
UITP 2003 Preliminary Version

TEXmacs as Authoring Tool for Formal
Developments

Philippe Audebaud 1

Lemme Project
INRIA

Sophia Antipolis, France

Laurence Rideau 2

Lemme Project
INRIA

Sophia Antipolis, France

Abstract

We present an authoring tool for publication and dissemination of formal theories
certified by a proof assistant. We have used TeXmacs, a ”wysiwyg” editor for scien-
tific documents which allows a connection with symbolic systems and we evaluate
this tool on our formal developments certified using Coq.

Key words: Certification, Authoring Tool, Proof Assistant,
Formal Development, Structured Document, LATEX.

1 Introduction

We present a toolkit named TmCoq helpful for users who have validated some
formal developments with a theorem prover assistant, such as Coq [?] and
who want to ready their work for a scientific publication or online browsing.
As such, we assume the user’s main requirements are, firstly, to be able to
present their work in the usual language for a mathematical article and, sec-
ondly, to preserve the property that the underlying development still remains
certified by the prover. For the first goal, we offer a powerful tool which pro-
vides LATEX quality typesetting for presenting the formal development and its
documentation together. To preserve correctness of the development at each

1 Email: Philippe.Audebaud@sophia.inria.fr
2 Email: Laurence.Rideau@inria.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Audebaud, Rideau

step, our approach to the second goal is to work always on the whole develop-
ment, but to provide different views on this development. For documentation
purposes, the user would prefer to be able to see the whole development, while
the article is a selected view on the fully documented development, displaying
only fragments of the whole development code.

A first solution that comes to mind consists in writing a LATEX document.
This is how one typically diffuses his results, inserting in places selected pieces
of the formal development. This method has obvious drawbacks. The cut
and paste process may introduce errors when the formal development had
none. Any modification in the development requires the synchronization in
the article, otherwise making the latter inaccurate or even wrong with respect
to the certification step performed using the theorem prover. The inserted
pieces of source code are introduced verbatim, which means that the syntax
could be quite far from usual mathematical language and natural language
as well. Notation and informal explanations are thus very different from the
formal text. The theorem prover syntax may even change, introducing another
source of misunderstanding.

To find a better solution to our problem, let us have a closer look at what
makes up such a formal development in Coq. It consists of one or several files,
called scripts, whose structure follows the usual one from a programming point
of view. Declarations, statements, commands specific to the prover, etc. are
part of the vernacular sentences. They form the active part of the script
which means they are the only parts of the script that the theorem prover
needs to know anything about. Any piece of documentation or explanation
placed throughout the code can only be placed in the comments fields, which
are irrelevant (i.e., inactive) from the prover’s point of view.

Note that many documentation tools have been developed thus far for
programming languages. Javadoc and Doxygen (among others) have made
interesting contributions for this purpose. However, they are much too code-
centric to be useful in our context. The users want to use LATEX for writing,
documenting, and publishing their work since a formal development consists of
definitions, theorems, and proofs rather than pieces of programs. Nevertheless,
a starting point is simply putting TEX commands within comments as part of
the scripts.

On the Theorem Prover Assistant side, a LATEX generation facility is of-
fered by Pvs [?] for displaying formulas and proofs. It is based on an easy to
use substitution mechanism. MetaPRL [?] provides (low level) formatting
instructions based on the formatting library of its OCaml implementation
language, together with Postscript and HTML output formats, but no
LATEX code generation as far as we know. For Isabelle, isatool [?] provides
a batch LATEX document generator. In Coq context, this functionality is per-
formed by Coqdoc [?], which offers LATEX and HTML as output formats
from scripts. This tool makes a simple lexical analysis which is sufficient for
the generation of hyper-links for identifiers and index tables for the various

2

Audebaud, Rideau

sorts of statements. The vernacular sentences are simply inserted verbatim in
the generated document. Such a tool still fails to present the formal devel-
opment fragments in a user-friendly syntax, as independent as possible from
changes on the Coq side. Also, documentation and code still belong to dif-
ferent worlds. It is not possible to make forward references, insure uniform
notation throughout the generated document. While the process has been
automated, thus less prone to human errors, the result is still bound to the
version of Coq used for the certification.

1.1 Objectives

The dissemination of formal developments (in scientific articles or by code
distribution on the Web) is an important part of the development’s life cycle,
so we want to make a tool to help the user perform this task with the assurance
that the correctness of the presented source code is preserved.

This tool must help the user to write code documentation (e.g., writing
comments in programs) and it also must help the user to produce scientific
articles by allowing code importation and by making it easy to add natural
language explanations. We want to offer various output formats, for example,
allowing the consulting and browsing of the commented code through a Web
interface (i.e., the tool has to manage navigation links in the code) and offering
all standard output formats used in scientific document publishing: LATEX,
HTML, Postscript, etc.

