
David Aspinall Christoph Lüth (Eds.)
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Foreword

This informal proceedings contains the papers and system descriptions presented
at the User Interfaces for Theorem Provers 2003 workshop (UITP 2003), held
on Monday 8th September 2003, at the Università di Roma Tre, Rome, Italy, in
conjunction with the TPHOLs conference.

The UITP workshop brings together researchers interested in designing, de-
veloping and evaluating interfaces for interactive proof systems. These systems
include theorem provers, formal method tools, and other tools manipulating and
presenting mathematical formulae.

The workshop series started in 1995 with a meeting in Glasgow (organized
by Phil Gray, Tom Melham, Muffy Thomas and Stuart Aitken), and continued
with meetings 1996 in York (organized by Nicholas Merriam, Michael Harrison
and Andy Dearden), 1997 in Antibes (organized by Yves Bertot) and 1998 in
Eindhoven (organized by Roland Backhouse). The present organizers enjoyed
these meetings and believe that the forum provides a unique opportunity to
discuss work in this area, and so we organized this “revival” meeting for 2003.
This met with strong interest in the community, as indicated by the range of
papers in this volume.

The papers here show that during the five years in between, considerable
technological advances have taken place, and progress has been made. Yet, the
basic problems in this field remain far from solved. Moreover, with theorem
proving and formal methods becoming more widely used, they become even
more relevant, and make this a very exciting area to work in.

In keeping with tradition of previous meetings, the papers here have been
briefly reviewed by a programme committee comprising

– Stuart Aitken,
– David Aspinall,
– Yves Bertot,
– Christoph Lüth,
– Tom Melham,
– Erica Melis and
– Burkhart Wolff.

We would like to express our gratitude to the other programme committee mem-
bers for their help, and in particular to Burkhart Wolff for helping to arrange
our meeting using the organizational machinery behind TPHOLs.

David Aspinall and Christoph Lüth.
Edinburgh and Bremen, July, 2003.





Table of Contents

Proof General meets IsaWin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
David Aspinall and Christoph Lüth
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Abstract. We describe the design and plan for implementing a com-
bination of theorem prover interface technologies. On one side, we take
from Proof General the idea of a prover-independent interaction language
and its proposed implementation within the PG Kit middleware archi-
tecture. On the other side, we take from IsaWin a sophisticated desktop
metaphor using direct manipulation for developing proofs. We believe
that the resulting system will provide a powerful, robust and generic en-
vironment for developing proofs within interactive proof assistants, and
we intend to demonstrate this for some of our favourite systems.

1 Introduction

Proof General is a generic interface for interactive proof assistants, built on the
Emacs text editor [3, 2]. It has proved rather successful in recent years, and is
popular with users of several theorem proving systems. Its success is due to its
genericity, allowing particularly easy adaption to a variety of provers (primarily,
Isabelle, Coq, and LEGO), and its design strategy, which targets experts as well
as novice users. Its central feature is an advanced version of script management,
closely integrated with the file-handling of the proof assistant. This provides a
good work model for dealing with large-scale proof developments, by treating
them similarly to large-scale programming developments. Proof General also
provides support for high-level operations such as proof-by-pointing, although
these are less emphasised.

Proof General has some drawbacks, however. From the developers’ point of
view, it is rather too closely tied with the Emacs Lisp API which is somewhat
unreliable, often changing, and exists in different versions across different flavours
of Emacs. From the users’ point of view, although the interface offers some high-
level operations and tries to hide the shell-window process, interaction is still
firmly based on the proof assistant’s (often cryptic) command language, and not
much support is offered for specific tactics or commands.

IsaWin is the instantiation of a generic graphical user interface to Isabelle [16,
15, 17]. It aims at providing an abstract user interface based on a persistent
visualisation metaphor and the concept of direct manipulation; users need not
be concerned with the syntactic idiosyncrasies of the prover, and can instead
concentrate on the logical content of the proof. This abstract approach also
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allows high-level operations: for example, there is support for proof-by-pointing
(folding or unfolding equations), term annotations (the system can display the
type of sub-terms), or tactical programming (one can cut parts from the history
of a proof to make it into an elementary tactic, which can be reapplied elsewhere).

While IsaWin is usually met with initial approval, in particular from novice
users, it has some drawbacks. Customising or adapting it to other proof assis-
tants requires Standard ML programming, and a good understanding of the data
structures, so it is not possible to adapt a system gradually (unlike with Proof
General), and it is hard to adapt to provers not implemented in Standard ML.
Moreover, it only has a rudimentary proof script management, and integrates
foreign proof scripts only reluctantly.

Thus, Proof General and IsaWin can be considered as complimentary, with
each offering advantages to compensate for the other’s shortcomings. This paper
describes an attempt to combine their advantages in one system based on the
PG Kit infrastructure presented in [4, 5]. The resulting system has an event-
based architecture and focuses on managing proof scripts as the central artefact.
A generic interactive protocol language allows one to connect different user in-
terfaces (called displays); thus, IsaWin becomes one particular user interface in
this setting.

In the remainder of this paper, we describe the particular aspects of Proof
General and IsaWin that we want to build on, followed by a outline design of
the new system. We close by briefly mentioning related work, and our vision for
the future evolution of the project.

2 Proof General Basic Concepts

Emacs Proof General is the present incarnation of Proof General, based on
the ubiquitous Emacs text editor.3 For Proof General, a proof consists of the
user-editable formal text (or proof script) which, when processed by the machine,
constructs a representation of a proof in a formal system. The target proof script
is the central focus of development.

It doesn’t matter whether the proof script contains a tactic-style procedural
proof, or a declarative proof description. The interface relies on the underlying
proof assistant being able to process a proof script interactively and incremen-
tally, in a textual dialogue: the user issues a proof command, and the system
responds. A distinction is made between proper proof script commands, which
belong in the text, and improper commands, which do not. Proper commands
include statements of propositions to be proved, and the contents of their proofs.
Improper commands include undo steps, commands for inspecting terms and for
querying a database of available theorems. The proper commands are stored in
the proof script file, and coloured according to progress in the proof: crucially,
regions which have been processed by the proof assistant are coloured blue and
should not be edited. This is the idea of script management as described in [8].
3 Several flavours of Emacs are supported, including XEmacs and GNU Emacs, run-

ning on numerous platforms.
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Fig. 1. The Proof General interface. The window is split into two panes, the bottom
displaying the output from the proof assistant, the top displaying the proof script,
coloured according to progress.

Proof General provides a simple browsing metaphor for replaying proofs, via
a toolbar for navigating in a proof script, see Fig. 1 for a screenshot. Behind
the scenes, this works by sending commands to issue proof steps and undo proof
steps. The undo behaviour relies on the built-in history of the proof assistant,
which typically forgets the history between steps of a proof once the proof has
been completed.4 The undo behaviour splits the proof script into regions (or
spans) of consecutive lines which are atomic for undo. Spans are treated linearly
within the file, although they have a dependency structure which expresses de-
pendencies within the proof development itself: it is possible to display this de-
pendency within the interface, to highlight the auxiliary lemmas used in proving
a theorem, for example.

Proof General provides an advanced implementation of script management
which synchronises file editing between the proof assistant and editor in a two-
way communication. Files are used to store proof scripts, representing parts of
developments. If the user completes processing a proof script file, Proof General
informs the prover; if the prover reads another file during processing, it will
inform Proof General. Similarly for undo operations at the file level.

Technically, Proof General is implemented mostly in Emacs Lisp, interfac-
ing with other Emacs packages, notably including X-Symbol [26] for displaying

4 This is initially counter-intuitive to new users, although they soon get a feel for it.
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mathematical symbols. A considerable effort has been made into making it easy
to adapt Proof General to new proof assistants, and it can be possible to configure
by setting only a handful of variables, with little or no Emacs lisp programming.
But the mechanism is tiresome: we try to anticipate and cater for many dif-
ferent proof assistant behaviours within Proof General. Moreover, for advanced
features (such as proof-by-pointing [7] and proof-dependency visualisation [18,
21]), dedicated support from the proof assistant is inevitably required.

3 Proof General Kit Basic Concepts

To address the limits of the Proof General model, and particularly of the Emacs
Lisp implementation, Proof General (PG) Kit has been designed [4, 5]. The cen-
tral idea is to use the experience of connecting to diverse provers to prescribe a
uniform protocol for interaction. Instead of tediously adapting Proof General to
each prover, Proof General will call the shots, by introducing a uniform protocol
for interactive proof, dubbed PGIP, which each prover must support.

As well as controlling the progress of the interactive proof, PGIP is respon-
sible for initialization and book-keeping tasks which require communication be-
tween the proof assistant and the interface architecture. It includes messages to
configure (proof assistant specific) user-level menus and preferences; messages to
display status or error dialogues, and messages to retrieve theory files. PGIP is
based on messages sent in an XML format.

Apart from communicating the intent of a proof interaction, we want to com-
municate a representation of it; for example, by displaying a list of subgoals to be
solved to complete some proof. To help with this, PG Kit includes another XML
format, PGML, the Proof General Markup Language. The markup language is
intended for displaying concrete syntax. It includes representations for mathe-
matical symbols, along with the possibility of hidden annotations which express
term structure. These annotations can be used to implement sub-term cut-and-
paste, proof-by-pointing or similar features [7]. Of course, there are already lan-
guages for XML-based document formats designed for displaying mathematics
(MathML, [24]), and transferring mathematical content between applications
(OpenMath, [20]). Later on, we hope to use these languages with PGML. At the
moment, it is more feasible to implement our own simple markup scheme since
both MathML and OpenMath go further into the abstract structure of terms
than we need, or than we can easily accommodate in a generic way.

PGIP and PGML are described in full elsewhere [5], including DTDs for the
languages, and the description of the architecture into which they fit (described
more in Sec. 5). There is not yet a complete implementation of Proof General
Kit, but experimental progress on several fronts.5 The work described below will
be a major advance.

5 Isabelle2003 uses PGIP messages to configure PG’s menus, and supports PGML
output.



Proof General meets IsaWin 5

Fig. 2. The IsaWin interface. The main window shows the notepad and folder naviga-
tion bar on the top, and the ongoing proof below. Two auxiliary windows open here
allow the search for theorems, and show the history of the proof.

4 IsaWin Basic Concepts

IsaWin is the instantiation of a generic graphical user interface called GenGUI
for the Isabelle proof assistant. It provides a more abstract, less syntax-oriented
interface to Isabelle (and related provers), based on the visual metaphor of a
notepad. All objects of interest, such as proofs, theorems, tactics, sets of rewriting
rules etc. are visualised by icons on a notepad, and manipulated there using
mouse gestures. More complex objects such as proofs can be manipulated by
opening them in a separate sub-window. IsaWin offers self-contained history
support, proof-by-pointing, dependency management and session management.

The interface is based on the concept of direct manipulation: a continuous
representation of the objects and actions of interest with a meaningful visual
metaphor and incremental, syntax-free operations, i.e. user gestures such as
dropping an object onto another, pop-up menus or mouse clicks. Objects are
visualised by icons on a notepad (see Fig. 2). The icon is given by the type of
the object, which determines the available operations. Hence, when users see
an object visualised by a theorem icon, they know that if they drop this object
onto another theorem object, the theorem prover will attemp to combine them
by forward resolution, whereas if the theorem is dropped onto on ongoing proof,
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a new proof step using backward resolution with this theorem will be attempted.
The type of an object further determines the operations appearing in its pop-
up menu and whether (and how) it can be opened into a separate sub-window.
The interface also keeps track of dependencies, i.e. if one object is used as an
argument to construct another object, and if objects are changed or outdated,
all dependent objects are outdated as well.

