Verifikation von C-Programmen Universität Bremen, WS 2014/15

Lecture 05 (19.11.2013)

Statische Programmanalyse

Christoph Lüth

Today: Static Program Analysis

- ► Analysis of run-time behavior of programs without executing them (sometimes called static testing)
- ► Analysis is done for **all** possible runs of a program (i.e. considering all possible inputs)
- ▶ Typical tasks
 - Does the variable *x* have a constant value ?
 - Is the value of the variable x always positive?
 - Can the pointer *p* be null at a given program point?
 - What are the possible values of the variable *y*?
- ► These tasks can be used for verification (e.g. is there any possible dereferencing of the null pointer), or for optimisation when compiling.

Usage of Program Analysis

Optimising compilers

- ▶ Detection of sub-expressions that are evaluated multiple times
- ▶ Detection of unused local variables
- ▶ Pipeline optimisations

Program verification

- ▶ Search for runtime errors in programs
- ▶ Null pointer dereference
- Exceptions which are thrown and not caught
- Over/underflow of integers, rounding errors with floating point numbers
- ► Runtime estimation (worst-caste executing time, wcet; AbsInt tool)

Program Analysis: The Basic Problem

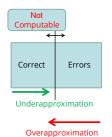
▶ Basic Problem:

All interesting program properties are undecidable.

- ▶ Given a property P and a program p, we say $p \models P$ if a P holds for p. An algorithm (tool) ϕ which decides P is a computable predicate $\phi: p \to Bool$. We say:
 - ϕ is **sound** if whenever $\phi(p)$ then $p \models P$.
 - ϕ is **safe** (or **complete**) if whenever $p \models P$ then $\phi(p)$.
- ► From the basic problem it follows that there are no sound and safe tools for interesting properties.
 - In other words, all tools must either under- or overapproximate.

Program Analysis: Approximation

- ► **Underapproximation** only finds correct programs but may miss out some
 - Useful in optimising compilers
 - Optimisation must respect semantics of program, but may optimise.
- ➤ Overapproximation finds all errors but may find non-errors (false positives)
 - Useful in verification.
 - Safety analysis must find all errors, but may report some more.
 - Too high rate of false positives may hinder acceptance of tool.



Program Analysis Approach

- ▶ Provides approximate answers
 - yes / no / don't know or
 - superset or subset of values
- ▶ Uses an abstraction of program's behavior
 - Abstract data values (e.g. sign abstraction)
 - Summarization of information from execution paths e.g. branches of the if-else statement
- ▶ Worst-case assumptions about environment's behavior
 - e.g. any value of a method parameter is possible
- ▶ Sufficient precision with good performance

Flow Sensitivity

Flow-sensitive analysis

- ▶ Considers program's flow of control
- Uses control-flow graph as a representation of the source
- ▶ Example: available expressions analysis

Flow-insensitive analysis

- Program is seen as an unordered collection of statements
- ▶ Results are valid for any order of statements e.g. S1; S2 vs. S2; S1
- ► Example: type analysis (inference)

Context Sensitivity

Context-sensitive analysis

▶ Stack of procedure invocations and return values of method parameters then results of analysis of the method *M* depend on the caller of *M*

Context-insensitive analysis

▶ Produces the same results for all possible invocations of *M* independent of possible callers and parameter values

Intra- vs. Inter-procedural Analysis

Intra-procedural analysis

- ▶ Single function is analyzed in isolation
- ► Maximally pessimistic assumptions about parameter values and results of procedure calls

Inter-procedural analysis

- ▶ Whole program is analyzed at once
- ▶ Procedure calls are considered

Data-Flow Analysis

Focus on questions related to values of variables and their lifetime Selected analyses:

- ► Available expressions (forward analysis)
 - Which expressions have been computed already without change of the occurring variables (optimization)?
- ► Reaching definitions (forward analysis)
 - Which assignments contribute to a state in a program point? (verification)
- ▶ Very busy expressions (backward analysis)
 - Which expressions are executed in a block regardless which path the program takes (verification)?
- ► Live variables (backward analysis)
 - Is the value of a variable in a program point used in a later part of the program (optimization)?