The tool must provide high-quality visualization, using notation that is
familiar to the reader (e.g., using standard mathematical notation) as well as
a user-friendly interface. It also must allow one to present the formal devel-
opments using a natural syntax and must avoid whenever possible the use of
a given theorem prover’s scripting language. That is, the interface should dis-
play ∀a : nat,

√
a2 = |a| rather than (a:nat)(equal (sqrt (power a (2)))

(absolu a)). The user must be able to define his own notation, and this no-
tation must be kept consistent throughout the various parts of the document
(i.e., keep the same notation in the explanations as in the imported code
fragments).

Finally, to avoid a common source of errors in the translation from the
source code to the presentation (typos are always unpleasant but are par-
ticularly annoying in the context of certified developments), the tool must
allow the automatic importation of the source code (for example the theorems
statements, the definitions, etc.) to preserve their correctness. This automatic
translation should also make it possible to preserve links, connections, corre-
spondences back and forth between the presentation and the scripts produced,
and controlled by the prover.

Automatic translation preserves the visualized code’s correctness as long
as the user does not modify it. Here, one can import only fragments of the
certified code in the final document. But, as soon as one needs to modify the

3

Audebaud, Rideau

imported code, to assure the correctness means that our tool has to manage
the whole development (even if only fragments are displayed) either to allow
an extraction of the development for certification outside of the tool or to allow
an interactive certification inside the tool, communicating directly with the
prover. Actually, unlike a fragment of programming code that can be consid-
ered independently of the rest of the code, a fragment of formal development
can only be certified in the context of the whole development. Figure ?? shows
the documentation process with the initial importation of the script, followed
by the documentation steps, and finally the extraction into various formats in
particular the Coq script extraction, allowing another cycle of certification.

Fig. 1. Generation of the documentation from a Coq script.

The target is important. First, for compatibility reasons, we must
provide a stand-alone version of the script, where the documentation frag-
ments are inserted in the appropriate comment regions. Second, and more
importantly, this target is evidence that one can extract from the enriched
document the parts which concern the user formal development, this new
script must be accepted by the prover afterwards.

1.2 Some examples

Our tool is not tightly coupled to a given theorem prover. In the future it
should even be an independent tool. However, we begin with a case-study
of our formal developments which are mainly done using the Coq theorem
prover. Thus, the presented examples use Coq syntax.

Let us take a simple example. Note that in Coq concrete syntax (X:A)B

stands for the the universal quantification ∀X : A.B, ~A for the logical negation
A, while (EXT x:C | P) is meant for the existential connective ∃x : C.P (x).

4

Audebaud, Rideau

Therefore, instead of displaying the type of not_all_ex_not as

(U:Type; P:(U->Prop))~((n:U)(P n))->(EXT n:U|~(P n)) (1)

one would rather see

(2)

Eventually, one would even hope to have the possibility of pretty printing this
statement in natural language. For instance, instead of the raw Coq lemma:

which depends heavily on the Notation enhancement mechanism, one prefers
to see

Lemma 1.1 (Set nrootIR) ∀n ∈ N.0 < n → ∀c ∈ R.0 ≤ c → ∃x ∈ R.0 ≤
x ∧ xn = c

or, even better,

Lemma 1.2 For every positive integer n and non-negative real number c,
there exists a non-negative real number x such that xn = c.

This last presentation is easier to read, hence it provides a better presentation
for the formal statement within an article aimed for diffusion.

This raises several questions about pretty printing existing documents.
Is the verbatim output, as shown in (??), sufficient to make it possible to
display (??) or the two lemmas shown above? It should be clear that nothing
is possible unless the text from (??) is re-parsed in order to grab enough
information on the actual structure of this code fragment. The next question
is: what is the best internal representation (abstract syntax) which is capable
of providing the information required to make the various displays possible?
And at what cost? Finally, what is the best way to generate the various styles
and the formats?

The user expects other features as well. For instance, he might want to
modify imported fragments to make them more readable or easier to under-
stand. Thus, variable renaming, hypotheses reorganization, or other changes
at the presentation level should be possible while keeping the formal develop-
ment correct with respect to the underlying proof assistant. Such demands are
reasonable since one cannot expect any automatic generation from a formal
development to provide any article-ready text. As soon as interactive editing
introduces changes with respect to the initial development, there is a possi-
bility for introducing errors. It is these errors we would like to avoid with our
tool.

