
UITP 2003 Preliminary Version

Colouring proofs: a lightweight approach to
adding formal structure to proofs

Laurent Théry 1

Dipartimento di Informatica

Università di L’Aquila, Italy

Abstract

In this paper we propose a proof format to write formal proofs motivated by a
formalisation of floating-point numbers. This proof format aims at being adequate
for both proof presentation and mechanised proof checking. We also present a simple
graphical interface to support this proof format.

Key words: mechanised proof checking, proof presentation, XML

1 Introduction

The work presented in this paper comes from a long-term collaboration [8] on
applying theorem proving technology to mechanically validate new algorithms
for floating-point numbers. In the computer arithmetic community researchers
often publish detailed proofs of the correctness of their new algorithms. Most
of the time these proofs are intricate and require a great deal of tedious check-
ing for a skeptic reader. An example of such a proof is the 19 page proof given
in [10]. Pioneering works [14,19,22] have shown how effectively theorem prov-
ing systems can be used to check proofs. In our case, proofs are encoded and
formally verified in the Coq prover [15]. In systems like Coq, proofs are repre-
sented by proof scripts. A script is composed of a set of elementary commands
called tactics. Tactics guide the prover in the search of the formal proof. In
that respect, proof scripts are very different from the usual proofs on paper.

Our modus operandi to mechanically check a proof within Coq has nearly
remained unchanged since the beginning. The proof is first written carefully
on paper with as many details as possible. Then, this document is used as
a guide to produce the script for the proof system. At this stage, the proof
on paper and the script usually take different roads. The proof on paper is
reworked, mainly shortened, so to be inserted into some technical report. The

1 Email: Laurent.Thery@di.univaq.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Thery

script is also modified. Good practice recommends to reorganize it in order to
increase reusability and robustness.

The fact that there is no direct connection between the published proof
and its proof script has at least three unpleasant consequences. First of all,
the published proof cannot be claimed to have been mechanically checked.
What has been checked is that the conclusion of the proof holds. For example,
nothing ensures that the published proof does not contain errors. Fundamental
errors are most likely to have been discovered during the checking process.
Still, having just a tiny error in a published proof is very annoying, in particular
when the main claim of the paper is that all the results have been mechanically
checked.

The second consequence is that published proofs are of limited interest
for maintaining the formal development. As provers are constantly evolving,
keeping the scripts up to date is a real problem. The published proof tells
very little on how the corresponding proof script is structured. Being able to
quickly find out what a specific subpart of the script is supposed to do is what
is really needed when maintaining scripts.

The third consequence that is closely related to the second one is a lack of
flexibility. It is often the case that, when something has been proved under
particular assumptions, one would like to see the effect of slightly modifying
them. Typically in floating-point arithmetic, one could try to change the
base of the arithmetic or the rounding mode. Doing such experiments with a
mechanised proof is very simple. One simply needs to change the assumptions
and rerun the scripts. The fact that a proof is not valid anymore is detected
when the application of a tactic fails. Finding out the corresponding step in
the proof on paper is not immediate and requires some non-trivial expertise.

In this paper we present a proof format which enforces a direct link between
the proof on paper and its mechanised version. The paper is structured as
follows. The format is introduced in Section 2. An example of a proof in our
format is given in Section 3. In Section 4 a graphical interface to build proofs
in our format is presented. Finally we relate our format with other approaches
in Section 5 before concluding in Section 6.

2 The Proof Format

In order to find an adequate proof format that would reduce the gap between
the structure of proofs on paper and the structure of proof scripts, we had
three sources of inspiration. The first one is the paper [17] by Leslie Lamport
that describes how formal proofs should be written. Reading that paper, it
is clear that the main feature of formal proofs is the structure. A formal
proof should explicitly expose how the initial problem is decomposed into
elementary subproblems, until obvious statements are obtained. One of the
main requirements of a formal proof format is then to highlight the proof
structure.

2



Thery

The second source of inspiration comes from the reading of different proofs
in arithmetic. Because they are mostly dealing with transforming inequalities,
the proofs can often be understood by just reading the formulae and forgetting
the text around. In our format, we push this observation to the extreme and
take as an assumption that only formulae matter.