A Very Simple Programming Language

- ▶ In the following, we use a very simple language with
 - Arithmetic operators given by $a ::= x \mid n \mid a_1 o p_a a_2$ with x a variable, n a numeral, $o p_a$ arith. op. (e.g. +, -, *)
 - Boolean operators given by
 b := true | false | not b | b₁op_b b₂ | a₁op_r a₂
 with op_b boolean operator (e.g. and, or) and op_r a relational operator (e.g. =, <)
 - Statements given by
 - $[x := a]^l \mid [\text{skip}]^l \mid S_1; S_2 \mid \text{if } [b]^l \text{then } S_1 \text{else } S_2 \mid \text{while } [b]^l \text{do } S$
- ► An Example Program:

```
[x := a+b]^1;

[y := a*b]^2;

while [y > a+b]^3 do ( [a:=a+1]^4; [x:= a+b]^5 )
```

The Control Flow Graph

- ▶ We define some functions on the abstract syntax:
 - The initial label (entry point) init: $S \rightarrow Lab$
 - The final labels (exit points) final: $S \to \mathbb{P}(Lab)$
 - The elementary blocks block: S → P(Blocks) where an elementary block is
 - an assignment[x:= a],
 - or [skip],
 - or a test [b]
 - The control flow flow: $S \to \mathbb{P}(Lab \times Lab)$ and reverse control flow^R: $S \to \mathbb{P}(Lab \times Lab)$.
- ▶ The **control flow graph** of a program S is given by
 - elementary blocks block(S) as nodes, and
 - flow(S) as vertices.

Labels, Blocks, Flows: Definitions

```
final([x :=a]^{I}) = { I}
                                                                                                                       init([x :=a]^{I}) = I
final([skip]^{I}) = { I}
final([s_1; S_2) = final([s_2])
                                                                                                                       init([skip]^I) = I

init(S_1; S_2) = init(S_1)
final(if [b]/then S_1 else S_2) = final(S_1) \cup final(S_2)
                                                                                                                       init(if [b]/then S_1 else S_2) = /
final(while [b]^{I} do S) = \{I\}
                                                                                                                       init(while [b]^{I} do S) = I
                                                                                                                       flow^{R}(S) = \{(I', I) \mid (I, I') \in flow(S)\}
flow([x :=a]^{\prime}) = \emptyset
flow([skip]]) = \emptyset
\begin{aligned} &\text{flow}(S_1;S_2) = \text{flow}(S_1) \cup \text{flow}(S_2) \cup \{\textit{I}, \text{init}(S_2)) \mid \textit{I} \in \text{final}(S_1)\} \\ &\text{flow}(\text{if }[b]' \text{ then } S_1 \text{ else } S_2) = \text{flow}(S_1) \cup \text{flow}(S_2) \cup \{\textit{I}, \text{init}(S_1), \textit{I}, \text{init}(S_2)\} \\ &\text{flow}(\text{ while }[b]' \text{ do } S) = \text{flow}(S) \cup \{\textit{I}, \text{init}(S)\} \cup \{\textit{I}', \textit{I}) \mid \textit{I}' \in \text{final}(S)\} \end{aligned}
blocks([x := a]^{i}) = {[x := a]^{i}}
                                                                                                                       labels(S) = \{ l \mid [B]^l \in blocks(S) \}
blocks([skip]') = {[skip]'}
blocks(S_1; S_2) = blocks(S_1) \cup blocks(S_2)
                                                                                                                       FV(a) = free variables in a
                                                                                                                       Aexp(S) = nontrivial
blocks(if [b]' then S_1 else S_2)
= { [b]'} \cup blocks(S_1) \cup blocks(S_2)
                                                                                                                                               subexpressions of S
```

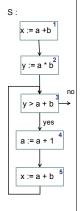
Another Example $P = [x := a+b]^{1}; [y := a^{*}b]^{2}; \text{ while } [y > a+b]^{3} \text{ do } ([a:=a+1]^{4}; [x:=a+b]^{5})$ init(P) = 1 $final(P) = \{3\}$ $blocks(P) = \{[x := a+b]^{1}, [y := a^{*}b]^{2}, [y > a+b]^{3}, [a:=a+1]^{4}, [x:=a+b]\}$ $flow(P) = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)\}$ $flow^{3}(P) = \{(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)\}$ $labels(P) = \{1, 2, 3, 4, 5\}$ $FV(a + b) = \{a, b\}$

Available Expression Analysis

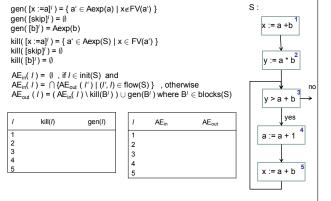
► The avaiable expression analysis will determine:

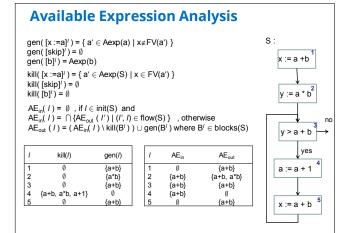
blocks(while [b] do S) = { [b] 1 } \cup blocks(S)

For each program point, which expressions must have already been computed, and not later modified, on all paths to this program point.