Drag&drop is resolved by a table indexed with the types of the dropped and
the receiving object respectively. The history is represented internally, as the
sequence of operations used to construct an object. This has some advantages,
as it allows an abstract manipulation of proofs; for example, we can cut out
parts from proof scripts and make them into reusable tactics. But moreover it
has severe disadvantages: as proof scripts are an external representation of the
history, a generic script management is not very straightforward to implement,
and indeed IsaWin only offers limited script management, compared to Proof
General. IsaWin has its own format to save and read proofs, and while it has some
limited support to produce proof scripts in Isabelle’s native format, it cannot
parse them. This makes it hard to use IsaWin on proof scripts not developed
using IsaWin.

Technically, GenGUI is an implemented completely in Standard ML (SML).
IsaWin is the instantiation of GenGUI with a particular Isabelle-specific module.
To customise it (adding or changing icons, shortcut buttons, or menu entries),
one has to change this module. To adapt GenGUI to another proof assistant,
one implements a different module with a given signature, containing the object
types, operations and the drag&drop table. This requires a good understanding
of the signature (and of SML), and also makes adaption to provers not imple-
mented in SML cumbersome.

For us, the experience with GenGUI and IsaWin has shown that the imple-
mentation of an interface as an add-on in the same programming language as the
proof assistant leads to a non-modular architecture, which makes the interface
difficult to reuse. It also makes the interface less robust: if the prover diverges or
returns a run-time error, the interface diverges or stops as well. For these rea-
sons, not many different adaptations of GenGUI exist, and in comparison with
Proof General, GenGUI has not fully delivered on its promise of genericity.

A better architecture is to keep interface and proof assistant separate, and
specify their interaction cleanly and in a language independent way — which
is precisely what PGIP does. Proof scripts, understood broadly as the sequence
of proof steps leading to a goal, are the main artefacts the user is constructing
when working with a proof assistant, and as such should be represented and
manipulated explicitly, rather than implicitly as in GenGUI.

5 System Architecture

The system is a synthesis of two existing designs. From the users’ point of view,
nothing much should change; their experience when working with the new system
should by and large by the same as working with IsaWin or Proof General.
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Hence, the main novelty of this system will be its internal architecture and
communication protocols, which we will be describe in this section.

The system is an implementation of the PG Kit architecture presented in [4],
which comprises a central proof mediator, connected to several displays engines
and a proof assistant. The different components communicate in the interface
protocol language PGIP (see above).

The mediator maintains the overall state, the proof scripts, and their de-
pendencies. It sends commands to, and receives status messages from the proof
assistant; at the same time, it receives user input from the display, and keeps
the displays up-to-date. In principle, we can connect to more than one proof
assistant at the same time, but presently we cannot interchange any data (such
as proofs or theorems).

A display engine or display for short visualises the proof assistant’s state,
proofs, theorems, and so on. There can be more than one display connected
to the main broker, and there are different kinds of displays. A simple line-
oriented display displays lines of text and relays command lines typed by the
user; this corresponds to Emacs Proof General. Slightly more sophisticated, a
graphical display translates user gestures (drag&drop and so on) into textual
prover commands; thus, IsaWin becomes another specific display module in this
architecture. Other possible displays could include a web interface (either client-
side by running an applet in a browser, or server-side by embedding the mediator
into a web server via techniques such as servlets, ASP or CGI). We further
distinguish between active and passive displays. An active display allows the
user to enter commands, whereas a passive display primarily visualises proofs,
possibly allowing active browsing.6

Proof
Assistant

Proof
Assistant

Graphical User
Interface

Emacs

Prover
Encapsulation

File System Theory Store

History

Event Broker

Display:
PGWin

Display:
Emacs

PG Mediator

Tcl

PGIP

PGIP

Lisp

Fig. 3. System Architecture

6 In [4], these have been called input engines and display engines.
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Fig. 3 shows the system architecture. Rounded boxes denote separate com-
ponents, and square boxes denote the different modules of the mediator. The
implementation is based on the notion of an event. Events are generated either
from user input, or change of state in the prover. The mediator is the central
event broker; it receives input events, updates its internal state, and sends on
change events to other parts of the system as necessary. Events are structured:
they contain PGIP messages.

5.1 Implementing the Mediator

The mediator is implemented in Concurrent Haskell, using the Glasgow Haskell
Compiler, with events as first-class values in Haskell [22]. That is, we have a
polymorphic datatype of events containing a value of any type, with operations
to synchronise on an event, sequence an action with an event, combine two events
via deterministic choice, and others:

Event a
sync :: Event a -> IO a
(>>>=) :: Event a-> (a-> IO b)-> Event b
(+>) :: Event a-> Event a-> Event a

This allows us to write concurrent functional programs in a notation reminiscent
of process algebras such as the π-calculus [19].

We implement the mediator as a set of Haskell modules, loosely coupled (by
Unix pipes) to the other components. The mediator contains one central event
broker, and one event handling module for each loosely coupled module, such
as displays and proof assistants (see Fig. 3). This architecture combines the
advantages of loose and tight coupling, and offers the flexibility of a component-
based framework such as CORBA without its implementation and performance
overhead.

Events contain PGIP messages. To model PGIP faithfully in Haskell, we
use HaXML [25]. From a given DTD, HaXML generates a series of Haskell
datatypes, one for each element, along with functions to read and write XML.
The advantage is that the type security given by the DTD extends into our
program, making it nearly impossible to send messages containing invalid XML,
and detecting the reception of invalid XML immediately.

There are different types of events, corresponding to different elements in the
PGIP DTD, represented by different types in the mediator. These include:

– Command events (type DispCmd) are commands input by the user. Com-
mands are generated by active displays, either by interpreting gestures or by
the user typing a command line (or in fact mixtures of the two), and then
handled by the event broker.

– Display message events (DispMsg) contain messages to be displayed, such as
a new proof assistant state, error or warning messages. Display events are
generated by the event broker from proof response events, or as an answer
to user input (e.g. trying to browse beyond the end of the history).
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– Prover commands (ProverCmd) are commands sent to the prover encapsula-
tion, either generated from command events, or when replaying proof scripts.
They contain PGIP which is sent on the corresponding proof assistant.

– Prover message events (ProverMsg) are messages from the proof assistant in
response to proof commands, containing e.g. a new proof assistant state, or
an error returned by the prover. They are interpreted by the event broker,
which updates its internal states accordingly, and updates the connected
displays.

– Display configuration events (DispConfig) configure the display, adding or
changing menus, shortcut buttons, icons, or the drag&drop table. These are
sent by the proof assistant to the broker, and passed on to all connected
displays.

– An interrupt event (DispINT) signals that the user wants to interrupt what-
ever the proof assistant is doing currently. Interrupt events are ordinary
events to the event broker, but they cause the module handling the proof
assistant to send an out-of-band message, to the proof assistant, such as a
user interrupt signal (SIGINT) on Posix systems.

To illustrate the event concept, we follow a typical event around the system.
Assume that the user enters a command, e.g. by pressing a button on the GUI
or merrily typing on his keyboard. This command results in a DispCmd event
being sent from the display to the event broker. The event broker looks up the
current proof from its internal state, and which prover handles this proof. It
sends a ProverCmd event to the prover encapsulation, updates the display with
the new command, and appends the command to the history. Some time later,
the proof assistant returns a result, generating a ProverMsg event which is sent
to the event broker. If it is an error message, all outstanding commands to that
prover are flushed (if one proof command fails, it usually makes no sense to try
subsequent ones). If the command succeeds, the prover’s new state will be noted.
In any case, a DispMsg event containing either the error message, or the new
prover state, will be sent to all displays.

As we can see, this is asynchronous: users can type ahead of the prover. This
way, proof replay is not any more different from normal user input, and both
can be handled in a uniform way.

5.2 Displays

All display engines, even such seemingly different ones like Emacs and IsaWin,
serve to visualise display messages originating mainly from the event broker.
Crucially, later display messages refer to earlier ones. For example, in a line-
oriented interface, when we replay a proof, we want to mark previously display
lines as “replayed” (by colouring them differently). Moreover, user input pertains
to the previously displayed messages: in a line-oriented interface, users may
change a line in a proof, and in a graphical interface, users may click on icons,
or drag and drop them.

In order to subsume different display engines in a uniform framework, we
use the notion of an object as introduced by the generic graphical user interface
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(see Sect. 4 above). An object is anything the system needs to keep track of:
most prominently, ongoing proofs, but also auxiliary objects such as theorems,
tactics, rewrite rules, and so on. In PGWin, an object corresponds to an icon
on the desktop; in Emacs, an object corresponds to a span, which is a particular
line range in a particular text buffer.

All display engines have to implement certain operations, such as display
warnings, errors and status messages; create a new object; update a previously
displayed object; outdate an object; receive user input; etc. Technically, we define
a type class Display, which defines the operations that a display has to imple-
ment, for example creating and updating objects, generating command events
(DispCmd), and receiving display message events (DispMsg):

class Display d where
newObject :: d-> ObjId -> ObjType -> DispAttr -> IO ()
updObject :: d-> ObjId -> ObjText -> IO ()
bind :: d-> IO (Event DispCmd)
send :: d-> DispMsg-> IO ()

Every kind of display engine is modelled by a different type, but all are instances
of the display class:

instance Display PGWin where
-- definition of functions follows ...

instance Display Emacs where
-- definition of functions follows ...

All displays are kept in one heterogeneous list (using existential types [14]):
display events are sent to all elements of this list, and the command events
generated by all displays are the command events of each display combined with
the obvious extension of the binary choice operator (+>) to lists of events.

5.3 PGWin

As explained above, IsaWin is organised around types and objects. User gestures
are translated into commands by a table indexed with the types of the objects.
In IsaWin, this table was implemented as an ML structure. Here, this table,
along with the types of the proof assistant, the icons and many other details of
the visual appearance are determined by display configuration messages, which
form part of PGIP. Thus, when connecting a proof assistant to the mediator,
the proof assistant sends configuration messages which tell the system the types
of objects the proof knows about, and the commands triggered by drag&drop.
There are further display configuration messages to add, change, or delete a
custom menu’s entries, configuration options, or shortcut buttons. This flexibility
can also exploited by the user, so the user can change the appearance of the
desktop on-the-fly by adding or deleting shortcut buttons or menu entries with
user-defined tactics attached to them.

The display handler translates user gestures into prover commands, which
are textually represented, stored and displayed. As opposed to IsaWin, where
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commands were stored in an internal abstract representation, this has distinct
advantages: it accustomises users to the syntax of the command language, since
they will see it appearing in the history, it allows users to textually enter com-
mands as well, giving them full access to proof tactics or customised proof pro-
cedures, and finally, it allows mixed textual and graphical user input.

The PGWin display engine is implemented in HTk, a functional encapsula-
tion of the graphical user interface library and toolkit Tcl/Tk into Haskell [12].
Thus, the PGIP events are translated into Tcl code within Haskell, which is
then sent on to the Tcl/Tk interpreter wish (see Fig. 3). A future, alternative
graphical display engine might communicate externally in PGIP; but there is
still a considerable amount of implementation work to organise the graphical
interface which we believe is better done in Haskell than in an untyped scripting
language like Tcl.