5

Audebaud, Rideau

2 Software Design Decisions

To build our tool, we have decided to use TEXmacs to write scientific articles
and we have developed an extension for handling Coq input and output. The
resulting system named TmCoq, implements the functionalities described in
figure ??, where editor is TEXmacs. Exportations to and translations between
the different formats (TEXmacs, PostScript, ...) are handled by the native
TEXmacs system, but TmCoq needs to have control on the macros expension
mechanism to avoid the lost of the structure information. This is the prereq-
uisite for LATEX exportation as well as for re-exportation toward Coq script
syntax from a TEXmacs document (see section ?? for more details).

Regarding the Proof Assistant issue, we restrict ourselves to Coq devel-
opments for experimental purposes, with the long-term objective to build a
tool adaptable to various theorem prover systems.

2.1 The scientific editor GNU TEXmacs

Quoting its documentation page [?], ”GNU TEXmacs is a free scientific text
editor, which was both inspired by TEX and GNU Emacs. The editor allows
you to write structured documents via a wysiwyg (what-you-see-is-what-you-
get) and user friendly interface. New styles may be created by the user. The
program implements high-quality typesetting algorithms and TEX fonts, which
help you to produce professionally looking documents.”

We definitively want to offer the user a way to enrich their formal devel-
opment with convenient documentation or informal explanations. Typically
after the automated importation step of a Coq script the user will do some
interactive editing to prepare for dissemination of results. LATEX exportation
is satisfactory as a scientific document format. However, we must be able
to recover the script to certify a posteriori the embedded code. Using LATEX
as the generic format for the script leads to a substantial loss of structure
information. The resulting document is (enriched) text, while on the Coq
side, a script is a program, where documentation is in comments. Therefore,
the crucial distinction between the active parts of the script (the vernacu-
lar commands mainly) and the inactive parts (the interleaved comments-as-
documentation fragments) is lost in the conversion process if we use LATEX as
the generic format. Although this could be handled to some extent with the
help of tricky annotations within the LATEX end-of-line based comments, this
is not satisfactory. The TEXmacs editor deals with structured documents,
which is precisely what we want.

As far as presentation style is concerned, the user expects to be allowed
to customize the look, on file basis, on whole development basis, or even de-
pending on whether the resulting document is about to be browsed or printed
on paper. TEXmacs fulfills this criterion without requiring any special or
additional code.

Moreover, TEXmacs also supports the Guile/Scheme extension language,

6

Audebaud, Rideau

so that it is easy to customize the interface and write extensions to the ed-
itor at the user level. Browsing is possible between distinct files as well as
through the web. Automatic content generation includes indices, tables, fig-
ures, and bibliographies. TEXmacs documents are saved as structured text
files using a simple notation system which helps automatic (machine-driven)
search. Therefore, as a whole, TEXmacs presents many attractive features
which make it an interesting candidate in the context of authoring scientific
documents.

2.1.1 Communication with computer algebra systems

Among our motivations, interactivity with the theorem prover assistant was
also required. As such, TEXmacs provides a session mode that also offers the
same combination of editing and command execution as Emacs does for many
computer algebra systems, the operating system shell , and a Guile/Scheme
top-level . Figure ?? presents a short session with Maple.

Fig. 2. A sample session with Maple

We see that the presentation facilities are automatically available for the
output generated by Maple: the TEXmacs interface interprets the LATEXoutput
generated by Maple. Note that the session is allowed at any place within the
document. Actually TEXmacs permits editing commands to be applied during
the session, multiple interruptions, as well as the interleaving of computations
and explanations.

This session mode benefits to some extent from the standardization of
mathematical notation and the relative simplicity of the concrete syntax found
in Computer Algebra Systems (CAS). Also, it must be emphasized that LATEX
output is offered by Maple [?], Mathematica [?], and other CAS, which
shows that the CAS must be adapted in order to gain richer output. Finally,

7

Audebaud, Rideau

note that the session mode is closer to the interaction the user gets with a
calculator or a Unix shell than what is expected for developing proofs with
the help of a Theorem Prover Assistant (TPA).

2.2 On the Coq side

To go further than Coqdoc, our work proposes a solution to offer richer
output formats to Coq. So we need to do more work than a simple lexical
analysis. At least a syntax analysis is required. We will show that this is
actually sufficient. However before this, we have to choose between writing
another parser for our purposes, or benefiting from the existing one present in
the Coq source. There are two major arguments to take into consideration.
First, Coq is a research tool, still subject to changes, even with respect to its
concrete syntax. Second, the syntax allowed at the formula level requires a
very complex parser. Therefore, the necessary synchronization would already
suggest that we develop our tool as part of the Coq source tree rather than
another stand-alone program. But we can do better than just sharing the
parser. Our code can also be used to interface Coq with any external tool
that requires exchanging data with Coq, for example PCoq [?].