Available Expression Analysis

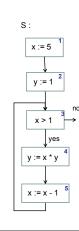




Reaching Definitions Analysis

▶ Reaching definitions (assignment) analysis determines if:

An assignment of the form $[x := a]^I$ may reach a certain program point k if there is an execution of the program where x was last assigned a value at I when the program point k is reached



Reaching Definitions Analysis

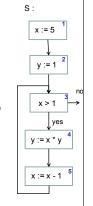
 $\mathsf{kill}(\,[\mathsf{skip}]^{\prime}\,) = \emptyset$

1	kill(B [/])	gen(B/)
1	$\{(x,?), (x,1),(x,5)\}$	{(x, 1)}
2	$\{(y,?), (y,2),(y,4)\}$	$\{(y, 2)\}$
3	Ø	Ø
4	$\{(y,?), (y,2), (y,4)\}$	{(y, 4)}
5	{(x ?) (x 1) (x 5)}	{(x 5)}

 $kill([b]^{I}) = \emptyset$ kill($[x := a]^{l}$) = {(x, ?)} \cup {(x, k) | B^{k} is an assignment to x in S}

 $RD_{in}(I) = \{ (x, ?) \mid x \in FV(S) \}$, if $I \in init(S)$ and $RD_{int}(I) = \bigcup_{i \in I} RD_{out}(I') \mid (I', I) \in flow(S) \}$, otherwise $RD_{out}(I) = \bigcup_{i \in I} RD_{int}(I) \setminus kill(B') \cup gen(B')$ where $B' \in blocks(S)$

4	
1	
2	
3	
4	
5	



Reaching Definitions Analysis

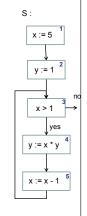
1	kill(B [/])	gen(B/)
1	{(x,?), (x,1),(x,5)}	{(x, 1)}
2	$\{(y,?), (y,2), (y,4)\}$	{(y, 2)}
3	0	Ø
4	$\{(y,?), (y,2), (y,4)\}$	$\{(y, 4)\}$
5	$\{(x,?), (x,1),(x,5)\}$	{(x, 5)}

 $\mathsf{kill}(\,[\mathsf{skip}]^I\,) = \emptyset$ $kill([b]^{\prime}) = \emptyset$

kill($[x := a]^{l}$) = { (x, ?)} \cup { (x, k) | B^{k} is an assignment to x in S }

 $\begin{array}{l} \mathsf{RD}_{\mathsf{In}}(\ I) = \{\ (x,\,?) \mid x \in \mathsf{FV}(S)\}\ , \ \mathsf{if}\ I \in \mathsf{init}(S)\ \mathsf{and} \\ \mathsf{RD}_{\mathsf{In}}(\ I) = \ \bigcup \left\{\mathsf{RD}_{\mathsf{out}}\ (I') \mid (I',I') \in \mathsf{flow}(S)\right\}\ , \ \mathsf{otherwise} \\ \mathsf{RD}_{\mathsf{out}}\ (\ I') = (\ \mathsf{RD}_{\mathsf{in}}(\ I) \setminus \mathsf{kill}(B')\) \cup \ \mathsf{gen}(B')\ \ \mathsf{where}\ B' \in \mathsf{blocks}(S) \end{array}$

1	RD _{in}	RD _{out}
1	{(x,?), (y,?)}	{(x,1), (y,?)}
2	{(x,1), (y,?)}	{(x,1), (y,2)}
3	{(x,1), (x,5), (y,2), (y,4)}	$\{(x,1), (x,5), (y,2), (y,4)\}$
4	{(x,1), (x,5), (y,2), (y,4)}	$\{(x,1), (x,5), (y,4)\}$
5	$\{(x,1), (x,5), (y,4)\}$	{(x,5),(y,4)}



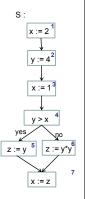
x := z

Live Variables Analysis

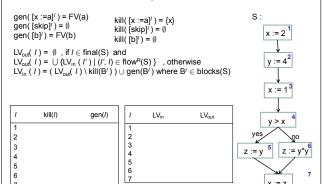
- A variable x is **live** at some program point (label l) if there exists if there exists a path from I to an exit point that does not change the variable.
- ► Live Variables Analysis determines:

For each program point, which variables may be live at the exit from that point.