6 Conclusions and Outlook

This paper has described the concepts underlying the synthesis of the Proof
General and IsaWin interfaces into one combined interface. The new interface
has an event-based architecture based on the PG Kit, and consists of several
components communicating in the PGIP proof protocol. In the first instance, we
view this advance largely as a refactoring of existing designs: the user experience
when working with the new system be broadly similar to the present IsaWin.
However, the aspects that will make the system more useful to expert users
will be improved as mentioned above, for example, in the ability to view and
import proof scripts. Moreover, the open architecture opens the way to more
easily implementing new interaction mechanisms, and developing a truly generic
high-level interface.

State of the implementation. Currently, implementation of a first prototype to be
demonstrated at UITP’03 is under way; thus, it is too early to say anything about
the usability and success of the resulting system. However, we believe that the
concepts introduced and explained in this paper are of sufficient general interest.

Related Work. Many other projects such as OMEGA [6], OMRS [10], Pros-
per [9], and HELM [1] also address the problems of interoperability. OMEGA
has developed into the MathWeb project, providing an web-based mathematics
infrastructure, which is perhaps closest in scope to our work. MathWeb uses an
an XML-based interchange format called OMDoc [13] to communicate math-
ematical documents (proofs, theories, and so on). While OMDoc is targeted
towards exchanging documents, and not interactive proof, enabling our system
to exchange OMDoc documents, and thus connect it to MathWeb would be ben-
eficial: it would allow MathWeb to make use of interactive proof assistants, and
would allow PG Kit to tap into the vast supply of MathWeb documents. Prosper
uses another approach to interoperability, aiming at connecting different auto-
mated proof tools together: at the core of the system an LCF prover kernel is
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used to guarantee logical consistency. This is a more logic-centred view, with an
emphasis on the exchange of proofs and theorems, and hence complimentary to
our work.

Outlook. At the moment, proof scripts are still stored in the proof assistant’s
native format. A future item on the agenda is the definition and implementation
of a generic scripting language, which would allow the exchange of replayable
proofs, or even parts of proofs, between different proof assistants. This would
also allow us to consider generic manipulation of proof developments, such as
dependency analysis or lemma-lifting. Adding foreign exchange formats such as
OMDoc would be a worthwhile addition as well, as it extends the scope of our
system. More technically, the use of a versioning repository to store proofs would
be a useful feature for advanced users; hopefully, a free off-the-self solution such
as Subversion [23] could be used here.
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Abstract. We present an authoring tool for publication and dissemi-
nation of formal theories certified by a proof assistant. We have used
TEXmacs , a ”wysiwyg” editor for scientific documents which allows a
connection with symbolic systems. We evaluate this tool on our formal
developments certified using Coq.

1 Introduction

We present a toolkit named TmCoq helpful for users who have validated some
formal developments with a theorem prover assistant, such as Coq [7] and who
want to ready their work for a scientific publication or online browsing. As
such, we assume the user’s main requirements are, firstly, to be able to present
their work in the usual language for a mathematical article and, secondly, to
preserve the property that the underlying development still remains certified
by the prover. For the first goal, we offer a powerful tool which provides LATEX
quality typesetting for presenting the formal development and its documentation
together. To preserve correctness of the development at each step, our approach
to the second goal is to work always on the whole development, but to provide
different views on this development. For documentation purposes, the user would
prefer to be able to see the whole development, while the article is a selected
view on the fully documented development, displaying only fragments of the
whole development code.

A first solution that comes to mind consists in writing a LATEX document.
This is how one typically diffuses his results, inserting in places selected pieces of
the formal development. This method has obvious drawbacks. The cut and paste
process may introduce errors when the formal development had none. Any modi-
fication in the development requires the synchronization in the article, otherwise
making the latter inaccurate or even wrong with respect to the certification step
performed using the theorem prover. The inserted pieces of source code are in-
troduced verbatim, which means that the syntax could be quite far from usual
mathematical language and natural language as well. Notation and informal
explanations are thus very different from the formal text. The theorem prover
syntax may even change, introducing another source of misunderstanding.
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To find a better solution to our problem, let us have a closer look at what
makes up such a formal development in Coq. It consists of one or several files,
called scripts, whose structure follows the usual one from a programming point of
view. Declarations, statements, commands specific to the prover, etc. are part of
the vernacular sentences. They form the active part of the script which means
they are the only parts of the script that the theorem prover needs to know
anything about. Any piece of documentation or explanation placed throughout
the code can only be placed in the comments fields, which are irrelevant (i.e.,
inactive) from the prover’s point of view.

Note that many documentation tools have been developed thus far for pro-
gramming languages. Javadoc and Doxygen (among others) have made inter-
esting contributions for this purpose. However, they are much too code-centric to
be useful in our context. The users want to use LATEX for writing, documenting,
and publishing their work since a formal development consists of definitions,
theorems, and proofs rather than pieces of programs. Nevertheless, a starting
point is simply putting TEX commands within comments as part of the scripts.

On the Theorem Prover Assistant side, a LATEX generation facility is offered
by Pvs [5] for displaying formulas and proofs. It is based on an easy to use sub-
stitution mechanism. MetaPRL [6] provides (low level) formatting instructions
based on the formatting library of its OCaml implementation language, together
with Postscript and HTML output formats, but no LATEX code generation as
far as we know. In Coq context, this functionality is performed by Coqdoc [4],
which offers LATEX and HTML as output formats from scripts. This tool makes
a simple lexical analysis which is sufficient for the generation of hyper-links for
identifiers and index tables for the various sorts of statements. The vernacular
sentences are simply inserted verbatim in the generated document. Such a tool
still fails to present the formal development fragments in a user-friendly syntax,
as independent as possible from changes on the Coq side. Also, documentation
and code still belong to different worlds. It is not possible to make forward ref-
erences, insure uniform notation throughout the generated document. While the
process has been automated, thus less prone to human errors, the result is still
bound to the version of Coq used for the certification.

1.1 Objectives

The dissemination of formal developments (in scientific articles or by code dis-
tribution on the Web) is an important part of the development’s life, so we want
to make a tool to help the user perform this task with the assurance that the
correctness of the presented source code is preserved.

This tool must help the user write code documentation (e.g., writing com-
ments in programs) and it also must help the user to produce scientific articles
by allowing code importation and by making it easy to add natural language
explanations. We want to offer various output formats, for example, allowing
the consulting and browsing of the commented code through a Web interface
(i.e., the tool has to manage navigation links in the code) and offering all stan-
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dard output formats used in scientific document publishing: LATEX, HTML,
Postscript, etc.

The tool must provide high-quality visualization, using notation that is famil-
iar to the reader (e.g., using standard mathematical notation) as well as a user-
friendly interface. It also must allow one to present the formal developments using
a natural syntax and must avoid whenever possible the use of a given theorem
prover’s scripting language. That is, the interface should display ∀a : nat,

√
a2 =

|a| rather than (a:nat)(equal (sqrt (power a (2))) (absolu a)). The user
must be able to define his own notation, and this notation must be kept homoge-
neous throughout the various parts of the document (i.e., keep the same notation
in the explanations as in the imported code fragments).

Finally, to avoid a common source of errors in the translation from the source
code to the presentation (typos are always unpleasant but are particularly annoy-
ing in the context of certified developments), the tool must allow the automatic
importation of the source code (for example the theorems statements, the defini-
tions, etc.) to preserve these statements’ correctness. This automatic translation
should also make it possible to preserve links, connections, correspondences back
and forth between the presentation and the scripts produced, and controlled, by
the prover.

Automatic translation preserves the visualized code’s correctness as long as
the user does not modify it. Here, one can import only fragments of the certified
code in the final document. But, as soon as, one needs to modify the imported
code, to assure the correctness means that our tool has to manage the whole
development (even if only fragments are displayed) either to allow an extraction
of the development for certification outside of the tool or to allow an interactive
certification inside the tool, communicating directly with the prover. Actually,
unlike a fragment of programming code that be considered independently of the
rest of the code, a fragment of formal development can only be certified in the
context of the whole development. Figure 1 shows the documentation process
with the initial importation of the script, followed by the documentation steps,
and finally the extraction into various formats in particular the Coq script
extraction, allowing another cycle of certification.
The target is important. First, for compatibility reasons, we must
provide a stand-alone version of the script, where the documentation fragments
are inserted in the appropriate comment regions. Second, and more importantly,
this target is evidence that one can extract from the enriched document the parts
which concern the user formal development, this new script must be accepted
by the prover afterwards.

1.2 Some examples

Our tool is not tightly coupled to a given theorem prover, in the future it should
even be an independent tool, however, we begin with a case-study of our formal
developments which are mainly done using the Coq theorem prover. Thus, the
presented examples use Coq syntax.
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Fig. 1. Generation of the documentation from a Coq script.

Let us take a simple example. Note that in Coq concrete syntax (X:A)B
stands for the the universal quantification ∀X : A.B, ~A for the logical negation
¬A, while (EXT x:C | P) is meant for the existential connective ∃x : C.P (x).

Therefore, instead of displaying the type of not_all_ex_not as

(U:Type; P:(U->Prop))~((n:U)(P n))->(EXT n:U|~(P n)) (1)

one would rather see

(2)

Eventually, one would even hope to have the possibility of pretty printing this
statement in natural language. For instance, instead of the raw Coq lemma:

which depends heavily on the Notation enhancement mechanism, one prefers to
see

Lemma 1. (Set nrootIR)

∀n ∈ N.0 < n → ∀c ∈ R.0 ≤ c → ∃x ∈ R.0 ≤ x ∧ xn = c

or, even better,
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Lemma 2. For every positive integer n and non-negative real number c, there
exists a non-negative real number x such that xn = c.

This last presentation is easier to read, hence it provides a better presentation
for the formal statement within an article aimed for diffusion.

This raises several questions about pretty printing existing documents. Is the
verbatim output, as shown in (1), sufficient to make it possible to display (2) or
the two lemmas shown above? It should be clear that nothing is possible unless
the text from (1) is re-parsed in order to grab enough information on the actual
structure of this code fragment. The next question is: what is the best internal
representation (abstract syntax) which is capable of providing the information
required to make the various displays possible? And at what cost? Finally, what
is the best way to generate the various styles and the formats?

The user expects other features as well. For instance, he might want to modify
imported fragments to make them more readable or easier to understand. Thus,
variable renaming, hypotheses reorganization, or other changes at the presenta-
tion level should be possible while keeping the formal development correct with
respect to the underlying proof assistant. Such demands are reasonable since one
cannot expect any automatic generation from a formal development to provide
any article-ready text. As soon as interactive editing introduces changes with
respect to the initial development, there is a possibility for introducing errors.
It is these errors we would like to avoid with our tool.

2 Software Decisions

To build our tool, we have decided to use TEXmacs to write scientific articles and
we have developed an extension for handling Coq input and output. The result-
ing system named TmCoq, implements the functionalities described in figure
1, where editor is TEXmacs . Actually, Postscript exportation is straightforward.
For LATEX exportation, we propose a specialized filter as explained in section
4.2. Re-exportation of the Coq script requires a special treatment in order to
generate the right Coq syntax. We restrict ourselves to Coq developments for
experimental purposes, with the long-term objective to build a tool adaptable
to various theorem prover systems.

2.1 The scientific editor GNU TEXmacs

Quoting its documentation page [9], ”GNU TEXmacs is a free scientific text
editor, which was both inspired by TEX and GNU Emacs. The editor allows you
to write structured documents via a wysiwyg (what-you-see-is-what-you-get) and
user friendly interface. New styles may be created by the user. The program
implements high-quality typesetting algorithms and TEX fonts, which help you to
produce professionally looking documents.”