The last source of inspiration comes from verification condition generators
like Why [11]. These systems are used to prove the correctness of programs.
They take as an input a program annotated with logical assertions and output
a list of conditions. Proving all these conditions ensures that the annotations
in the program are valid. We would like to have a similar mechanism for
proofs on paper. Running the tool on a proof should generate a list of formal
conditions that needs to be checked in order to ensure that what is written in
the proof is correct.

The definition of the actual proof format derives directly from these con-
siderations. An appropriate representation of proofs to highlight their struc-
ture is known since decades. It is the natural deduction style proposed by
Prawitz [21]. In the following we use some of the rules of natural deduction
to illustrate how our format works. For the actual description of the format
we use a mark-up language à la XML [4].

2.1 The format for formulae

In our format, formulae are expressed in a typed first-order logic. The syntax
is directly inspired by the language to write logical assertions in Why. The
language contains the usual logical connectors: conjunction and, disjunction
or, implication ->, negation not. For example, the formula

¬(x ∨ y) ⇒ ¬x ∧ ¬y

is written in our format as

not(x or y) -> not(x) and not(y)

The precedence for our logical connectors is the usual one. Arbitrary n-ary
predicates are represented by

predicateName(term1,...,termn)

Equalities, inequalities and interval predicates have their usual infix syntax.
For example, a basic property of interval predicates is written as

(x <= y <= z and x <> y and y <> z) -> x < y < z

A formula can be universally or existentially quantified using the keywords
forall and exists respectively. The variable bound by the quantification is
required to be typed. For example, the formula

forall x: int. exists y: int. x < y

indicates that there are infinitely many integer numbers.

3



Thery

Terms are variables, numerical constants and arbitrary n-ary function ap-
plications with the syntax

functionName(term1,...,termn)

The infix syntax is also available for the common arithmetic operations +, -,
*, /, %. For example, the formula

forall x, y, z, n: nat.

exp(x, n) = exp(y, n) + exp(z, n) ->

n <= 2 or x * y * z = 0

is a famous ex-conjecture.

Two aspects of our format for formulae are worth commenting. First,
we could have chosen the Coq syntax for formulae but have decided to use
a language that is independent of a particular prover. We believe that this
independence is a key issue for maintaining large formal developments on
the long run. Second, we have chosen a textual representation. A natural
alternative would be to use MathML [5]. As a matter of fact, an earlier version
of our proof format [26] did use a light version of MathML. For example, the
formula

¬(x ∨ y) ⇒ ¬x ∧ ¬y

was represented as

<imp>

<neg>

<or> <v><n>x</n></v> <v><n>y</n></v> </or>

</neg>

<and>

<not> <v><n>x</n></v> </not>

<not> <v><n>y</n></v> </not>

</and>

</imp>

The unfortunate consequence of that choice was that users could not be asked
to type formulae directly anymore. Some support should be provided. As
we could not find any satisfactory and freely available component to edit
MathML, we decided to step back and represent our formulae with the more
concise textual representation.

2.2 The format for proofs

In our format, we use tags to describe the proof structure. Proofs and sub-
proofs are marked with the tag p. Proofs can be given a name with the tag
n. The conclusion is denoted by the tag c. For example, the introduction rule
for the conjunction in natural deduction

A B

A ∧ B

4



Thery

is represented in our format as

<p>

<n>and Intro</n>

<p>

<c>A</c>

</p>

<p>

<c>B</c>

</p>

<c>A and B</c>

</p>

Indentation is used here for readability only. No specific layout is imposed
by the format. Also the relative positions of the subgoals and the conclusion
are free. Putting the conclusion first gives a goal-directed flavour to the proof.
What is proved is given before explaining why it holds. Putting the conclusion
last gives the more usual forward style. Most of the time a proof on paper is
carried out using the forward style, but for key steps like the application of
an inductive principle the conclusion may be given first. Our format easily
accommodates both styles.

Assumptions are represented by the tag h. The tag contains the formula
that is assumed. This is illustrated with the rule for case analysis

A ∨ B

[A]

. . .

C

[B]

. . .