2.2.1 Formulas

Consider the following example, whichever notation one might choose, the
internal structure for the above term not_all_ex_not is a tree:

Fig. 3. Tree representation for not all ex not

and the corresponding representation in TEXmacs format is

The binder list, arrowc, and appc nodes should be obvious from the above
tree. The N~_ and NEXT_:_|_ come from the extendible Notation command
introduced in the last version of Coq that permits the kind of enhancement
that formula (??) uses for the verbatim output. While this is not at all nec-
essary in our tool (see RSA example below), at this stage of our development
we decide to represent these nodes as special nodes in the generated structure.

8

Audebaud, Rideau

2.2.2 Inductive definitions

Coq provides specific outputs in many contexts, not only for formulas. Let
us have a look at the Inductive vernacular command. The Coq standard
library provides many examples. From Datatypes unit, the sum of two sets
A + B is inductively defined as

Inductive sum [A,B:Set] : Set

:= inl : A -> (sum A B)

| inr : B -> (sum A B).

It is worth noting that the concrete syntax is usually chosen on the basis of

(i) its ability to be read easily by the human reader,

(ii) and its ability to be read automatically, hence understood by the com-
puter.

Come to think of it, both points would hold if we switched humans and com-
puters as well! The important thing to keep in mind is that for both points it
should be possible to infer from the concrete representation that an inductive
definition is structurally made of a finite sequence of named items (inl, inr
in this example) as constructors with respective type information. Also, the
syntax [A,B: Set] means that sets A and B are parameters in the definition,
the result being a set as the fragment ”: Set” shows. Therefore, an inductive
definition comes with its name, its parameters, the resulting type, and a finite
list of constructors.

So it suffices to grab these fields as part of the structure to be able to display
the inductive definition in various styles. A straightforward representation in
TEXmacs would be:

A simple variation, closer to mathematical notation could be:

The user is free to decide globally or on a local basis among all these repre-
sentations. Even more, switching between them is also available within the
TEXmacs interface.

The same result can be obtained in LATEX from the corresponding source:

\Inductive{sum}{A,B : {\sort{Set}}}{{\sort{Set}}}{

\begin{constructors}

\constructor[inl] : ${\arrowc{A}{{\appc{sum A B}}}}$

\contructor[inr] : ${\arrowc{B}{{\appc{sum A B}}}}$

9

Audebaud, Rideau

\end{constructors}}

with the help of the appropriate macro definitions.

The more structure Coq is required to produce, the more freedom the user
gets on their side to get the appropriate notation. As an example, one might
want to present such inductive definition with the help of inference rules. In
the Coq user manual (section 4.5.1), one finds

(* Lists of elements of set A *)

Inductive list [A : Set] : Set :=

nil : (list A) | cons : A -> (list A) -> (list A).

(* Length for such lists *)

Inductive Length [A:Set] : (list A) -> nat -> Prop :=

Lnil : (Length A (nil A) O)

| Lcons : (a:A)(l:(list A))(n:nat)

(Length A l n)->(Length A (cons A a l) (S n)).

Depending on the context, presentations like

(Lcons)
a : A, l : list(A), n : N ` (Length A l n)

a : A, l : list(A), n : N ` (Length A (a.l) (n + 1))

or

(Lcons)
lengthA(l) = n

lengthA(a.l) = n + 1

when the context is clear enough, could be desired without any change in
the underlying document. These representations raise no technical difficulty.
Rather, they require more decomposition in the Coq structure representation
output. In LATEX, the constructor types for the case of inductive definitions
could be prepared along the lines of this example:

\constructor[Lcons]

\inferrule[a:A, l:(list A), n:nat]

{(Length A l n)}{(Length A (cons A a l) (S n)}

The section ?? addresses other places where such output questions have
to be dealt with on the Coq side.

3 Utilization

The TmCoq system consists in several components:

− Coq which gives us parsing of scripts for free. Actually, our version is
modified to allow for generation of TEXmacs format.

− A set of TEXmacs styles and macros for the rendering. The user is free to
customize this package, the same way as LLNCS class does with respect to
the standard LATEX article class.

10

Audebaud, Rideau

− A set of Scheme scripts to accomodate the LATEX and Coq scripts expor-
tation filters.

The last two components are available from the TEXmacs user interface.
Reusing LATEX macros in the TEXmacs is possible through the import facility.
Conversely, exportation of TEXmacs macros to LATEX macros or environments
is not yet offered by TEXmacs.

For documentation purpose, our modified Coq distribution provides a new
wrapper for the coqtop program, named tmdoc. A generic utilization consists
in running the command: tmdoc MyScript.v which results in the TEXmacs
file MyScript.tm. Other output formats directly available from tmdoc are
LATEX, Scheme. However, as shown in figure (??), these formats together
with HTML and Postscript are also available by editing MyScript.tm.

Let us illustrate further through two complete examples in the two follow-
ing sections.