We definitively want to offer the user a way to enrich their formal develop-
ment with convenient documentation or informal explanations. Typically after
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the automated importation step of a Coq script the user will do some interactive
editing to prepare for dissemination of results. LATEX exportation is satisfactory
as a scientific document format. However, we must be able to recover the script
to certify a posteriori the embedded code. Using LATEX as the generic format
for the script leads to a substantial loss of structure information. The resulting
document is (enriched) text, while on the Coq side, a script is a program, where
documentation is in comments. Therefore, the crucial distinction between the
active parts of the script (the vernacular commands mainly) and the inactive
parts (the interleaved comments-as-documentation fragments) is lost in the con-
version processus if we use LATEX as the generic format. Although this could be
handled to some extent with the help of tricky annotations within the LATEX
end-of-line based comments, this is not satisfactory. The TEXmacs editor deals
with structured documents, which is precisely what we want.

As far as presentation style is concern, the user expects to be allowed to
customize the look, on file basis, on whole development basis, or even depending
on whether the resulting document is about to be browsed or printed on paper.
TEXmacs fulfills this criterion without requiring any special or additional code.

Moreover, TEXmacs also supports the Guile/Scheme extension language,
so that it is easy to customize the interface and write extensions to the editor at
the user level. Browsing is possible between distinct files as well as through the
web. Automatic content generation includes indices, tables, figures, and bibli-
ographies. TEXmacs documents are saved as structured text files using a simple
notation system which helps automatic (machine-driven) search. Therefore, as a
whole, TEXmacs presents many attractive features which make it an interesting
candidate in the context of authoring scientific documents.

Communication with computer algebra systems Among our motiva-
tions, interactivity with the theorem prover assistant was also required. As such,
TEXmacs provides a session mode that also offers the same combination of edit-
ing and command execution as Emacs does for many computer algebra systems,
the operating system shell , and a Guile/Scheme top-level . Figure 2 presents a
short session with Maple.

We see that the presentation facilities are automatically available for the
output generated by Maple, while the session is allowed at any place within the
document. Actually TEXmacs permits editing commands to be applied during
the session, multiple interruptions, as well the interleaving of computations and
explanations.

This session mode benefits to some extent from the standardization of math-
ematical notation and the relative simplicity of the concrete syntax found in
Computer Algebra Systems (CAS). Also, it must be emphasized that LATEX out-
put is offered by Maple [1], Mathematica [2], and other CAS, which shows
that the CAS must be adapted in order to gain richer output. Finally, note that
the session mode is closer to the interaction the user gets with a calculator or
the Unix shell than what is expected for developing proofs with the help of a
Theorem Prover Assistant (TPA).
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Fig. 2. A sample session with Maple

2.2 On the Coq side

To go further that Coqdoc, our work proposes a solution to offer richer output
formats to Coq. So we need to do more work than a simple lexical analysis. At
least a syntax analysis is required. We will show that this is actually sufficient.
However before this, we have to choose between writing another parser for our
purposes, or benefiting from the existing one present in the Coq source. There
are two major arguments to take into consideration. First, Coq is a research
tool, still subject to changes, even with respect to its concrete syntax. Second,
the syntax allowed at the formula level requires a very complex parser. Therefore,
the necessary synchronization would already suggest that we develop our tool
as part of the Coq source tree rather than another stand-alone program. But
we can do better than just sharing the parser. Our code can also be used to
interface Coq with PCoq or any external tool that requires exchanging data
with Coq.

Formulas Consider the following example, whichever notation one might choose,
the internal structure for the above term not_all_ex_not is a tree (see figure
3), and the corresponding representation in TEXmacs format is
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Fig. 3. Tree representation for not all ex not

although partially unfolded. The binder list, arrowc, and appc nodes should be
obvious from above tree. The N˜ and {NEXT : — } come from extendible
Notation command introduced in the last version of Coq that permits the
kind of enhancement that (1) uses for the verbatim output. While this is not
at all necessary in our tool (see RSA example below), at this stage of our de-
velopment we decide to represent these nodes as special nodes in the generated
structure.

Inductive definitions Coq provides specific outputs in many contexts, not
only for formulas. Let us have a look at the Inductive vernacular command.
The Coq standard library provides many examples. From Datatypes unit, the
sum of two sets A + B is inductively defined as

Inductive sum [A,B:Set] : Set
:= inl : A -> (sum A B)
| inr : B -> (sum A B).

It is worth noting that the concrete syntax is usually chosen on the basis of

1. its ability to be read easily by the human reader,
2. and its ability to be read automatically, hence understood by the computer.

Come to think of it, both points would hold if we switched humans and computers
as well! The important thing to keep in mind is that for both points it should be
possible to infer from the concrete representation that an inductive definition is
structurally made of a finite sequence of named items (inl, inr in this example)
as constructors with respective type information. Also, the syntax [A,B: Set]
means that sets A and B are parameters in the definition, the result being a set
as the fragment ”: Set” shows. Therefore, an inductive definition comes with its
name, its parameters, the resulting type, and a finite list of constructors.
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So it suffices to grab these fields as part of the structure to be able to display
the inductive definition in various styles. A straightforward representation in
TEXmacs would be:

A simple variation, closer to mathematical notation could be:

The same result can be obtained in LATEX from the corresponding source:

with the help of the appropriate macro definitions.
The more structure Coq is required to produce, the more freedom the user

gets on their side to get the appropriate notation. As an example, one might
want to present such inductive definition with the help of inference rules. From
Coq user manual (section 4.5.1), one finds

(* Lists of elements of set A *)
Inductive list [A : Set] : Set :=

nil : (list A) | cons : A -> (list A) -> (list A).

(* Length for such lists *)
Inductive Length [A:Set] : (list A) -> nat -> Prop :=

Lnil : (Length A (nil A) O)
| Lcons : (a:A)(l:(list A))(n:nat)

(Length A l n)->(Length A (cons A a l) (S n)).

Depending on the context, presentations like

(Lcons)
a : A, l : list(A), n : N ` (LengthAln)

a : A, l : list(A), n : N ` (LengthA(a.l)(n + 1))

or

(Lcons)
lengthA(l) = n

lengthA(a.l) = n + 1

when the context is clear enough, could be desired without any change in the
underlying document. These representations raise no technical difficulty. Rather,
they require more decomposition in the Coq structure representation output.
In LATEX words, the constructor types for the case of inductive definitions could
be prepared along the lines of this example:
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The section 4.5 addresses other places where such output questions have to
be dealt with on the Coq side.

3 Utilization

The TmCoq system consists in several components:

− Coq which gives us parsing of scripts for free. Actually, our version is mod-
ified to allow for generation of TEXmacs format.

− A set of TEXmacs styles and macros for the rendering. The user is free to
customize this package, the same way as LLNCS class does with respect to
the standard LATEX article class.

− A set of Scheme scripts to accomodate the LATEX and Coq scripts expor-
tation filters.

The last two components are available from the TEXmacs user interface.

For documentation purpose, our modified Coq distribution provides a new
wrapper for the coqtop program, named tmdoc. A generic utilization consists in
running the command:

which results in the TEXmacs file MyScript.tm. Other output formats directly
available from tmdoc are LATEX, Scheme. However, as shown in figure (1), these
formats together with HTML and Postscript are also available by editing
MyScript.tm.

Let us illustrate further through two complete examples in the two following
sections.

3.1 The Coq Standard Library

Let us have of look at the very beginning of the theories/Init/Wf.v file from
the Coq standard library:
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Coq comments have the form (*...*). The documentation fragments are
identified by the special comment construction (** ...*) . This construc-
tion follows Coqdoc almost text conventions, which help writing in structured
pieces of text without knowing too much of TEX or HTML syntax and more
importantly in a independent syntax way. Therefore, to keep compatibility with
existing documentation fragments in Coqdoc style, we have added to tmdoc
another output format to make these tags understandable by TEXmacs . This
comment is thus translated into

One can see that we have extend the class of comments-as-documentation by
the syntax (** filter: ... *) where filter ranges over coqdoc, scheme,
texmacs, latex and defaults to coqdoc for compatibility’s sake.

As for translation of the vernacular commands, our tool goes far beyond
Coqdoc capabilities, but at the cost of requiring coqtop to perform both parsing
and TEXmacs-aware structured output, as explained before.
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Note that Require commands and proofs do not appear, although they have
been translated and still remain present in the generated document. We provide
flags that allow one to modify the material presented, which comes in handy for
full script rendering or to show the mathematical contents of this file. Needless to
say, TEXmacs offers many more options, either through the existing environment,
macros writing, or Guile scripting.

Following these brief explanations, the full Coq Standard Library is gen-
erated automatically by our documentation tool as a bunch of TEXmacs files
which can be browsed within the editor. The blue items represent hyperlinks.
Our contribution consists in a complete set of TEXmacs files accessible online
from within the editor and browsable in the same way as the web documentation
on the Coq site.

3.2 RSA Formalization

RSA is an asymmetric public key encryption algorithm which relies on prime
number factorization. Its correctness has been formalized in various proof as-
sistants including Coq by J.C. Almeida, and more recently by L. Thry using
Fermat’s theorem. The complete formalization consists of half a dozen Coq
scripts available at [8].

In Binomials.v, one finds the well known Pascal statement on binomals:
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While the fragment does not contain any hint for presentation, the structure
generated by tmdoc is rich enough to allow for user macro definitions so as to
provide the following output.

Observe, however, that the sum does not use the index k as one would expected.
This is going to be a slight enhancement in the next stage of our development.
In short, this requires that macro definition can inspect the structure of its
arguments and proceed by case analysis.

For a complete presentation of our presentation contribution to this develop-
ment, the required material is available from TmCoq web site [3]. Besides the
same documentation interface as for the standard library, our contribution offers
also a mechanism for automatically generating an article from the set of files.
This is based on a Scheme script which is easily configurable.

4 Enhanced Features

One of our initial goals was to preserve the invariant that the script part of the
document remains certifiable by the prover at any time. For this purpose, we have
developed several functionalities described below, and based on the following
remarks. In the introduction, we stated that a Coq script is a source program,
where the inactive regions tagged as comments are good places for inserting
documentation. The writing of an article from a formal development gives us
another view. Everything is printable text, unless the macros or environments
treat elements differently. In Knuth’s view, everything , each character, could be
active. However, for the casual user, the symbol ’\’ is commonly known as the
first character of a document fragment which is going to be executed by the TEX
engine. So the key idea is that the user is working in a dual world with respect
to program source editing. Our tool transforms any program source file into a
dual document source file, since TEXmacs is basically working in the same way
as TEX.

Another property we get with the TEXmacs view of our document is that it is
strongly structured . The visual structure of a text file as a sequence of paragraphs
is of course represented in the source file where the document is saved. But this
can be mixed with environments and other composition material in such a way
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that a TEXmacs document is a tree with strings of characters as leaves. (At this
point, it must be noted that TEXmacs does not use the XML and MathML
standards for file format on disk, this is ongoing work by its development team.)

This simple observation has significant consequences which are illustrated
throughout the following sections.