C
C

and its encoding

<p>

<n>or Elim</n>

<p>

<c>A or B</c>

</p>

<p>

<h>A</h>

<c>C</c>

</p>

<p>

<h>B</h>

<c>C</c>

</p>

<c>C</c>

</p>

5



Thery

No limit is put on the number of assumptions and subproofs a proof can hold.

Local variables are represented with the tag v. As our language is typed,
the text enclosed by the tag must have the form name:type. We illustrate the
use of this tag with the universal introduction rule

P (n)

∀x. P (x)

In our language x must be typed. If we consider predicates over integers, the
representation of the introduction rule is the following:

<p>

<n>forall Intro</n>

<p>

<v>n:int</v>

<c>P(n)</c>

</p>

<c>forall x: int. P(x)</c>

</p>

A proof can have as many local variables as needed.

Two extra mechanisms have also been added. The first one lets the user
name the hypothesis. This is already possible by combining the tags h and n,
for example

<h>A <n>H1</n> </h>

However, putting the name inside the text of the assumption is not a good
idea. It gives a very limited naming schema, no extra text can be added. To
get a more general one, an extra tag f is used to indicate the value of the
assumption. Named assumptions should then be written as

<h> <f>A</f> <n>H1</n> </h>

The second mechanism makes it possible to explain why the conclusion of a
proof holds, i.e. to give a justification. This is done with an extra tag j. Jus-
tifications hold names. For example,

<p> <j> <n>exp_plus</n> </j> <c>C</c> </p>

indicates that the conclusion is a consequence of the theorem exp_plus. Names
in a justification can either refer to other proofs or to local assumptions.

To sum up, our proof format is composed of seven tags: p for proofs, c for
conclusions, h for hypotheses, v for variables, n for names, f for formulae, j
for justifications. A proof in our format is structured as follows:

- There is a top tag p.

- Each tag p in the proof has exactly one subtag c, at most one subtag n, at
most one subtag j and some (possibly zero) subtags v, h and p.

- Each tag h in the proof has at most one subtag f and at most one tag n.

6



Thery

- Each tag j in the proof has only subtags n.

2.3 Generating proof obligations

In program verification, in order to generate the conditions one needs to use
elaborate techniques such as computing the weakest preconditions. For our
format, the generation is much simpler. The algorithm is illustrated here for
Coq but could be easily adapted to other systems. It consists in a traversal
of the tagged structure from top to bottom and from left to right. Each time
a proof tag is encountered, its subproofs are first recursively processed before
generating the condition associated with the tag.

Each condition is represented by a lemma. A piece of script is also added
to do the necessary book-keeping and get the appropriate assumptions. To
give a more concrete example, consider the following proof

<p>

<h> <f>A</f> <n>h1</n> </h>

<p>

<n>p1</n>

<c>B</c>

</p>

<p>

<n>p2</n>

<h> <f>C</f> <n>h2</n></h>

<c>D</c>

</p>

...

</p>

The first condition that is generated corresponds to p1 and is represented by
the lemma c_p1. The condition has the following form:

Lemma c_p1: A -> B.

Proof.

Intros h1.

Apply ok.

Qed.

The subproof p1 has been declared in a context where the assumption A is
visible. Its conclusion is B. So the actual statement it proves is A ⇒ B. The
piece of script that is added

Intros h1.

Apply ok.

first introduces assumptions. In Coq, assumptions can be named. The name
given in the document can then be faithfully reflected inside Coq. The tactic
Intros h1 introduces the first assumption A with the name h1. The final tac-

7



Thery

tic Apply ok is generated so that the proof is always accepted by the prover 2 .
This simple trick gives typechecking for free: any error in the initial document
is automatically detected by the prover when processing the generated file.
As each lemma represents a single step in the proof, tracking the origin of
an error in the initial document is easy. The actual task of formally check-
ing the proof consists in replacing all the applications of the axiom ok with
appropriate tactics.

For the second subproof p2, the condition has the following form:

Lemma c_p2: A -> C -> D.

Proof.

Intros h1.

Generalize (c_p1 h1); Intros p1.

Intros h2.

Apply ok.

Qed.

