control flow to change.

3

14.3 (req) Before preprocessing, a null statement shall only oc-
cur on a line by itself; it may be followed by a com-
ment provided that the first character following the
null statement is a white-space character.

3

14.4 (req) The goto statement shall not be used. 1
14.5 (req) The continue statement shall not be used. 1
14.6 (req) For any iteration statement there shall be at most one

break statement used for loop termination.
2

24 [37]

Control flow (I)

14.7 (req) A function shall have a single point of exit at the end
of the function.

1

14.8 (req) The statement forming the body of a switch, while, do
... while or for statement be a compound statement.

1

14.9 (req) An if (expression) construct shall be followed by a
compound statement. The else keyword shall be fol-
lowed by either a compound statement, or another if
statement.

1

14.10 (req) All if ... else if constructs shall be terminated with an
else clause.

1

25 [37]

Switch statements

15.1 (req) A switch label shall only be used when the most
closely-enclosing compound statement is the body of
a switch statement.

1

15.2 (req) An unconditional break statement shall terminate eve-
ry non-empty switch clause.

1

15.3 (req) The final clause of a switch statement shall be the
default clause.

1

15.4 (req) A switch expression shall not represent a value that is
effectively Boolean.

1

15.5 (req) Every switch statement shall have at least one case
clause.

1

26 [37]

Functions (I)

16.1 (req) Functions shall not be defined with variable numbers
of arguments.

1

16.2 (req) Functions shall not call themselves, either directly or
indirectly.

3

16.3 (req) Identifiers shall be given for all of the parameters in a
function prototype declaration.

1

16.4 (req) The identifiers used in the declaration and definition
of a function shall be identical.

1

16.5 (req) Functions with no parameters shall be declared and
defined with the parameter list void.

1

16.6 (req) The number of arguments passed to a function shall
match the number of parameters.

2

16.7 (adv) A pointer parameter in a function prototype should
be declared as pointer to const if the pointer is not
used to modify the addressed object.

3

27 [37]

Functions (I)

16.8 (req) All exit paths from a function with non-void return
type shall have an explicit return statement with an
expression.

3

16.9 (req) A function identifier shall only be used with either a
preceding &, or with a parenthesised parameter list,
which may be empty.

1

16.10 (req) If a function returns error information, then that error
information shall be tested.

3 -

28 [37]

Pointers and arrays

17.1 (req) Pointer arithmetic shall only be applied to pointers
that address an array or array element.

3

17.2 (req) Pointer subtraction shall only be applied to pointers
that address elements of the same array.

3

17.3 (req) >, >=, <, <= shall not be applied to pointer types
except where they point to the same array.

3

17.4 (req) Array indexing shall be the only allowed form of poin-
ter arithmetic.

3

17.5 (adv) The declaration of objects should contain no more
than 2 levels of pointer indirection.

1

17.6 (req) The address of an object with automatic storage shall
not be assigned to another object that may persist
after the first object has ceased to exist.

3

29 [37]

Structures and unions

18.1 (req) All structure or union types shall be complete at the
end of a translation unit.

3

18.2 (req) An object shall not be assigned to an overlapping ob-
ject.

3

18.3 (req) An area of memory shall not be reused for unrelated
purposes.

x

18.4 (req) Unions shall not be used. 1

30 [37]

Preprocessing directives (I)
19.1 (adv) #include statements in a file should only be preceded

by other preprocessor directives or comments.
3

19.2 (adv) Non-standard characters should not occur in header
file names in #include directives.

3

19.3 (req) The #include directive shall be followed by either a
<filename> or "filename" sequence.

3

19.4 (req) C macros shall only expand to a braced initialiser, a
constant, a string literal, a parenthesised expression, a
type qualifier, a storage class specifier, or a do-while-
zero construct.

3

19.5 (req) Macros shall not be #define’d or #undef’d within a
block.

x

19.6 (req) #undef shall not be used. 2
19.7 (adv) A function should be used in preference to a function-

like macro.
3

19.8 (req) A function-like macro shall not be invoked without all
of its arguments.

3

31 [37]

Preprocessing directives (II)

19.9 (req) Arguments to a function-like macro shall not contain
tokens that look like preprocessing directives.

3

19.10 (req) In the definition of a function-like macro each instance
of a parameter shall be enclosed in parentheses unless
it is used as the operand of # or ##.

3

19.11 (req) All macro identifiers in preprocessor directives shall
be defined before use, except in #ifdef and #ifndef
preprocessor directives and the defined() operator.

3

19.12 (req) There shall be at most one occurrence of the # or ##
preprocessor operators in a single macro definition.

3

19.13 (adv) The # and ## preprocessor operators should not be
used.

3

32 [37]

Preprocessing directives (III)

19.14 (req) The defined preprocessor operator shall only be used
in one of the two standard forms.

3

19.15 (req) Precautions shall be taken in order to prevent the
contents of a header file being included twice.

3

19.16 (req) Preprocessing directives shall be syntactically mea-
ningful even when excluded by the preprocessor.

3

19.17 (req) All #else, #elif and #endif preprocessor directives
shall reside in the same file as the #if or #ifdef
directive to which they are related.

3

33 [37]

Standard libraries (I)

20.1 (req) Reserved identifiers, macros and functions in the stan-
dard library, shall not be defined, redefined or undefi-
ned.

3

20.2 (req) The names of standard library macros, objects and
functions shall not be reused.

3

20.3 (req) The validity of values passed to library functions shall
be checked.

3

20.4 (req) Dynamic heap memory allocation shall not be used. 2
20.5 (req) The error indicator errno shall not be used. 2
20.6 (req) The macro offsetof, in library <stddef.h>, shall not

be used.
2

20.7 (req) The setjmp macro and the longjmp function shall not
be used.

2

34 [37]

Standard libraries (II)

20.8 (req) The signal handling facilities of <signal.h> shall not
be used.

2

20.9 (req) The input/output library <stdio.h> shall not be used
in production code.

2

20.10 (req) The library functions atof, atoi and atol from library
<stdlib.h> shall not be used.

2

20.11 (req) The library functions abort, exit, getenv and system
from library <stdlib.h> shall not be used.

2

20.12 (req) The time handling functions of library <time.h> shall
not be used.

2

35 [37]

Run-time failures

21.1 (req) Minimisation of run-time failures shall be ensured by
the use of at least one of:
a) static analysis tools/techniques;
b) dynamic analysis tools/techniques;
c) explicit coding of checks to handle run-time faults.

3

36 [37]

MISRA-C in der Praxis

I Meiste Werkzeuge kommerziell
I Entwicklung eines MISRA-Prüfwerkzeugs im Rahmen des

SAMS-Projektes
I Diplomarbeit Hennes Maertins (Juni 2010)

I Herausforderungen:
I Parser und erweiterte Typprüfung für C
I Re-Implementierung des Präprozessors
I Einige Regeln sind unentscheidbar
I Dateiübergreifende Regeln

I Implementierung:
I 20 KLoc Haskell, im Rahmen des SAMS-Werkzeugs (SVT)

37 [37]