4.1 Coq script (re)exportation

Assume we are dealing with a TEXmacs document generated from a Coq devel-
opment. Among all the material present in this document, our tool ensures that
any vernacular command is perfectly identified with the help of a specific macro
(or environment). Thus, it is an easy task (thanks to TEXmacs ’s Guile facility)
to recover in the correct order all the vernacular commands among the rest of
Coq-irrelevant material within the document. Once collected and converted into
the actual Coq concrete syntax, these pieces of text compose the Coq script’s
active part that is thus extracted from the TEXmacs document, as shown in
figure 1.

Everything else is considered documentation. To some extent, this could be
inserted as comments into the script, but comments are thrown away by the Coq
lexical analyzer. In order to collect the documentation provided in the source
script, we had to change the lexer behavior, so that not all the comments are
ignored. However, doing this in every place where comments may occur would
result in a parser with unreasonable complexity. We decided on a model where
documentation and code alternate, but no documentation is looked for within
the vernacular commands. Documentation fragments may appear in many places
within the TEXmacs representation of a given script. We ensure that they do
not get lost through the exportation step by placing them in places where the
(modified) Coq lexer is able to find them. However, we cannot guarantee that
their exact position is preserved.

4.2 LATEX exportation

TEXmacs already supports LATEX exportation. However, the documents we are
dealing are particular ones. First of all, they contain special material that is
going to be interpreted through a default mechanism as LATEX macros in an
inappropriate way. Without going into too much detail, macro expressibility is
not exactly the same for LATEX and TEXmacs , which means that it is often
better to build another macro rather than accepting the default solution. More
importantly, the LATEX file exported from our document is a particular view .
If it is meant for scientific publication, the user could choose to erase basic
vernacular commands and proofs, while retaining only some of the definitions
and other statements. Clearly for these cases, and probably for others, we want
to have more control over the exportation process.

We have split the exportation in two steps, where the first one profits from
the fact that we are able to identify the fragments specific to Coq among the
whole document. This first step is designed as a Guile script filter, which can
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be rewritten by the user at will. Selecting the exported material can be locally
tuned inside the document (source) by assigning values to specific variables lo-
cally, following the same idea as marking a fragment as math, bold, or italic.
Afterwards, everything is put in the hands of the common LATEX exportation
filter. This solution offers both portability and enough expressiveness from the
user point of view.

As far as the Coq source documentation is concerned, LATEX exportation
gives us this for free since the documentation is in the same world .

4.3 Coq-TEXmacs

Let us have a look at the coq-tex tool provided with Coq distribution. This is
a stand-alone program which processes Coq phrases embedded in LATEX files.
This tool greps the LATEX for Coq vernacular commands, identified by particular
LATEX environment tags (coq_examples, coq_examples*, coq_eval). The result
is stored in a temporary script and sent to coqtop for evaluation. Depending
on the surrounding tag, the command itself or the result are then re-inserted in
place in the LATEX file. As it stands, the environment tags offered with coq-tex
gives the user the different possibilities based on two criteria: i) is the vernac
command to be displayed and ii) is the result of its evaluation to be displayed?
Whenever the answer to a question is positive, the appropriate text is printed
verbatim at the appropriate place.

Assuming instead we start with a TEXmacs file, we can simulate the same
behavior. However, we can do much more! The displayed material is no longer
restricted to the raw verbatim format, nor the simple combination of two criteria.
Moreover, since the source document is structured, there is no need for prepar-
ing an intermediate Coq script; whenever required, the corresponding answers
can be directly inserted following the sent command. Thus, our coq-texmacs
implements this functionality, based on the above exportation tools.

4.4 Certification in edition mode

In fact, we are very close to provide another functionality that we explain by
making the comparison with a spelling checker. Inside TEXmacs the spelling
checker is run the same way as inside Emacs. That is the editor selects each
word one after the other and sends it to the spelling checker. The spelling checker
is run in background. As far as spelling is concerned, the (atomic) item that has
to be isolated in the buffer is a word, meaning a sequence of characters delimited
by spaces or punctuation marks, depending on the underlying language. Assume
now the spelling checker is Coq, words are to be replaced by vernacular com-
mands. But we know how to isolate this kind of word, therefore making TEXmacs
smart enough to send each vernacular command in the correct order to some
Coq processus run in background. This mode offers a way to certify the (under-
lying) formal development inside the editor. Obviously, the expected behavior
cannot be the same as for a spelling checker. Wherever an error is encountered,
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this might inhibit the certification mechanism to continue. Actually, some depen-
dency information between statements and their proofs will prove sufficient to
allow to have a partial run of the certification process, leaving rejected (subtrees)
pieces of our development marked as requiring further correction.

4.5 Interactivity

Since the user is working inside an interactive editor, it is highly desirable to offer
on the fly certification, which requires that the editor keeps communicating with
a Coq process. Towards this goal we have experimented with TEXmacs inter-
active mode with Coq. In section 2.1, we have shown that the editor TEXmacs
offers a session mode with external programs. To make such communication pos-
sible with Coq, very little is needed as the following session with Coq shows.

A sample session with Coq Presented in figure 4.

Comments on this run From this simple example, we can make some useful
observations. Up to now, our explanations were mainly concerned with formu-
las. Actually, exporting a full script does not raise any more difficult issues. But
when interacting with Coq, it appears that the prover really decides the pre-
sentation in various contexts! The information displayed during a proof session,
error messages, or answers to vernacular commands are controlled by the prover.

The most interesting issue concerns proof editing. Along the lines of the
above session, one would expect the editor to allow the user to edit the proof
tree, rather than accumulating steps in the buffer. This is possible in TEXmacs
thanks to the Scheme extension language and provided through specific tree
commands, together with the possibility for the document to be modified by the
running program (as well as the user or the editor interface).

5 Conclusion and Perspectives

Our initial motivation was to offer the users more powerful solutions for doc-
umenting their Coq formal developments. Existing tools already offer useful
means but lack the capability to render such mathematical or logical develop-
ment in the usual language for scientific documents and none of them permit
significant modifications or even final adjustments while preserving the funda-
mental property that the underlying formal document has been certified by the
prover. In the first case, we conclude that this is only possible at the cost of work-
ing behind a dedicated parser. Due to complexity of the language dealt with by
Coq and also motivated by the purpose to share our work and offer Coq various
output formats, we decided to implement our documentation generator tmdoc
as part of the Coq source distribution. At this stage, the rendering of mathe-
matical formulas and the possibility to prepare a scientific article presenting the
formal development was within the capabilities of the scientific editor TEXmacs .
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The fact that this editor supports the Guile/Scheme extension language
has also made it possible to handle the second case beyond our initial expecta-
tions. We provide Coq and LATEX exportation functions both through the editor
interface and as stand-alone scripts, which offer at the same a certification mech-
anism (on the Coq script) and the article production in the format commonly
accepted by the scientific community.

Beyond these tools, our experimentation has shown very attractive perspec-
tives. We want to achieve the functionality allowing the user to interact with
the prover in a mode as transparent as possible. That means that the user will
be allowed to write definitions, lemmas, and the other mathematical material in
the syntax offered by the editor, leaving to the system all the conversions to be
done in order to match the actual concrete syntax understood by the prover. Our
view is that TEXmacs offers a nice interface for abstraction with respect to the
prover. The interface can be adapted so that the user’s syntax and commands
do not depend on the prover. As such, this interface should offer a convenient
support to teach beginners (students for instance) how to develop formal proofs.
Even the certification mechanism could allow for machine-assisted verification
of students’ examinations. We consider our current experiments as an important
step in this direction.
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Abstract. We describe a tool that combines a theorem prover and an
interface for dynamic geometry drawing to enhance man-machine inter-
action involving geometrical proofs. A general purpose theorem prover is
used to formalize the statements and proofs and these are then visualized
using an off-the-shelf drawing tool. The key component is an algorithm
that computes the data needed to draw a construction from an algorithm
that computes the data needed to draw a construction from the formal
statement of the theorem. The paper includes some examples of output
from our combined tool, called GeoView.

1 Introduction

General purpose theorem provers based on higher-order logic usually provide
the possibility to develop proof interactively. Because of the interactive aspects,
users need to develop competences in logic and reasoning. It is natural to think
that this requirement makes this kind of theorem provers a good tool to help
students learn mathematics.

We have studied this use of interactive theorem provers in the domain of ge-
ometry, concentrating on the courses available in the French high-school system.
These courses encompass bi-dimensional euclidean geometry, with triangles, cir-
cles, basic transformations such as translations, rotations, homotheties and tri-
dimensional geometry with parallelism, incidence and orthogonality problems
between lines and planes. We have chosen to avoid analytic geometry, where
reasoning becomes less important than computing.

All this work was performed using a graphical user-interface that made it
possible to reconcile the requirements for a formal language (coming from a
theorem prover) and the usual mathematical notations (more adapted for com-
munication between humans, like teachers and students). In this context, it soon
became clear that ”a good drawing is better than a long explanation”. We de-
signed an extension of the graphical interface where drawings are automatically
associated to mathematical formulas to show the meaning of these statements.
Our main design decision was to reuse existing drawing tools. We have concen-
trated on tools already available to French math teachers, especially GeoplanJ
[6], mainly because it is available with a GNU GPL license.
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This paper is organized as follows: the first section is this introduction, in
a second section, we describe the proof development tool that we use and the
theory of geometrical facts that we have developed in this environment; in a
third section, we summarize the functionalities of the independent drawing tool
we integrated in the proof environment. The fourth section describes the crux
of our contribution: an ordering algorithm to transform logical statements into
figure construction sequences. The fifth section illustrates our results with a
collection of significative examples. The sixth section studies related work and
brings a few concluding remarks.

2 Pcoq and the geometry library

2.1 The Pcoq proof environment

Pcoq [1] is a user-interface for the general purpose theorem prover Coq [11] that
manipulates all formulas and commands as structured data. This characteris-
tic makes it easy to provide facilities that are hard to obtain in environments
where the structure is not given. For instance, Pcoq makes it easy to attach spe-
cial mathematical notations to some functions, thus making special notations
for vectors, parallel and perpendicular predicates, angles possible. Examples of
these notations will appear naturally in the figures below. An easy access to
the structure of commands also makes it easy to attach sentences in natural
language to geometrical statements.

Fig. 1. Example of notations and sentences in natural language in Pcoq

As published in previous works [1, 9] natural language can also be used to give
a readable form to the proofs built and verified by Coq. Combined with proof-by-
pointing, all this gives a proof environment with good support for math teachers
and pupils.

Easy access to structured data also plays a significant role in our experiment.
The structured data corresponding to theorem or conjecture statements can
easily be analyzed to generate figure texts that are transferred to GeoplanJ
(described in section 3) for drawing and displaying. There remains some work
to do to connect the statements to proper figure constructions, this work is
described in section 4.
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2.2 Our Geometry library for Coq

We have used Pcoq to develop a library of geometry theorems that encompasses
the course as it is taught in French high-schools. This library is based on a large
collection of axioms that is not chosen to be minimal but rather to correspond
to the level of details that students are expected to understand and master.

Students are not supposed to know about algebraic notions as vector spaces,
affine spaces, or metrics, but in spite of this, they are supposed to get acquainted
with vector manipulations such adding, scalar multiplication, scalar product and
so on. The general notion of barycentric computation cannot be used systemat-
ically, but the notion of barycenter is available.

Our axiomatization for affine space is very related to Marcel Berger’s de-
scription of barycenters and the universal space in his book [3]. In our library,
most operations are not given by a definition, but by the assumption that some
function exists and satisfies one or two axioms.

