# Verifikation von C-Programmen <br> Vorlesung 6 vom 04.12.2014: Abstract Interpretation 

Christoph Lüth<br>Universität Bremen

Wintersemester 2014/15

## Galois-Connections

Let $L, M$ be lattices and

$$
\begin{gathered}
\alpha: L \rightarrow M \\
\gamma: M \rightarrow L
\end{gathered}
$$

with $\alpha, \gamma$ monotone, then $\langle L, \alpha, \gamma, M\rangle$ is a Galois connection if

$$
\begin{align*}
& \gamma \cdot \alpha \sqsupseteq \lambda / . I  \tag{1}\\
& \alpha \cdot \gamma \sqsubseteq \lambda m . m \tag{2}
\end{align*}
$$

## Example of a Galois Connection

$$
\begin{aligned}
L & =\langle\mathcal{P}(\mathbb{Z}), \subseteq\rangle \\
M & =\langle\text { Interval, } \sqsubseteq\rangle \\
\gamma_{Z I}([a, b]) & =\{z \in \mathbb{Z} \mid a \leq z \leq b\} \\
\alpha_{Z I}(Z) & = \begin{cases}\perp & Z=\emptyset \\
{[\inf (Z), \sup (Z)]} & \text { otherwise }\end{cases}
\end{aligned}
$$

## Constructing Galois Connections

Let $\langle L, \alpha, \beta, M\rangle$ be a Galois connection, and $S$ be a set. Then
(i) $S \rightarrow L, S \rightarrow M$ are lattices with functions ordered pointwise:

$$
f \sqsubseteq g \longleftrightarrow \forall s . f s \sqsubseteq g s
$$

(ii) $\left\langle S \rightarrow L, \alpha^{\prime}, \gamma^{\prime}, S \rightarrow M\right\rangle$ is a Galois connection with

$$
\begin{aligned}
\alpha^{\prime}(f) & =\alpha \cdot f \\
\gamma^{\prime}(g) & =\gamma \cdot g
\end{aligned}
$$

## Generalised Monotone Framework

A Generalised Monotone Framework is given by

- a lattice $L=\langle L, \sqsubseteq\rangle$
- a finite flow $F \subseteq L a b \times L a b$
- a finite set of extremal labels $E \sqsubseteq L a b$
- an extremal label $\iota \in L a b$
- mappings $f$ from $\operatorname{lab}(F)$ to $L \times L$ and $\operatorname{lab}(E)$ to $L$

This gives a set of constraints

$$
\begin{align*}
& A_{\circ}(I) \sqsupseteq \bigsqcup\left\{A_{\cdot}\left(I^{\prime}\right) \mid\left(I^{\prime}, I\right) \in F\right\} \sqcup \iota_{E}^{\prime}  \tag{3}\\
& A_{.}(I) \sqsupseteq f_{l}\left(A_{\circ}(I)\right) \tag{4}
\end{align*}
$$

## Correctness

Let $R$ be a correctness relation $R \subseteq V \times L$, and $\langle L, \alpha, \gamma, M\rangle$ be a Galois connection, then we can construct a correctness relation $S \subseteq V \times M$ by

$$
v S m \longleftrightarrow v R \gamma(m)
$$

On the other hand, if $B, M$ is a Generalised Monotone Framework, and $\langle L, \alpha, \gamma, M\rangle$ is a Galois connection, then a solution to the constraints $B \sqsubseteq$ is a solution to $A \sqsubseteq$.

This means: we can transfer the correctness problem from $L$ to $M$ and solve it there.

## An Example

The analysis $S S$ is given by the lattice $\mathcal{P}($ State $), \sqsubseteq$ and given a statement $S_{*}$ :

- flow $\left(S_{*}\right)$
- extremal labels are $E=\left\{\operatorname{init}\left(S_{*}\right)\right\}$
- the transfer functions (for $\Sigma \subseteq$ State):

$$
\begin{array}{lr}
f_{l}^{S S}(\Sigma)=\{\sigma[x \mapsto \mathcal{A} \llbracket a \rrbracket \sigma] \mid \sigma \in \Sigma\} & \text { if }[x:=a]^{\prime} \text { is in } S_{*} \\
f_{l}^{S S}(\Sigma)=\Sigma & \text { if }[\text { skip }]^{\prime} \text { is in } S_{*} \\
f_{l}^{S S}(\Sigma)=\Sigma & \text { if }[b]^{\prime} \text { is in } S_{*}
\end{array}
$$

Now use the Galois connection $\left\langle\mathcal{P}(\right.$ State $), \alpha_{Z I}, \gamma_{Z I}$, Interval $\rangle$ to construct a monotone framework with 〈Interval, $\sqsubseteq\rangle$, with in particular

$$
g_{l}^{\prime S}(\sigma)=\sigma[x \mapsto[i, j]] \quad \text { if }[x:=a]^{\prime} \text { in } S_{*}, \text { and }[i, j]=\alpha_{Z I}\left(\mathcal{A} \llbracket a \rrbracket\left(\gamma_{Z I}(\sigma)\right)\right)
$$

## What's Missing?

- Fixpoints: Widening and narrowing.