3.1 The Coq Standard Library

Let us have of look at the very beginning of the theories/Init/Wf.v file
from the Coq standard library:

(*i $Id: Wf.tm,v 1.1 2003/05/27 11:30:57 paudebau Exp $ i*)

(** This module proves the validity of

- well-founded recursion (also called course of values)

- well-founded induction

from a well-founded ordering on a given set *)

Require Logic.

Require LogicSyntax.

(** Well-founded induction principle on Prop *)

Variable A : Set.

Variable R : A -> A -> Prop.

(** The accessibility predicate is defined to be

non-informative *)

Inductive Acc : A -> Prop

:= Acc_intro : (x:A)((y:A)(R y x)->(Acc y))->(Acc x).

Lemma Acc_inv : (x:A)(Acc x) -> (y:A)(R y x) -> (Acc y).

NewDestruct 1; Trivial.

Defined.

(** the informative elimination :

[let Acc_rec F = let rec wf x = F x wf in wf] *)

11

Audebaud, Rideau

Coq comments have the form (*...*). The documentation fragments
are identified by the special comment construction (** ...*) . This con-
struction follows Coqdoc almost text conventions, which helps in writing
structured pieces of text without knowing too much of TEX or HTML syntax
and more importantly in a independent syntax way. Therefore, to keep com-
patibility with existing documentation fragments in Coqdoc style, we have
added to tmdoc another output format to make these tags understandable by
TEXmacs. This comment is thus translated into

(** texmacs: This module proves the validity of

<\itemize>

<item> well-founded recursion (also called course of values)

<item> well-founded induction

</itemize>

from a well-founded ordering on a given set *)

One can see that we have extend the class of comments-as-documentation by
the syntax (** filter: ... *) where filter ranges over coqdoc, scheme,
texmacs, latex and defaults to coqdoc for compatibility’s sake.

As for translation of the vernacular commands, our tool goes far beyond
Coqdoc capabilities, but at the cost of requiring coqtop to perform both
parsing and TEXmacs-aware structured output, as explained before.

Note that Require commands and proofs do not appear, although they
have been translated and still remain present in the generated document. We
provide flags that allow one to modify the material presented, which comes in
handy for full script rendering or to show the mathematical contents of this
file. Needless to say, TEXmacs offers many more options, either through the

12

Audebaud, Rideau

existing environment, macros, or Guile scripting.

Following these brief explanations, the full Coq Standard Library is gen-
erated automatically by our documentation tool as a bunch of TEXmacs files
which can be browsed within the editor. The blue items Acc (in lemma 5)
represent hyperlinks to the definition declaration Inductive 4.. Our con-
tribution consists in a complete set of TEXmacs files accessible online from
within the editor and browsable in the same way as the web documentation
on the Coq site.

3.2 RSA Formalization

RSA is an asymmetric public key encryption algorithm which relies on prime
number factorization. Its correctness has been formalized in various proof
assistants including Coq by J.C. Almeida, and more recently by L. Théry.
The complete formalization consists of half a dozen Coq scripts available at
[?].

In Binomials.v, one finds the well known Pascal statement on binomals:

Theorem exp_Pascal:

(a, b, n : nat)

(power (plus a b) n) =

(sum_nm

O n

[k : nat] (mult (binomial n k)

(mult (power a (minus n k)) (power b k)))).

While the fragment does not contain any hint for presentation, the structure
generated by tmdoc is rich enough to allow for user macro definitions so as to
provide the following output.

Observe, however, that the sum does not use the index k as one would expect.
This is going to be a slight enhancement in the next stage of our development.
In short, this requires that macro definition can inspect the structure of its
arguments, and in our case, grabs the k loop index to put it under the Σ
symbol.

For a complete presentation of our contribution to this development, the
required material is available from TmCoq web site [?]. Besides the same
documentation interface as for the standard library, our contribution offers
also a mechanism for automatically generating an article from the set of files.
This is based on a Scheme script which is easily configurable.

13

Audebaud, Rideau

4 Enhanced Features

One of our initial goals was to preserve the invariant that the script part of
the document remains certifiable by the prover at any time. For this purpose,
we have developed several functionalities described below, and based on the
following remarks. In the introduction, we stated that a Coq script is a source
program, where the inactive regions tagged as comments are good places for
inserting documentation. The writing of an article from a formal development
gives us another view. Everything is printable text, unless the macros or
environments treat elements differently. In Knuth’s view, everything , each
character, could be active. However, for the casual user, the symbol ’\’ is
commonly known as the first character of a document fragment which is going
to be executed by the TEX engine. So the key idea is that the user is working
in a dual world with respect to program source editing. Our tool transforms
any program source file into a dual document source file, since TEXmacs is
basically working in the same way as TEX.