There are two assumptions in the statement of the lemma: A comes from the
context and C is a local assumption of p2. For the proof script, the tactic
Intros h1 introduces the first assumption A of the lemma with the name h1.

The second tactic is more elaborate. It represents the fact that p1 is
visible from p2. In order to introduce p1, the lemma c_p1 first needs to be
instantiated with the context that is common between p1 and p2, i.e. the
assumption A whose name is h1. The expression (c_p1 h1) does exactly
that and corresponds to a proof of B. Before the application of the tactic
Generalize (c_p1 h1), the goal is C ⇒ D, after it is B ⇒ C ⇒ D. The
next tactic Intros p1 introduces B with the name p1. The result of these
two tactics is the expected one: the fact that B is true can be used with the
name p1 inside the proof p2.

The third tactic simply introduces C with the name h2 in the assumption
list. Note that the generator takes a special care in introducing assumptions
in the proper order. The assumptions introduced last are the ones displayed
next to the conclusion. In our example, the closest assumption is h2, then p1

and then h1.

Finally, when all introductions are done, the order of the assumptions is
possibly reorganized to take into account the references given by the justi-
fications. This improves the performance of automatic tactics that usually
privilege the last introduced assumptions.

In the generation, the main degree of freedom concerns the visibility of
the different subproofs. In natural deduction, if a proof P has n subproofs
p1, p2, . . . pn, these subproofs are considered independent. For example, one
cannot use the fact that the conclusion of p1 is true in the proof p2 without
copying the whole proof. In a textual proof, the proof p1 is read before the

2 This tactic represents the application of a predefined axiom ok that states that everything
is true.

8



Thery

proof p2. It seems then more natural to have a less restrictive policy. For this
reason, the visibility rule we have implemented in our generation is that the
conclusion of pi is visible inside pj for i < j and invisible outside P . A similar
approach has been adopted by Richard Bornat [3] for the box style proposed
by Fitch in [12].

3 An Example

So far we have presented our format and have shown how the conditions are
generated. We still need to show how proofs on paper can be translated into
our format. The idea behind our format is that this can be done mostly by
just adding tags to the text of the proof. We illustrate this with a proof of an
elementary property of the exponential function over integers:

Property exp_pos:

Let x and y be two integers,

if 0 < x, to prove exp(x,y) > 0 we have three cases:

If 0 < y then exp(x,y) >= x

If 0 = y then exp(x,y) = 1

If 0 > y then exp(x,y) = 1/exp(x,-y)

We are going to progressively integrate the tags into the text. The easiest tag
to add is the one for names. Here in the proof there is only one name exp_pos:

Property <n>exp_pos</n>:

Let x and y be two integers,

if 0 < x, to prove exp(x,y) > 0 we have three cases:

If 0 < y then exp(x,y) >= x

If 0 = y then exp(x,y) = 1

If 0 > y then exp(x,y) = 1/exp(x,-y)

The second step is to tag all local variables, here there are two variables:

Property <n>exp_pos</n>:

Let <v>x</v> and <v>y</v> be two integers,

if 0 < x, to prove exp(x,y) > 0 we have three cases:

If 0 < y then exp(x,y) >= x

If 0 = y then exp(x,y) = 1

If 0 > y then exp(x,y) = 1/exp(x,-y)

The next step is to take each formula in the proof and determine if it is a
hypothesis or a conclusion. In our example, we have four assumptions and
four conclusions:

Property <n>exp_pos</n>:

Let <v>x</v> and <v>y</v> be two integers,

if <h>0 < x</h>, to prove <c>exp(x,y) > 0</c> we have three cases:

If <h>0 < y</h> then <c>exp(x,y) >= x</c>

If <h>0 = y</h> then <c>exp(x,y) = 1</c>

If <h>0 > y</h> then <c>exp(x,y) = 1/exp(x,-y)</c>

9



Thery

The last step is the most delicate one. It consists in determining the scope of
each conclusion. In our example, there is a proof with three subproofs.