We only enumerate here the different basic notions of plane geometry we can
represent with a two-dimensional drawing:

− vectors, alignment, barycenter, midpoint, centroid, parallelism,
− orthogonality, orthocenter, orthogonal projection,
− euclidean distance, isosceles triangle, perpendicular bisector, circle,
− homothety, translation, reflection, rotation, direct similarity and composition

of transformations.

We proved some classical theorems in plane geometry, in the same way as they are
proved in the high-school courses. Among them, we can cite: Thales, Desargues,
Pythagoras, Simson’s line, Miquel, Euler’s line, nine-point circle.

In this library, there are also chapters about trigonometry, complex numbers
and three-dimensional geometry that we have not yet connected to a drawing
tool.

3 GeoplanJ

3.1 The objects manipulated in GeoplanJ

The user creates mathematical objects in the plane equiped with a predefined
but invisible coordinate system. Objects can belong to several classes. Some
are drawable: points, straight or curved lines, and others are undrawable: real
numbers, vectors, homotheties, translations, etc. Some objects are free, like arbi-
trary points and others are bound , like lines defined to pass through other points,
points belonging to a line, midpoints, etc. Some objects are fixed in the sense
that their description in the invisible coordinate system is completely given and
some objects are variable in the sense that their position can still change.

All objects have a value describing their position in the actual drawing.
The variable objects may move as a result from interaction by the user: their
value may change. Thus, we can obtain several drawings for the same figure,
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Fig. 2. Several drawings for the same figure

corresponding to different values for the variable objects. In figure 2, we show
several ”drawings” corresponding to the same figure.

The distinction between variable and free objects is meaningful: some objects
may be variable and bound at the same time. For instance, a point may be bound
to lie on a straight line but still be allowed to vary its position on the line.

A GeoplanJ figure is a collection of descriptions of points, including the
constraints that bind them together. Every figure can be saved as a text where
all objects are enumerated. It can also contain extra information, like color, line
style, names. It is possible to ask GeoplanJ to draw a figure simply by giving it
the text describing it.

3.2 Integrating the GeoplanJ software

GeoplanJ is a Java port of the software GeoplanW [7] and does not cover all the
capabilities of the original software. It is initially intended for use as an applet,
but since it is provided as free software under a very liberal license [5], we have
been able to use it and modify it for our purposes. The main part of our proof
development tool is also programmed in the Java language, so that including
GeoplanJ in our software was an easy matter.

The GeoplanJ uses exactly the same textual format as GeoplanW to describe
the figures, so that the figures generated in our experiment can be re-used and
modified using the two pieces of software.

4 GeoView

Some predicates occuring in geometrical statements, like collinear , cocyclic and
isosceles are multi-directional: when these predicates take n+1 arguments, given
n of these it is possible to determine a constraint on the last one. However, some
work needs to be done to decide in which order these predicates are used to
build the figure associated to a statement. This work is done by the algorithm
we present in this section.
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4.1 Data analysis

The data corresponding to a theorem statement given as input is transformed in
a tree of type: H1 → . . . → Hn → C where Hi can be interpreted as premises
of the theorem and C as its conclusion.

Then we distinguish between binding and non-binding geometrical constraints
(i.e. the constraint (collinearABC) is a binding one but (not(collinearABC)) is
non-binding). The constraints which appear in the conclusion are redundant for
construction: they are non-binding.

We list all the binding constraints and the points which appear in them. From
this list, an algorithm detailed in 4.2 determines a figure text with GeoplanJ
syntax.

4.2 Construction of set of points from a set of geometrical
constraints

Given a finite set of points in the real plane, and a finite set of geometrical
constraints on these points, we describe a simple algorithm that may produce a
construction of these points, suitable to draw a picture of these points satifying
the geometrical contraints.

Geometrical constraints

A geometrical constraint is for instance a constraint that can be formulated as a
set of polynomial equalities on the coordinates of points: saying that points A,B,
C are collinear is a valid constraint, because it is equivalent to one polynomial
equality: (xC −xA)(yB − yA) = (yC − yA)(xB −xA). A geometrical constraint is
written as (CP1 . . . Pn), where C is the constraint and P1 . . . Pn are the points.

We will mainly restrict ourselves to constraints such that, for some choice
of n − 1 points among P1 . . . Pn, we can build the remaining point by sim-
ple geometric constructions from the others. For instance, for the constraint
(collinearABC), we can choose two points freely, the third being constrained to
lie on the straight line defined by the two others.

To a constraint C we associate its type T (C) which describes the degree
of freedom of the points. If the remaining point Pi (called the linked point)
is completely determined, the constraint will be said of type 2 (i.e. the two
coordinates of the point are determined). If Pi can vary on a fixed point curve
(circle or straight line in general), the constraint is of type 1.

Examples:

− (collinearABC): means that A,B andC are collinear .T (collinear) = 1
− (midpoint ABI): means that I is the midpoint of [AB] . T (midpoint) = 2 .
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Constructions of points

To build the linked point of a constraint we need to consider its position in the
constraint, and we may have to build intermediate objects.

For instance, in the constraint (isosceles ABC) which means AB = AC, to
build the point A, we build the perpendicular bisector of [BC], but to build the
point B we build the circle of center A with radius [AC].

If a point appears in two constraints of type 1, we build the intersection of
two geometrical objects (straight lines, circles, straight line and circle).

From constraints to construction

We can now describe how to build a set of points P1, . . . , Pm satifying a set of
constraints

(C1Q11 . . . Q1r1), . . . , (CnQn1 . . . Qnrn) where ∀ij,Qij ∈ {P1, . . . , Pm}.
Let M be a matrix with n lines and m columns. An entry Mij of the matrix

M will say how the point Pj is used by the constraint Ci :

− Mij = −1: Pj does not appear in the constraint Ci,
− Mij = 0: Pj is not a linked point in the constraint Ci,
− Mij = 1: Pj is a linked point in the constraint Ci of type 1,
− Mij = 2: Pj is a linked point in the constraint Ci of type 2.

Our goal is to find a matrix verifying the conditions:

1. ∀ij,Mij ∈ {−1, 0, 1, 2},
2. ∀ij,Mij = −1 ⇔ Pj does not appear in the constraint Ci,
3. ∀ij,Mij > 0 ⇒ Pj appears in the constraint Ci of type Mij ,
4. each line of M has exactly one strictly positive entry,
5. ∀j,

∑
i sup(0,Mij) 6 2,

6. the relation ≺ on points P1, ..., Pm defined by

a ≺ b ⇔ ∃i, Mia = 0 andMib > 0

is such that its transitive closure ≺≺ is antisymetric.

The condition 4 means that each constraint will build a new point (possibly not
completely determined if the constraint is of type 1).

The condition 5 means that a point is built by one or two constraints, and if
it is built by two it is the intersection of two objects.

The condition 6 means that the construction does not loop: we do not use a
built point to build an older one.

The algorithm to find such a matrix is now simple to describe:

i. we first build a matrix M verifying conditions 1, 2, 3 and 4, where for each
line the positive entry is left-most, which is easy.

ii. we enumerate all matrix verifying conditions 1, 2, 3 and 4, simply by lexi-
cographically shifting the positive entry of each line to the right. We stop
as soon as the matrix verifies conditions 5 and 6, which are easy to check.
Otherwise, we fail.
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If this algorithm does not fail, we can use the produced matrix M directly to
obtain the effective construction of the points: the minimal points for the relation
≺≺ (which is a partial order) are taken are free points in the plane. From this
set of points, called S0, with the constraints, we can build a new set of points
S1 (which is the minimal points for ≺≺ in ({P1, . . . , Pn} − S0). And so on.

Example

Let us take the following points and constraints:
C1: (collinear A B H)
C2 :(ortho H C A B), i.e. the straight lines (HC) and (AB) are perpendic-

ular.
C3: (circle A B C), i.e. C is on the circle with diameter [AB].
We have following types :
T (collinear) = 1
T (ortho) = 1
T (circle) = 1
Let P1, . . . , Pn = A,B,C, H.
The initial matrix, verifying conditions 1, 2, 3 and 4, is:

M A B C H
collinear 1 0 −1 0
ortho 1 0 0 0
circle 1 0 0 −1

It does not verify condition 5: the column A is linked by three constraints.
In lexicographic order, the next matrix verifying conditions 1, 2, 3 and 4 is:

M A B C H
collinear 1 0 −1 0
ortho 1 0 0 0
circle 0 1 0 −1

It verifies condition 5, but not condition 6: we have B ≺ A ≺ B
Continuing, we get the first next matrix that verifies conditions 5 and 6:

M A B C H
collinear 1 0 −1 0
ortho 0 0 1 0
circle 0 0 1 −1

We have then B ≺ A,H ≺ A,A ≺ C.
The construction is then:

1. Take B and H two free points in the plane.
2. Take A as a free point on the line (BH).
3. Take C as the intersection between the line orthogonal to (AB) and containing

H and the circle with diameter [AB].
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Generic configurations, limitations and improvements

The whole previous discussion on free points (in the plane, on a straight line or
a circle) only holds generically, i.e. outside a set of particular cases (for instance,
when two points are equal, radius of circles are two small, etc). But this set is of
finite mesure in Rn, so when choosing free points at random, we have probability
one to be out of these degenerated situations.

This method is not complete. From a set of solvable geometrical constraints,
it can fail to give a construction. The reason is that we work on non-linear
constraints on points: this kind of constraints define a good degree of freedom
not on points but on coordinates, or on more complexe structures (determinants
of projective points for instance).

Being not complete, the method however has the advantage to be simple and
fast, and it still fails very rarely.

To describe the degree of freedom of points, the type of a constraint is not
always sufficient. In further work, we will replace the type T of a constraint C by a
list of types LT which describe the degree of freedom of points depending of their
position in the constraint. For instance, for the constraint (reflectionABMN)
which means that N is the image point of M by reflection in line (AB), the point
N is completely determined by the position of the three other points A,B andM ,
we will say that the constraint is of type 2 in position 4. But to build B, we
cannot choose freely the three points M,N andA, we will say that the constraint
is of type 0 in position 2. Hense we have LT (reflection) = (0, 0, 2, 2).

5 A few illustrating examples

After analyzing the constraint matrix, a figure text is transferred to GeoplanJ
so that the free points appear in green and the conclusion in red in the gener-
ated figure. The user can actually move the free points and the figure evolves
accordingly.

5.1 Nine-point circle theorem

We proved in Coq the nine-point circle theorem, also called Euler’s circle the-
orem and Feuerbach’s circle theorem, using vector calculus, oriented angles of
vectors and homothety properties as in mathematics high-school. Given a trian-
gle, this circle passes through the three midpoints of the sides, the feet of the
perpendicular to each side passing through the opposite point and also through
the midpoints of the segments which join the vertices and the orthocenter. We
also proved that the center of this circle is the midpoint of the segment joining
the circumcenter O and the orthocenter H of the triangle and that the centroid
G of the triangle lies on line (OH) which is called Euler’s line.

In the following illustration, we show this theorem statement as it appears
in Pcoq and below the corresponding figure generated by Geoview where A,B
and C are the only free points.
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Fig. 3. Nine point circle theorem: statement in Pcoq and figure generated by GeoView
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5.2 Simson’s line theorem

We proved in Coq Simson’s line theorem, using oriented angles of vectors. This
theorem states that: given a triangle and M a point in the plane, the three feet
of the perpendiculars from M to the sides of the triangle are collinear if and
only if M is on the circumcircle of the triangle.