Another property we get with the TEXmacs view of our document is that
it is strongly structured . This structure allows us to introduce various inter-
esting features including communication with XSLT oriented tools, Coq script
recovery, LATEX exportation, and interactive certification. This is made pos-
sible because we can deal with all these features using a single interpretation
model. The key idea consists in traversing the document according to its
structure. For each Coq related tag, we transform the corresponding subtree
according to our specific needs.

4.1 A Portable XML Format for External Purposes

With respect to the structural shape of TEXmacs documents, it must be noted
that TEXmacs does not yet use MathML standards for file format on disk
(this is ongoing work by its development team). However, the XML format
has been introduced recently to the set of import/export filters and, quite
independently, by us for a particular purpose, explained thereafter.

In the context of the MoWGLI European project [?], there is a need for al-
lowing annotations and reorganisation of proof fragments in a way that makes
the presentation more readable. Since the proofs come from Coq and this
feature requires an editor, our extension to TEXmacs was a good candidate.

XML is the dedicated format for documents inside the MoWGLI project,
together with an intensive use of stylesheets (XSLT) as transformation lan-
guage. Therefore, we have proposed a specific importation/exportation filter
for XML. While we could have decided for a specific set of filters wrt to Tm-
Coq, it is better offering a generic way of conversion because such documents
should be allowed for edition even outside the editor, for instance by means of
the edition of stylesheets. Therefore, we have defined the most general DTD
(see figure ??), which does not restrict to documents generated by tmdoc, but
describes any TEXmacs document as made of several paragraphs, and enriched

14

Audebaud, Rideau

with special macros and environments, in a same way as we are used to with
LATEX documents.

Since we concluded our experiment, TEXmacs has also been enriched with
such a format, although based on a different view, and consequently without
a generic DTD. From both MoWGLI and TmCoq sides, our approach is
robust enough for not requiring more than rewriting the outputs generated
by templates (into stylesheets), owing to the common structural approach.
Hence, we are going to provide the same functionality for TEXmacs users.

<!-- texmacs.dtd -- v 1.0 -->

<!ENTITY % TeXmacs PUBLIC "-//TeXmacs//DTD TeXmacs Document//EN"

"http://www-sop.inria.fr/lemme/Philippe.Audebaud/tmcoq/texmacs.dtd">

<!-- Document structure -->

<!ELEMENT document (paragraph)+ >

<!ELEMENT paragraph (macro | sym | spc)* >

<!ELEMENT macro (document | paragraph)* >

<!ATTLIST macro name CDATA #REQUIRED >

<!ELEMENT spc EMPTY >

<!-- Takes care of specials like <rightarrow> symbol within text -->

<!ELEMENT sym EMPTY >

<!ATTLIST sym arg CDATA #REQUIRED >

<!-- Symbols -->

<!ENTITY % HTMLlat1 PUBLIC "-//W3C//ENTITIES Latin 1 for XHTML//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent" >

%HTMLlat1;

Fig. 4. Document Type Definition for the TeXmacs Documents

4.2 Coq script (re)exportation

In the introduction, we have explained the need for going back and forth be-
tween the Coq formal development and the document edited with TEXmacs.
Hence the re-exportation towards a Coq script is required. As a matter of
consequence, we need also keep the documentation (or informal part) into the
exported script in order to recover this part afterwards, coming back to the
documentation step.

Assume we are dealing with a TEXmacs document generated from a de-
velopment. Among all the material present in this document, our tool ensures
that any vernacular command is perfectly identified with the help of a spe-
cific macro (or environment), as already noticed. Thus, it is an easy task

15

Audebaud, Rideau

(thanks to TEXmacs’s Guile facility) to recover in the correct order all the
vernacular commands among the rest of Coq-irrelevant material within the
document. Once collected and converted into the actual Coq concrete syn-
tax, these pieces of text compose the Coq script’s active part that is thus
extracted from the TEXmacs document, as shown in figure ??.

Everything else is considered as documentation. To some extent, this could
be inserted as comments into the script, but comments are thrown away by
the Coq lexical analyzer. In order to collect the documentation provided in
the source script, we had to change the lexer behavior, so that not all the
comments are ignored. However, doing this in every place where comments
may occur would result in a parser with unreasonable complexity. We decided
on a model where documentation and code alternate, but no documentation
is looked for within the vernacular commands. Documentation fragments may
appear in many places within the TEXmacs representation of a given script.
We ensure that they do not get lost through the exportation step by placing
them in places where the (modified) Coq lexer is able to find them. However,
we cannot guarantee that their exact position is preserved.

4.3 LATEX exportation

TEXmacs already supports LATEX exportation. However, the documents we
are dealing with are particular ones.