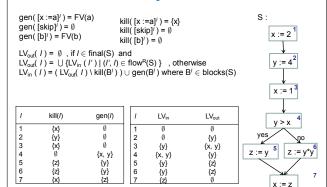
▶ Application: dead code elemination.



Live Variables Analysis



Live Variables Analysis



First Generalized Schema

- ▶ Analyse $_{\circ}(I) = EV$, if $I \in E$ and
- ▶ Analyse_•(I) = \sqcup { Analyse_•(I') | (I', I) ∈ Flow(S)}, otherwise
- ► Analyse_•(/) = f_I(Analyse_•(/))

With:

- is either U or ∩
- ▶ EV is the initial / final analysis information
- ► Flow is either flow or flow^R
- ► E is either {init(S)} or final(S)
- ▶ f_I is the transfer function associated with $B^I \in blocks(S)$

Backward analysis: $F = flow^R$, $\bullet = IN$, $\circ = OUT$ Forward analysis: F = flow, • = OUT, • = IN

Partial Order

- ▶ L = (M, \sqsubseteq) is a partial order iff
 - Reflexivity: $\forall x \in M. x \sqsubseteq x$
 - Transitivity: $\forall x,y,z \in M$. $x \sqsubseteq y \land y \sqsubseteq z \Rightarrow x \sqsubseteq z$
 - Anti-symmetry: $\forall x,y \in M$. $x \sqsubseteq y \land y \sqsubseteq x \Rightarrow x = y$

- ▶ Let L = (M, \sqsubseteq) be a partial order, $S \subseteq M$.
 - $y \in M$ is upper bound for S (S $\sqsubseteq y$) iff $\forall x \in S$. $x \sqsubseteq y$
 - $y \in M$ is lower bound for S ($y \subseteq S$) iff $\forall x \in S$. $y \subseteq x$
 - Least upper bound $\sqcup X \in M$ of $X \subseteq M$:
 - $\blacktriangleright \quad X \sqsubseteq \sqcup X \land \forall \ y \in M : X \sqsubseteq y \Rightarrow \sqcup X \sqsubseteq y$
 - Greatest lower bound $\pi X \in M$ of $X \subseteq M$:
 - $\blacktriangleright \quad \sqcap X \sqsubseteq X \land \forall \ y \in M : y \sqsubseteq X \Rightarrow y \sqsubseteq \sqcap X$

Lattice

A lattice ("Verbund") is a partial order $L = (M, \sqsubseteq)$ such that

- ▶ $\sqcup X$ and $\sqcap X$ exist for all $X \subseteq M$
- ▶ Unique greatest element T = ⊔M = ⊓Ø
- ► Unique least element ⊥ = ¬M = ⊔Ø

Transfer Functions

- ► Transfer functions to propagate information along the execution path (i.e. from input to output, or vice versa)
- (i.e. monthipacto output, or vice versa)
- ▶ Let L = (M, \sqsubseteq) be a lattice. Set F of transfer functions of the form $f_I \colon L \to L$ with I being a label
- ► Knowledge transfer is monotone
 - $\forall x,y. x \sqsubseteq y \Rightarrow f_i(x) \sqsubseteq f_i(y)$
- ► Space *F* of transfer functions
 - F contains all transfer functions f_I
 - F contains the identity function id, i.e. $\forall x \in M$. id(x) = x
 - F is closed under composition, i.e. \forall f,g \in F. (f \circ g) \in F

The Generalized Analysis

- ▶ Analyse, (/) = \coprod { Analyse, (/') | (/', f) ∈ Flow(S)} $\sqcup \iota_E'$ with ι_E' = \sqsubseteq V if $I \in E$ and ι_E' = \bot otherwise
- ► Analyse_•(/) = f_I(Analyse_•(/))

With:

- \blacktriangleright L property space representing data flow information with (L, \bigsqcup) being a lattice
- ► Flow is a finite flow (i.e. flow or flow^R)
- ► EV is an extremal value for the extremal labels E (i.e. {init(S)} or final(S))
- ightharpoonup transfer functions f_i of a space of transfer functions F

Summary

- ➤ Static Program Analysis is the analysis of run-time behavior of programs without executing them (sometimes called static testing).
- ► Approximations of program behaviours by analyzing the program's cfg.
- ► Analysis include
 - available expressions analysis,
 - · reaching definitions,
 - live variables analysis.
- ▶ These are instances of a more general framework.
- ▶ These techniques are used commercially, e.g.
 - AbsInt aiT (WCET)
 - Astrée Static Analyzer (C program safety)