<p>Property <n>exp_pos</n>:

Let <v>x</v> and <v>y</v> be two integers,

if <h>0 < x</h>, to prove <c>exp(x,y) > 0</c> we have three cases:

<p>If <h>0 < y</h> then <c>exp(x,y) >= x</c></p>

<p>If <h>0 = y</h> then <c>exp(x,y) = 1</c></p>

<p>If <h>0 > y</h> then <c>exp(x,y) = 1/exp(x,-y)</c></p>

</p>

We are almost done. In our language variables must be typed. The type
information for variables should in fact be put when adding the tags v. So the
final version of the proof is:

<p>Property <n>exp_pos</n>:

Let <v>x: int</v> and <v>y: int</v> be two integers,

if <h>0 < x</h>, to prove <c>exp(x,y) > 0</c> we have three cases:

<p>If <h>0 < y</h> then <c>exp(x,y) >= x</c></p>

<p>If <h>0 = y</h> then <c>exp(x,y) = 1</c></p>

<p>If <h>0 > y</h> then <c>exp(x,y) = 1/exp(x,-y)</c></p>

</p>

The generated conditions are given in Appendix A. Note that since subproofs
and assumptions were not named, the system has automatically generated
ad-hoc names.

4 The Cyp Graphical Interface

A graphical interface has been developed to build proofs in our format 3 . The
interface is composed of a single window. Any text can be read in this window.
For example, reading the initial tag-free proof text of Section 3 gives:

File Selection Tools

Coloured Tagged Coq

Property exp pos:
Let x:int and y:int be two integers,
If 0 < x, to prove exp(x,y) > 0 we have three cases:

If 0 < y then exp(x,y) >= x
If 0 = y then exp(x,y)= 1
If 0 > y then exp(x,y)= 1/exp(x,-y)

Colour Your Proof

3 The interface is freely available at ftp://ftp-sop.inria.fr/lemme/cyp/index.html.

10

ftp://ftp-sop.inria.fr/lemme/Laurent.Thery/cyp/index.html


Thery

To set a tag, the user simply needs to select the region with the mouse and
press the corresponding item in the menu Selection. For example, selecting
the text “exp pos” and pressing on the item n gives the following result:

File Selection Tools

Coloured Tagged Coq

Property exp pos:
Let x:int and y:int be two integers,
If 0 < x, to prove exp(x,y) > 0 we have three cases:

If 0 < y then exp(x,y) >= x
If 0 = y then exp(x,y)= 1
If 0 > y then exp(x,y)= 1/exp(x,-y)

Colour Your Proof

Colours are used to indicate the presence of a tag, here red is used for names.
Following the same steps as in Section 3, we then need to select each variable
and press on the item v:

File Selection Tools

Coloured Tagged Coq

Property exp pos:
Let x:int and y:int be two integers,
If 0 < x, to prove exp(x,y) > 0 we have three cases:

If 0 < y then exp(x,y) >= x
If 0 = y then exp(x,y)= 1
If 0 > y then exp(x,y)= 1/exp(x,-y)

Colour Your Proof

Once again the modification is indicated by a change of colour. This gives a
nice metaphor to what it means to turn a proof in our format: it just consists
in colouring the proof.

If we continue the process, the complete coloured proof is the following:

11



Thery

File Selection Tools

Coloured Tagged Coq

Property exp pos:
Let x:int and y:int be two integers,
If 0 < x, to prove exp(x,y)>0 we have three cases:

If 0 < y then exp(x,y) >= x
If 0 = y then exp(x,y)= 1
If 0 > y then exp(x,y)= 1/exp(x,-y)

Colour Your Proof

Conclusions are coloured in blue and assumptions in green. In order to keep
the number of colours as small as possible, we have decided to use the same
colour for variables and assumptions. Like this, we have just three colours:
red for names, green for what is assumed and blue for what is proved. Note
also that proof tags are not visible in the picture above. This is because proofs
can be nested. So colouring a proof would automatically hide the colour of
its subproofs. Our solution is to colour at most one subproof at a time: the
smallest subproof, if it exists, that contains the current selection. For example,
if in the final coloured proof the assumption of the second subproof is selected,
the whole second subproof is coloured in grey:

File Selection Tools

Coloured Tagged Coq

Property exp pos:
Let x:int and y:int be two integers,
If 0 < x, to prove exp(x,y)>0 we have three cases:

If 0 < y then exp(x,y) >= x
If 0 = y then exp(x,y)= 1
If 0 > y then exp(x,y)= 1/exp(x,-y)

Colour Your Proof

Finally the labels Coloured, Tagged and Coq at the bottom of the window
allow the user to select the output he/she wants. So far, we have been using
the coloured output. Pressing the Tagged label gives the tagged version of the
text. It is the one that is saved on disk. The Coq label gives the list of the
generated conditions.