Therefore, we have split the exportation in two steps, where the first one
profits from the fact that we are able to identify the fragments specific to Coq
among the whole document. This first step is designed as a Guile script filter,
which can be rewritten by the user at will. Selecting the exported material can
be locally tuned inside the document (source) by assigning values to specific
variables locally, following the same idea as marking a fragment as math,
bold, or italic. Afterwards, everything is put in the hands of the common
LATEX exportation filter. This solution offers both portability and enough
expressiveness from the user point of view.

4.4 Coq-TEXmacs

Let us have a look at the coq-tex tool provided with Coq distribution. This is
a stand-alone program which processes Coq phrases embedded in LATEX files.
This tool greps the LATEX for Coq vernacular commands, identified by par-
ticular LATEX environment tags (coq_examples, coq_examples*, coq_eval).
The result is stored in a temporary script and sent to Coq toplevel (coqtop)
for evaluation. Depending on the surrounding tag, the command itself or the
result are then re-inserted in place in the LATEX file. As it stands, the environ-
ment tags offered with coq-tex gives the user the different possibilities based
on two criteria: i) is the vernacular command to be displayed and ii) is the
result of its evaluation to be displayed? Whenever the answer to a question is
positive, the appropriate text is printed verbatim at the appropriate place.

16

Audebaud, Rideau

Assuming instead we start with a TEXmacs file, we can simulate the same
behavior. However, we can do much more! The displayed material is no
longer restricted to the raw verbatim format, nor the simple combination
of two criteria. Moreover, since the source document is structured, there is
no need for preparing an intermediate Coq script; whenever required, the
corresponding answers can be directly inserted following the command which
has been sent. Thus, our coq-texmacs implements this functionality, based on
the above exportation tools.

4.5 Certification in edition mode

In fact, we are very close to provide another functionality which we are go-
ing to explain by comparing it with a spelling checker. Inside TEXmacs the
spelling checker is launched the same way as inside Emacs. That is, the editor
selects each word one after the other and sends it to the spelling checker. The
spelling checker is launched in background. As far as spelling is concerned,
the (atomic) item that has to be isolated in the buffer is a word, meaning a
sequence of characters delimited by spaces or punctuation marks, depending
on the underlying language. Assume now the spelling checker is Coq, words
are to be replaced by vernacular commands. But we know how to isolate this
kind of item, therefore making TEXmacs smart enough to send each vernac-
ular command in the correct order to some Coq process run in background.
This mode offers a way to certify the (underlying) formal development in-
side the editor. Obviously, the expected behavior cannot be the same as for
a spelling checker. Wherever an error is encountered, this might inhibit the
certification mechanism to continue. Actually, some dependency information
between statements and their proofs will prove sufficient to allow to have a
partial run of the certification process, leaving rejected (subtrees) pieces of
our development marked as requiring further correction.

4.6 Interactivity

Since the user is working inside an interactive editor, it is highly desirable
to offer on the fly certification, which requires that the editor keeps commu-
nicating with a Coq process. Towards this goal we have experimented with
TEXmacs interactive mode with Coq. In section ??, we have shown that
the editor TEXmacs offers a session mode with external programs. To make
such communication possible with Coq, very little is needed as the following
session with Coq shows.

A sample session is presented in figure ??. From this example, we can
make some useful observations. Up to now, our explanations were mainly
concerned with formulas. Actually, exporting a full script does not raise any
more difficult issues. But when interacting with Coq, it appears that the
prover really decides the presentation in various contexts! The information
displayed during a proof session, error messages, or answers to vernacular

17

Audebaud, Rideau

Welcome to Coq 7.4 (Feb 2003)
Interactive Session

Coq
�
Print all

all = λA:Set; P:A

→ Prop. ∀x:A. (P x) : ∀A:Set. (A → Prop) → Prop

Coq
�
Lemma 1. (foo)

∀a,b:Prop. a → b → a ∧ b

∀a, b: Prop. a → b → a ∧ b
foo

�
Intros.

a : Prop
b : Prop
H : a
H0 : b

a ∧ b
foo

�
Split.

2 sub-goal(s)

�

a

Subgoal 2 is b

foo
�
Exact H

�

b

foo
�
Trivial

Subtree proved

foo
�
Save

foo is defined

Coq
�
Print f

Error : [6 - 7] Error: f not a defined object

Coq
�
Print foo

foo = λa,b:Prop; H:a; H0:b.�
a, b ��� H, H0 � : ∀a,b:Prop. a → b → a ∧ b

Coq
�
Print bool

Inductive 2. (bool) : Set :=�
true : bool�
false : bool

Fig. 5. A sample session with TmCoq

18

Audebaud, Rideau

commands are controlled by the prover.