In this example, the conclusion of the theorem is an equivalence of two propo-
sitions. With Geoview, we consider the first one as a premise and the second one
as the conclusion. In the following illustration, we show this theorem statement
as it appears in Pcoq and the corresponding figure generated by Geoview.

Fig. 4. Simson’s theorem: statement in Pcoq and figure generated by GeoView

5.3 Disjunctions

Disjunctions that occur among the premises of a theorem imply that actually
several figures must be considered, one for each disjunct.
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Disjunctions that occur inside the conclusion of a theorem correspond to the
fact that several configurations may occur for the same figure. This is already
illustrated in figure 2 where the lines (AC), (BD), and (IJ) either intersect or
are parallel.

5.4 Representing real numbers

Real numbers that occur in vector expressions or geometric transformations
such as homotheties or rotations are displayed as points on a fixed straight line,
displayed on top of the drawing, as it appears in figure 6. Moving the point
with the mouse makes it possible to change the value of the real number, other
geometrical objects that depend on this real move accordingly.

5.5 Existential quantification

As we already said, the constraints that appear in the conclusion of a statement
are usually non-binding. If the conclusion is an existential quantification, then
this introduces binding constraints, even though they occur in the conclusion.

A good example is given by the composition of a translation by vector
−−→
AA′

and a non-trivial homothety of center I and ratio k. The theorem states that
there exists a point J that is bound with the points I, A and A′ and the ratio
k of the homothety.

The theorem statement appears in Pcoq as follows:

Fig. 5. Two different ways of displaying the same theorem statement in Pcoq
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Fig. 6. The corresponding figure generated by GeoView.

The corresponding figure can be drawn as follows:
In this figure, J moves whenever I, k and A and A′ do, but does not move

when B does. The point J is independent from B as is expressed by the nesting
of universal or existential quantifiers in the theorem statement.

6 Concluding remarks

6.1 Related work

Our work is at the boundary between two fields: the first is concerned with
interactive drawings, while the second is concerned with reasoning tools. Some
experiments to connect these two fields deserve our attention.

Drawing tools for geometric constructions abound, many Java applets, that
can be used in a web-browser can easily be found by searching on the world-wide
web. For example, we can cite the work of D.E. Joyce that we could find and
test easily [8].

In our work, we have concentrated on tools already available to French math
teachers such as Cabri-Géomètre [12] (which we have not used) and GeoPlanW
and GeoSpaceW [7], and especially a Java Port of GeoPlanW, known as Geo-
PlanJ [6]. The data created with our tool can then be re-used and modified by
the teachers for presentations in other contexts.

Reasoning tools for geometry can also be organized in two categories. A
first category uses analytic methods to reduce geometric problems to algebraic
problems and powerful algebraic tools (such as gröbner bases) to solve the latter.
A second category relies on a prover, often a first order prover to deduce facts
from a collection of axioms describing geometry. In the first category, we can
cite the work of Shang-Ching Chou [4] and in the second category the work of
Dominique Py [10] or the Leibniz laboratory managed by Nicolas Balacheff [2].
Our work is closer to the second category, especially since the point of view that
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tools are a teaching aid prevails in all these experiments. In particular, Baghera
[13] also provides ways to display the drawings associated to exercises but it
takes care of organizing the classroom or the schoolbag from the perspective of
the teacher or the pupil.

6.2 Conclusion

It should be clear to the reader that the experiment we have described in this
paper is easily adapted to other proof or drawing tools. The geometry library
itself should easily be described with any other proof tool, even the axiomatiza-
tion itself can be changed. The experiment only requires to map basic notions
from the geometry library to the basic notions of the drawing tool: points, align-
ments, cocyclic constraints, etc. For instance, Cabri-Geometre is one of the most
popular tools in use in the French school system and it seems easy to adapt our
work to this drawing tool.

The model of interaction that is proposed in this experiment uses the draw-
ing tool only as an output device: formulas are taken from the written form and
transformed into figure descriptions. It would be interesting to consider a reverse
interaction scheme, where a figure would be described using the mouse by in-
teracting with the drawing tool and then translated into a statement or a proof
step. However, it seems the expressive power of the drawing tool is limited, since
undrawable objects are difficult to describe naturally. Also, the drawing makes
it difficult to distinguish between premises and conclusions of logical statements.

Another perspective is to adapt this work to three-dimensional geometry. For
now, there are few drawing tools available to consider the third dimension and
to ease our experiments it matters that the tool should be given in a publicly
available, open source manner. Anyway, representing three dimensional objects
on the two-dimensional screen poses difficulties. Planes in the three-dimensional
space are difficult to render in an efficient way. The usual trick is to represent
a plane by a parallelogram included in that plane, but then two intersecting
planes are not guaranteed to exhibit an intersection in any drawing. Conversely,
two straight lines that do not intersect may appear to be intersecting when the
image is rendered on a flat screen.
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Rendering Tree Proofs in Box-and-Line Form
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Abstract. Some recent improvements in the design of Jape, a proof cal-
culator, are described. Jape’s internal data structure is a sequent tree,
but it now supports an accurate box-and-line treatment of natural de-
duction. Changes to its internal workings, to its tactic language and to
user interaction are described.

1 Background

In 1998 the proof calculator Jape[3, 8, 9, 1] was assessed by an educa-
tional researcher, as part of a project on visualisation[2]. It had been in
existence for about eight years, and under constant development. Nev-
ertheless, the effect of evaluation was salutary – as evaluations so often
are – and led to several significant changes in the external and internal
machinery of Jape.
First, it became clear that novices, unlike experts, don’t benefit from
the freedom to defer choices. The sort of ‘exploration’ offered to those
learning formal proof is quite difficult enough when restricted to choices
about which rule to apply and when. Jape’s use of unknowns to defer
the specialisation of a logical step (usually an unknown argument in a
substitution) is a piece of meta-machinery which derails a novice’s fragile
understanding. Couple this with an awkward use of text substitution as a
device to smuggle additional arguments past Jape’s point-and-click prim-
itivism, and few undergraduates could get beyond simple propositional
examples. In one heartrending videotaped session a student wailed that
she didn’t know why ‘it always does this’ when she used a ∀ elimination
rule (figure 1).1

So much meta-logical internal machinery is showing that it is no wonder
she despaired. An entire section of the manual distributed to first years
was described procedures for eliminating unknowns once they had ap-
peared, and a subsection was dedicated to strategies for avoiding them
in the first place. In this case the manual suggested that you should use
multiple text selections and unification to replace c1 by c, or text-select
c to provide it as a second argument in the rule step. In my course on
GUI design I taught students that help text is an admission of defeat.
Manuals are an even worse dereliction of duty, and I finally learnt to
take my own medicine. To solve the problem I had to implement multi-
ple antecedent selection in the GUI module, interpret it in Jape’s tactic

1 Figures 1 and 2 have been generated from a modern version of Jape. They suggest
what was seen in 1998, but the reality was far worse.
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8: ∀x.(P(x)→R(x)) ∀-I 2-7

7: P(c)→R(c) →-I 3-6

6: 

. . .

R(c)

5: P(_c1)→Q(_c1) ∀-E 1.1,4

4: 

. . .

_c1 inscope

3: P(c) assumption

2: var c assumption

1: ∀x.(P(x)→Q(x)), ∀x.(Q(x)→R(x)) premises

Fig. 1. An incomplete ∀ elimination step

language, and modify the logic so that certain steps became unnecessary
(which last I wanted to do anyway, for other reasons). The benefit was
that proof search strategies became more explicable in terms of the logic,
and explanations had less to do with the difficulties of instructing Jape
to do the right thing.

Second, those videotaped students showed that my advice to novices to
read all Jape’s error messages as “bang!!” wasn’t working. They tried to
understand what Jape said to them, and were understandably demor-
alised when they couldn’t. Some error messages are generated by simple
slops: many of us, for example, sometimes ask for an elimination step
when we wanted an introduction step; the mistake is encouraged by the
partical identification of introduction steps as ‘backward’ and elimination
steps as ‘forward’. In one session a pair of novices were confronted with
an error dialogue box which looked something like figure 2. The dialog
box used language which they had barely encountered to describe inter-
nal Jape objects that they couldn’t see on the screen. It was designed to
suit the needs of an expert logic encoder working in the sequent calculus,
or able to envisage the internal workings of Jape behind a box-and-line
proof display. To solve this problem I had to write lots of special tactics
that tease apart possible causes of error and construct individual error
messages appropriate to each different situation. In particular it was nec-
essary to reorganise the menus, so that error messages which talked about
backward and forward steps related to visible elements of the interface.
And it meant more changes to the logic, particularly to the treatment of
negation and contradiction, to remove some unnecessary causes of error.

These two changes – eliminating incomplete steps, improving error re-
porting – addressed the needs of novices learning a particular logic.
They took a considerable amount of particularly focussed effort. Un-
fortunately, other logic encodings couldn’t immediately benefit without
similar expenditure of effort (Jape’s tactic language doesn’t allows much
code reuse!).

The third significant problem affected every user, because it was about
the correct display of box-and-line proofs. Simply, Jape didn’t display
true box-and-line proofs, because you couldn’t always call on earlier in-
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Fig. 2. An inappropriate error message

scope lines in later deductions. There were certain rules of thumb which
an encoding expert could use to reduce the problem, like making elimina-
tion steps before introduction steps, but they didn’t always work and in
any case imposed a significant and unnecessary planning load. My Jape
publicity claimed that you could choose what to do and where to do it,
but it didn’t say that innocent choices could have unjustifiable conse-
quences. The problem needed fixing: it was already a problem for me as
an expert user, and it would bite the novices once the other obstacles
had been cleaned away. The complexities of the fix are described below.

The final problem was gestural. Jape made no visible distinction between
‘hypothesis’ and ‘conclusion’ formula selections, although to command
Jape it’s necessary to observe and exploit the distinction. Jape now dis-
plays these diffferent selections differently, and this facilitates true for-
ward steps (see below) which allow a line of the proof to be used either
as hypothesis or as conclusion.

2 Rendering Tree Proofs in Box-and-Line Style

Jape’s basic box-and-line proof rendering mechanisms are dealt with else-
where [6, 8], and I give merely a summary. Sequent tree proofs make large
displays, partly because the same left formulae are repeated over and
over again in the tree and partly because of branching of the tree. For
example, figure 3 is a tree proof in a natural-deduction style sequent cal-
culus (introduction and elimination rules plus an identity rule Γ, A ` A,
here called hyp). The same proof can be shown far more compactly as
figure 5. Jape’s rendering algorithm converts the tree into the compact
box-and-line display in four stages.

2.1 Stage 1: Linearise

Jape renders each tree node as a sequence of boxes and lines. The linear
rendering of figure 3 is shown in figure 4. If a node has more left formulae
in its consequent than its parent has (the root and the node above it in
figure 3, for example) then it is rendered as a box starting with the extra
left formulae labelled as assumptions or premises. Otherwise it generates
a sequence of the renderings of its subtrees, followed by a line containing
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P→Q, Q→R " P→R
→-I

P→Q, Q→R, P " R
→-E

P→Q, Q→R, P " Q
→-E

P→Q, Q→R, P " P
hyp

P→Q, Q→R, P " P→Q
hyp

P→Q, Q→R, P " Q→R
hyp

Fig. 3. A wide tree proof

8: P→R →-I 2-7

7: R →-E 5,6

6: Q→R hyp 1.2

5: Q →-E 3,4

4: P→Q hyp 1.1

3: P hyp 2

2: P assumption

1: P→Q, Q→R premises

Fig. 4. A linearised proof

5: P→R →-I 2-4

4: R →-E 3,1.2

3: Q →-E 2,1.1

2: P assumption

1: P→Q, Q→R premises

Fig. 5. A compact box proof

4: P→R →-I 2-3

3: 

. . .