12



Thery

5 Related Works

We are aware that the gap between proofs on paper and their corresponding
mechanised versions in Coq is mainly due to the fact that the tactic language
of Coq has been thought as a little programming language whose goal is to
build proofs. As in programming, conciseness and genericity in proof scripts
are then privileged. This is not particular to Coq but common to all provers
based on tactics. Scripts in such provers usually contain very few formulae.
As coined in [18], adding formulae in a script increases the viscosity of the
script. This means that it reduces the reusability of scripts and makes them
less robust to modifications. The simple fact that formulae do not usually
appear in proof scripts shows how inadequate scripts are to reflect the usual
proofs.

There have been attempts to get a more natural language to interact with
provers. The first and most impressive one by far is the Mizar project [20].
Other interesting attempts include [1,24,27,30]. Following the terminology
used in [13], these systems propose a declarative style of proving, while systems
like Coq offer a procedural approach. Declarative scripts usually contain lots of
formulae and are then closer to proofs on paper. Unfortunately, these systems
impose some strong restrictions on the way proofs should be written. In Mizar,
for example, the proof has to be given with the level of detail imposed by the
system. As the system has very little automation, proof scripts are often too
detailed for a human reader. A recent proposal [28] aims at relaxing this
constraint. In Isar [27], some basic constructs are hard-wired. An example is
the proof by case analysis, where the presentation of the different cases in the
document has to follow the exact order in which the object was declared.

Other interesting approaches include attempts to accommodate both pro-
cedural and declarative styles [9,16,29], extract proof texts from tactics [6],
extract proof texts from proof objects [2,7,23]. Note that when provers have
proof objects, it would be possible to automatically convert proof objects into
our format in a very similar way as in [2,7]. The result would most probably
be far too detailed. However, with some support for improving the presenta-
tion while keeping the proof script consistent, this reverse engineering activity
could be an effective way to get readable proofs.

6 Conclusion

In this paper we have presented a very simple and flexible format for writing
formal proofs. This format is independent of a particular prover. Writing
proofs is meant to be as natural as possible. With respect to the usual way
of writing proofs, the author is only asked to explicitly indicate the proof
structure. At each step it is then clear what the assumptions are and what
the conclusion is. We have also presented a very simple user interface to help
writing proofs in this format. With this interface, proofs are translated into

13



Thery

our format by a simple colouring process.

Our approach is generic but with a special application in mind, i.e. the
proofs in computer arithmetic. Its effectiveness relies strongly on the assump-
tion that only looking at the terms in the proof is nearly sufficient to under-
stand the entire proof. This is the case for proofs of computer arithmetic that
mainly manipulate inequalities, but it is clearly not the case for any pencil
and paper proof. An interesting question is whether the information that is
added explicitly with tags in the proof could be synthetised instead. Doing
this in full generality would require some non-trivial natural language analy-
sis. A possibility would be to use special keywords or impose some predefined
layout style, but this is exactly what we wanted to avoid using tags. The
information that makes the proof mechanically checkable should interfere as
little as possible with the way the proof is presented.

The separation of the activity of proof writing from the activity of proof
checking has been motivated by our own experiment. We do not claim that
this separation should always be the rule. In our case, it makes it possible
to conciliate the necessity of publishing the proof in a human-readable form
with the tedious task of mechanically checking the proof in all the low-level
details. In that respect we consider the mechanic checking of the proof just
as a way to increase the confidence in the proof and not in any case as a way
to substitute the refereeing process.

