



Generalised Monotone Framework	
A Generalised Monotone Framework is given by • a lattice $L = \langle L, \sqsubseteq \rangle$	
► a finite flow $F \subseteq Lab \times Lab$	
► a finite set of extremal labels $E \sqsubseteq Lab$	
▶ an extremal label $\iota \in Lab$	
▶ mappings f from lab(F) to L × L and lab(E) to L This gives a set of constraints	
$A_{\circ}(I) \sqsupseteq \bigsqcup \{A_{\cdot}(I') \mid (I',I) \in F\} \sqcup \iota'_{E}$	(3)
$A_{\cdot}(I) \sqsupseteq f_{i}(A_{\circ}(I))$	(4)

An Example

The analysis SS is given by the lattice $\mathcal{P}(\textbf{State}),\sqsubseteq$ and given a statement S_* :

- ► flow(S_{*})
- extremal labels are $E = {init(S_*)}$
- the transfer functions (for $\Sigma \subseteq$ **State**):

$$\begin{split} f_l^{SS}(\Sigma) &= \{\sigma[x \mapsto \mathcal{A}[\![a]\!]\sigma] \mid \sigma \in \Sigma\} & \quad \text{if } [x := a]^l \text{ is in } S_* \\ f_l^{SS}(\Sigma) &= \Sigma & \quad \text{if } [\texttt{skip}]^l \text{ is in } S_* \\ f_l^{SS}(\Sigma) &= \Sigma & \quad \text{if } [b]^l \text{ is in } S_* \end{split}$$

Now use the Galois connection $\langle \mathcal{P}(\mathbf{State}), \alpha_{ZI}, \gamma_{ZI}, \mathbf{Interval} \rangle$ to construct a monotone framework with $\langle \mathit{Interval}, \sqsubseteq \rangle$, with in particular

$$g_{I}^{IS}(\sigma) = \sigma[x \mapsto [i,j]]$$
 if $[x := a]^{I}$ in S_{*} , and $[i,j] = \alpha_{ZI}(\mathcal{A}[[a]](\gamma_{ZI}(\sigma)))$

 Galois-Connections

 Let L, M be lattices and

 $\alpha : L \rightarrow M$
 $\gamma : M \rightarrow L$

 with α, γ monotone, then $\langle L, \alpha, \gamma, M \rangle$ is a Galois connection if

 $\gamma \cdot \alpha \sqsupseteq \lambda l. l$
 $\alpha \cdot \gamma \sqsubseteq \lambda m. m$

 (2)

Constructing Galois Connections

Let $\langle L, \alpha, \beta, M \rangle$ be a Galois connection, and S be a set. Then (i) $S \to L, S \to M$ are lattices with functions ordered pointwise:

 $f \sqsubseteq g \iff \forall s.f \ s \sqsubseteq g \ s$

(ii) $\langle S \rightarrow L, \alpha', \gamma', S \rightarrow M \rangle$ is a Galois connection with

 $\alpha'(f) = \alpha \cdot f$ $\gamma'(g) = \gamma \cdot g$

Correctness

5 [8]

Let *R* be a correctness relation $R \subseteq V \times L$, and $\langle L, \alpha, \gamma, M \rangle$ be a Galois connection, then we can construct a correctness relation $S \subseteq V \times M$ by

 $v S m \leftrightarrow v R \gamma(m)$

On the other hand, if B, M is a Generalised Monotone Framework, and $\langle L, \alpha, \gamma, M \rangle$ is a Galois connection, then a solution to the constraints B^{\sqsubseteq} is a solution to A^{\sqsubseteq} .

This means: we can transfer the correctness problem from \boldsymbol{L} to \boldsymbol{M} and solve it there.

6 [8]