The most interesting issue concerns proof editing. Along the lines of the
above session, one would expect the editor to allow the user to edit the
proof script, rather than accumulating steps in the buffer. This is possible
in TEXmacs thanks to the Scheme extension language and provided through
specific tree commands, together with the possibility for the document to be
modified by the running program (as well as the user or the editor interface).

5 Conclusion and Perspectives

Our initial motivation was to offer the users more powerful solutions for doc-
umenting their Coq formal developments. Existing tools already offer useful
means but lack the capability to render such mathematical or logical develop-
ment in the usual language for scientific documents and none of them permit
significant modifications or even final adjustments while preserving the fun-
damental property that the underlying formal document has been certified by
the prover. In the first case, we conclude that this is only possible at the cost
of working behind a dedicated parser. Due to complexity of the language dealt
with by Coq and also motivated by the purpose to share our work and offer
Coq various output formats, we decided to implement our documentation
generator tmdoc as part of the Coq source distribution. At this stage, the
rendering of mathematical formulas and the possibility to prepare a scientific
article presenting the formal development was within the capabilities of the
scientific editor TEXmacs.

The fact that this editor supports the Guile/Scheme extension language
has also made it possible to handle the second case beyond our initial expec-
tations. We provide Coq and LATEX exportation functions both through the
editor interface and as stand-alone scripts, which offer at the same a certifica-
tion mechanism (on the Coq script) and the article production in the format
commonly accepted by the scientific community.

Beyond these tools, our experimentation has shown very attractive per-
spectives. We want to achieve the functionality allowing the user to interact
with the prover in a mode as transparent as possible. That means that the
user will be allowed to write definitions, lemmas, and the other mathematical
material in the syntax offered by the editor, leaving to the system all the con-
versions to be done in order to match the actual concrete syntax understood
by the prover. Our view is that TEXmacs offers a nice interface for abstraction
with respect to the prover. The interface can be adapted so that the user’s
syntax and commands do not depend on the prover. As such, this interface
should offer a convenient support to teach beginners (students for instance)
how to develop formal proofs. Even the certification mechanism could allow
for machine-assisted verification of students’ examinations. We consider our
current experiments as an important step in this direction.

19

Audebaud, Rideau

References

[1] Isabelle: Theorem Proving Environment. http://isabelle.in.tum.de/ and
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/.

[2] The Maple analytical computation software. http://www.maplesoft.com/.

[3] Mathematica: The Way the World Calculates.
http://www.wolfram.com/products/mathematica/.

[4] Philippe Audebaud and Laurence Rideau. Coq integration within TEXmacs.
Home page: http://www-sop.inria.fr/lemme/Philippe.Audebaud/tmcoq/.

[5] Jean-Christophe Filliâtre. Documentation tool for Coq. Available at
http://www.lri.fr/~filliatr/coqdoc/.

[6] SRI Computer Science Laboratory. The PVS Specification and Verification
System. http://pvs.csl.sri.com/.

[7] Lemme Team, INRIA Sophia-Antipolis. Pcoq, A graphical user-interface for Coq.
Home page: http://www-sop.inria.fr/lemme/pcoq/.

[8] Cornell Prl Automated Reasoning Project. MetaPRL.
http://cvs.metaprl.org:12000/metaprl/default.html.

[9] Coq Team. The Coq Theorem Prover Assistant. Available at
http://coq.inria.fr/.

[10] Laurent Théry. A proof of correctness of RSA algorithm that relies on Fermat’s
little theorem. Browsable online at
ftp://ftp-sop.inria.fr/lemme/Laurent.Thery/Rsa/index.html.

[11] MoWGLI: Mathematics on the Web: Get it by Logic and Interfaces.(European
IST) Home page: http://www.mowgli.cs.unibo.it/.

[12] Philippe Audebaud and Luca Padovani. (D4.c) Prototype functionalities for
assisted annotation. In MoWGLI deliverables
http://mowgli.cs.unibo.it/misc/deliverables/interfaces/

[13] Joris van der Hoeven. The GNU TeXmacs free scientific text editor. Available
at http://www.texmacs.org/.

20

http://isabelle.in.tum.de/
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
http://www.maplesoft.com/
http://www.wolfram.com/products/mathematica/
http://www-sop.inria.fr/lemme/Philippe.Audebaud/tmcoq/
http://www.lri.fr/~filliatr/coqdoc/
http://pvs.csl.sri.com/
http://www-sop.inria.fr/lemme/pcoq/
http://cvs.metaprl.org:12000/metaprl/default.html
http://coq.inria.fr/
ftp://ftp-sop.inria.fr/lemme/Laurent.Thery/Rsa/index.html
http://www.mowgli.cs.unibo.it/
http://mowgli.cs.unibo.it/misc/deliverables/interfaces/
http://www.texmacs.org/

	Introduction
	Objectives