In the introduction we have described three drawbacks of the usual loose
connection between the published proof and its machine-checked version. The
first drawback was that the computer proof usually only checks the final state-
ment of the published proof. In our framework we get a tighter connection.
Every step of the published proof has been checked and for each step there is
a corresponding lemma in the formal development. The second drawback was
the difficulty of maintaining proofs. To ease maintenance a good practice is
to always split big proofs into smaller pieces. Our generating process enforces
this practice as every lemma only covers a single step of the proof on paper.
The last drawback was the difficulty of experimenting with slightly different
versions of the final statement. In our case, the variations can be done directly
on the published proof by changing the statement. When re-running the proof
script, the lemmas that the prover fails to re-establish directly correspond to
the steps that need to be fixed in the published proof.

Some more work is still needed in order to turn our experiment into a
realistic approach. First, the format has to be tested intensively against large
proof developments. We are planning to use it to re-engineer our formalisation
of floating-point numbers [8]. Second, the conditions that are generated are
rarely provable automatically by Coq. Even if full automation is not our main
goal, more tactics need to be developed in order to get a reasonable ratio of
conditions proved automatically. Finally, we are investigating the possibility
of using directly a scientific editor such as TeXmacs [25] to write proofs. This
would give us for free the usual display for mathematical expressions. With

14



Thery

a textual representation, notations as the one for integration or the one for
matrices are known to be difficult to render.

References

[1] Andreas Abel, Bor-Yuh Evan Chang, and Frank Pfenning. Human-readable
machine-verifiable proofs for teaching constructive logic. In PTP’01, Siena,
Italy, 2001.

[2] Andrea Asperti, Luca Padovani, Claudio Sacerdoti Coen, and Irene Schena.
HELM and the Semantic Math-Web. In TPHOLs’01, number 2152 in LNCS,
pages 59–74, Edinburgh, Scotland, 2001.

[3] Richard Bornat. Rendering Tree Proofs in Box Form. In UITP’03, pages 46–61,
http://www.informatik.uni-bremen.de/uitp03/proceedings.pdf.

[4] Tim Bray, Jean Paoli, and C. Michael Sperberg-McQueen. Extensible Markup
Language (XML) 1.0. W3C Recommendation.

[5] David Carlisle, Patrick Ion, Robert Miner, and Nico Poppelier. Mathematical
Markup Language (MathML) version 2.0. W3C Recommendation.

[6] Avra Cohn. Proof Accounts in HOL. Unpublished draft, 1988.

[7] Yann Coscoy, Gilles Kahn, and Laurent Théry. Extracting text from proofs. In
TLCA, number 902 in LNCS, pages 109–123, Edinburgh, Scotland, 1995.

[8] Marc Daumas, Laurence Rideau, and Laurent Théry. A Generic Library
for Floating-Point Numbers and its Application to Exact Computing. In
TPHOLs’01, number 2152 in LNCS, pages 169–184, Edinburgh, Scotland, 2001.

[9] David Delahaye. Free-Style Theorem Proving. In TPHOLs’02, number 2410 in
LNCS, pages 164–181, Hampton, VA, USA, 2002.

[10] James Demmel and Yozo Hida. Accurate floating point summation. Available
at http://www.cs.berkeley.edu/~demmel/AccurateSummation.ps.

[11] Jean-Christophe Filliâtre. Proof of Imperative Programs in Type Theory. In
TYPES’98, number 1657 in LNCS, Eindhoven, Netherlands, 1998.

[12] Frederic B. Fitch. Symbolic Logic: an introduction. Ronald Press Company,
1952.

[13] John Harrison. Proof style. In TYPES’96, number 1512 in LNCS, pages 154–
172, Aussois, France, 1996.

[14] John Harrison. A Machine-Checked Theory of Floating Point Arithmetic. In
TPHOLs’99, number 1690 in LNCS, pages 113–130, Nice, France, 1999.

[15] G rard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq Proof
Assistant: A Tutorial: Version 6.1. Technical Report 204, INRIA, 1997.

15

http://www.informatik.uni-bremen.de/uitp03/proceedings.pdf
http://www.cs.berkeley.edu/~demmel/AccurateSummation.ps


Thery

[16] Gueorgui I. Jojgov, Rob P. Nederpelt, and Mark Scheffer. Faithfully reflecting
the structure of informal mathematical proofs into formal type theories. In
MKM Symposium’03, ENTCS, Edinburgh, Scotland, 2003.

[17] Leslie Lamport. How to write a proof. American Mathematical Monthly,
102(7):600–608, 1995.

[18] Nicholas Merriam and Michael Harrison. What is wrong with GUIs for theorem
provers? In UITP’97, INRIA Report, Sophia-Antipolis, France, 1997.

[19] Paul S. Miner. Defining the IEEE-854 floating-point standard in PVS.
Technical Memorandum 110167, NASA, Langley Research Center, 1995.

[20] Mizar. Journal of Formalized Mathematics. http://mizar.org/JFM/.

[21] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.

[22] David M. Russinoff. A Mechanically Checked Proof of IEEE Compliance of the
AMD K5 Floating-Point Square Root Microcode. Formal Methods in System

Design, 14(1):75–125, January 1999.

[23] Jörg H. Siekmann, Christoph Benzmüller, Armin Fiedler, Andreas Meier, and
Martin Pollet. Proof development with OMEGA: Sqrt 2 is irrational. In
LPAR’02, volume 2514 of LNCS, pages 367–387, 2002.

[24] Don Syme. Three Tactic Theorem Proving. In TPHOLs’99, number 1690 in
LNCS, pages 203–220, Nice, France, 1999.

[25] TeXmacs. A Free Scientific Text Editor. http://www.texmacs.org/.

[26] Laurent Théry. Formal Proof Authoring: an Experiment. In UITP’03, pages
143–159, Rome, Italy, 2003.

[27] Markus Wenzel. A Generic Interpretative Approach to Readable Formal Proof
Documents. In TPHOLs’99, number 1690 in LNCS, pages 167–184, Nice,
France, 1999.

[28] Freek Wiedijk. Formal proof sketches.
Available at http://www.cs.kun.nl/~freek/notes/sketches2.ps.gz.

[29] Freek Wiedijk. Mizar Light for HOL Light. In TPHOLs’01, number 2152 in
LNCS, pages 378–393, Edinburgh, Scotland, 2001.

[30] Vincent Zammit. On the Implementation of an Extensible Declarative Proof
Language. In TPHOLs’99, number 1690 in LNCS, pages 185–202, Nice, France,
1999.

16

http://mizar.org/JFM/
http://www.texmacs.org/
http://www.cs.kun.nl/~freek/notes/sketches2.ps.gz


Thery

A Generated Conditions

Lemma c_gp_1: (x: Z) (y: Z) (Zlt ZERO x) -> (Zlt ZERO y) ->

(Zge (exp x y) x).

Proof.

Intros x y gh_1.

Intros gh_1_1.

Apply ok.

Qed.

Lemma c_gp_2: (x: Z) (y: Z) (Zlt ZERO x) -> (‘0‘ = y) ->

(exp x y) = ‘1‘.

Proof.

Intros x y gh_1.

Generalize (c_gp_1 x y gh_1); Intros gp_1.

Intros gh_2_1.

Apply ok.

Qed.

Lemma c_gp_3: (x: Z) (y: Z) (Zlt ZERO x) -> (Zgt ZERO y) ->

(exp x y) = (Zdiv ‘1‘ (exp x (Zopp y))).

Proof.

Intros x y gh_1.

Generalize (c_gp_1 x y gh_1); Intros gp_1.

Generalize (c_gp_2 x y gh_1); Intros gp_2.

Intros gh_3_1.

Apply ok.

Qed.

Lemma exp_pos: (x: Z) (y: Z) (Zlt ZERO x) -> (Zgt (exp x y) ‘0‘).

Proof.

Intros x y gh_1.

Generalize (c_gp_1 x y gh_1); Intros gp_1.

Generalize (c_gp_2 x y gh_1); Intros gp_2.

Generalize (c_gp_3 x y gh_1); Intros gp_3.

Apply ok.

Qed.

17


	Introduction
	The Proof Format 
	The format for formulae
	The format for proofs  
	Generating proof obligations

	An Example
	The Cyp Graphical Interface 
	Related Works 
	Conclusion 
	References
	Generated Conditions 