R

2: P assumption

1: P→Q, Q→R premises

Fig. 6. First step of the proof



50 Richard Bornat

the consequent formula labelled with the name of the rule that generated
the node. Tips generate a single unlabelled line.
Thus the root of figure 3 generates a box starting on line 1 of figure
fig:boxproofwithhyp, followed by the rendering of its subtree (lines 2-7),
followed on line 8 by the root formula labelled with →-I. The root’s sub-
tree is also rendered as a box: line 2 followed by its left subtree (lines 3-5),
its right subtree (line 6) and line 7 labelled with →-E. Each consequent
line refers to the subtrees either as i-j, the first and last line numbers of a
subtree box, or j, the last line number of a sequence of lines. Rules which
match a left formula (in this logic the only such rule is hyp) refer to an
occurrence in the premises or assumptions. All these effects can be seen
in the example, and it’s easy to reconstruct the tree from its linearised
form.

2.2 Stage 2: Hide Identity Lines

Lines 3, 4 and 6 of figure 3 are no more than indirections. Jape nor-
mally elides these lines, replacing references to them by references to the
premise or assumption to which they refer. This converts figure 4 into
figure 5. Most identity steps are carried out behind the scenes anyway,
and they aren’t really part of the natural deduction narrative, so the eli-
sion makes a lot of sense from the prover’s point of view. After this stage
it’s only a little more difficult to reconstruct the tree from the linearised
elided form.

2.3 Stage 3: Hide Cut Steps to Allow Forward Reasoning

Figure 6 shows how a user might make the first step in a proof. The
tree produced is just the last three lines of figure 3. If the next step is
backward, producing the lower five lines of figure 3, then the display is
as shown in figure 7. But most novices would prefer to make a forward
step, producing figure 8. The forward step is indicated by selecting a
hypothesis formula – in this case P → Q – and invoking an appropriate
rule.

5: P→R →-I 2-4

4: R →-E 3,1.2

3: 

. . .

Q

2: P assumption

1: P→Q, Q→R premises

Fig. 7. A backward step from figure 6

5: P→R →-I 2-4

4: 

. . .

R

3: Q →-E 2,1.1

2: P assumption

1: P→Q, Q→R premises

Fig. 8. A forward step from figure 6

Forward steps generate a new formula which can be called upon by de-
ductions below it – that is, a new hypothesis formula. That’s only pos-
sible if the new formula is a left formula. In a natural deduction style
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logic, the only way to introduce a new left formula is to use the cut
rule (Γ ` A; Γ, A ` B) ⇒ Γ ` B. Behind the scenes, figure 8 uses the
tree of figure 9; the stage 2 rendering of that tree is shown in figure 10.
To produce figure 8, Jape conflates the first antecedent of the cut with
the assumption line, the conclusion of the second antecedent with the
conclusion of the cut, elides the box, and adjusts the labelling of lines.

P→Q, Q→R " P→R
→-I

P→Q, Q→R, P " R
cut

P→Q, Q→R, P " Q
→-E

P→Q, Q→R, P " P
hyp

P→Q, Q→R, P " P→Q
hyp

P→Q, Q→R, P, Q " R

Fig. 9. A tree with a forward step

7: P→R →-I 2-6

6: R cut 3,4-5

5: 

. . .

R

4: Q assumption

3: Q →-E 2,1.1

2: P assumption

1: P→Q, Q→R premises

Fig. 10. A linearised cut step

2.4 Stage 4: Deal with Transitive Operations

In dealing with chains of reasoning such as A = B, B = C, ... Y = Z,
it’s possible to treat reflexivity A = A and symmetry A = B ⇒ B = Al
like logical identity and treat transitivity (A = B; B = C) ⇒ A = C as
a kind of cut, generating a sequence of lines A =, = B, = C, ..., = Z.
Jape’s rendering mechanism can do this, but it isn’t directly relevant to
this discussion.

2.5 What’s Wrong with This Mechanism?

The rendering mechanism goes wrong in stage 1. In a box-and-line proof
it’s possible to use any previous line (boxes permitting) when making a
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step: that is, the underlying structure is a DAG. In a tree, on the other
hand, you can’t refer to sibling subtrees. When a tree node is rendered,
therefore, although the lines representing the deductions of subtree n
come before the lines of subtree n + 1, they must all be inaccessible to
the lines of the sibling subtree below. In multiplicative (context-splitting)
logics the inaccuracy is even worse, because the left formulae – shown
as premises and assumptions – accessible from one subtree will not be
the same as those accessible from another subtree, and the box-and-line
rendering doesn’t show the difference.

The problem is illustrated, and there is a hint of its possible solution,
in the trees of figure 11 and 12. These different trees each generate the
same box-and-line display, shown in figure 13. To generate figure 11 the
first step is ∧ introduction, and then a new left formula Q is generated
in the left subtree by a forward → elimination step, closing that subtree.
If the proof is to be completed, the same forward step will have to be
duplicated in the second subtree. To generate figure 12 the first step is a
forward → elimination, which generates a left formula Q usable by the
whole of the proof. The next step is ∧ introduction; the left formula of
the cut closes the left subtree, and it’s also available to the right subtree.

P, P→Q, Q→R " Q∧R
∧-I

P, P→Q, Q→R " Q
cut

P, P→Q, Q→R " Q
→-E

P, P→Q, Q→R " P
hyp

P, P→Q, Q→R " P→Q
hyp

P, P→Q, Q→R, Q " Q
hyp

P, P→Q, Q→R " R

Fig. 11. Intro then elim

P, P→Q, Q→R " Q∧R
cut

P, P→Q, Q→R " Q
→-E

P, P→Q, Q→R " P
hyp

P, P→Q, Q→R " P→Q
hyp

P, P→Q, Q→R, Q " Q∧R
∧-I

P, P→Q, Q→R, Q " Q
hyp

P, P→Q, Q→R, Q " R

Fig. 12. Elim then intro

Figure 13 isn’t quite as ambiguous as it seems. From the earliest days of
Jape, Bernard Sufrin and I used a greying-out mechanism to show which
left formulae were visible in a box-and-line proof but not accessible. If
the tree behind figure 13 is figure 11, for example, then selecting line
3 will grey out line 2; if the tree is 12, line 2 will be undimmed. The
manual advised users to select a position in the tree by clicking on an
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4: Q∧R ∧-I 2,3

3: 

. . .

R

2: Q →-E 1.1,1.2

1: P, P→Q, Q→R premises

Fig. 13. An ambiguous display

active consequent – a formula below a line of three dots – and observe
which formulae above the consequent remained visibly active and which
were greyed out. If the results broke the rules of box-and-line proofs
then novices perhaps thought it no more surprising than anything else
Jape did, experts perhaps could explain it by thinking of the underlying
working of the tree, and probably everybody was too grateful for the
display of proof context to complain about its inaccuracies. At any rate
I don’t recall much criticism of our treatment.

This was the state of Jape for three or four years: inaccurately rendered
proofs, and imperfectly executed forward steps. If the problem suited it,
and if you were prepared, as most logical novice users are, to make all
possible forward steps before any backward step,2 then the misrepresen-
tation of tree proofs seemed much less of a problem.

The problem isn’t caused or made worse by the introduction of forward
steps into a backwards-reasoning sequent-tree calculator. On the con-
trary, forward steps provide a way to increase efficiency, by choosing
to do as much as possible by forward reasoning early on in the proof.
Jape’s deficiencies are perceived as inefficiency of the user’s proof strat-
egy caused by poor planning: that is, Jape is imposing a planning load
on its users.

3 True Forward Steps

The first step towards a solution of the problem is to deal properly with
forward steps. If a forward step always produces a tree like figure 12,
never like figure 11, whichever order the forward and backward steps are
undertaken, then at least one part of the problem is solved. In the latest
versions of Jape, forward steps can insert a cut node at the lowest point
possible in the tree. This means that, for the first time, users can make
steps which are not directed towards a conclusion-tip. For example, the
partial proof of figure 14 can evolve into figure 15, inserting a hypothesis
formula directly below the line it derives from. This is a true forward
step.

To make Jape take the step required some new internal mechanisms.
Previously, the tactic which implemented forward steps was

2 Novices believe with great fervour, no matter how they are instructed, in the unique
efficacy of forward reasoning. They resist backward reasoning with the same convic-
tion. I’ve concluded that they think backwards steps are cheating.
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4: E→(F∧G) → intro 2-3

3: 

. . .

F∧G

2: E assumption

1: (E→F)∧(E→G) premise

Fig. 14. Before forward step

5: E→(F∧G) → intro 3-4

4: 

. . .

F∧G

3: E assumption

2: E→F ∧ elim 1

1: (E→F)∧(E→G) premise

Fig. 15. After forward step

TACTIC ForwardCut (n,rule)

SEQ cut

(LETGOALPATH G (WITHARGSEL rule)

(GOALPATH (SUBGOAL G n))

(WITHHYPSEL hyp)

(GOALPATH G)

NEXTGOAL)
– apply cut; record the current position (left subgoal of the cut) by
binding its tree path to G; make the user’s proof step; move to the nth
subgoal of the rule step; using the user’s hypothesis selection, close with a
selected left formula; move back to position G; look for the next unclosed
tip using right-to-left recursive traversal of the tree.
The new tactic is superficially similar:

TACTIC ForwardCut (n,rule)

CUTIN (LETGOALPATH G (WITHARGSEL Rule)

(GOALPATH (SUBGOAL G n))

(WITHHYPSEL hyp)

(GOALPATH G))

)
Like all Jape tactics, ForwardCut executes at a position in a proof tree.
To begin, the tree position is defined by the user’s formula selections: a
conclusion selection defines a tip; a hypothesis selection defines the lowest
point in the tree at which it is present as a left formula; if there’s more
than one selected position then the greying-out mechanisms guarantee
that they are all on the same path in the tree, and Jape uses the highest.
Then the CUTIN operation, which can only be used if the logic has a
suitable cut rule and has been specified in ADDITIVELEFT style, looks for
the lowest point in the tree which has exactly the same left formulae as
the selected position. It breaks the tree there, tops the break with a cut
node using the old top section as its right subtree, and augments every
left context in the old top section with the cut formula, generating new
provisos where necessary.3 Then it executes its argument tactic at the
left subtree of the new cut node, and finally it returns to the point in the
tree at which it was originally applied. The effect is to splice a forward
step into the tree.

3 In Jape’s rule notation FRESH c requires that the name c can’t appear free in left or
right formulae of the consequent of a step which uses a rule. Nodes at which FRESH

has been applied are marked, and CUTIN must add a proviso for the formula it is
inserting, each time it encounters such a node.
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The complication is navigation: Jape tactics navigate by storing tree
paths (LETGOALPATH and GOALPATH, for example, in the tactics above),
which are invalidated if a new node is inserted into the tree somewhere
along the path. Rather than attempt to search for and correct all stored
paths, I implemented a path-following algorithm which ignores inserted
cut nodes unless they are explicitly mentioned in the path formula. (Easy
to say, horrible to implement.)

4 Building a DAG

Forward steps are only half of the problem. Multi-antecedent backward
steps are the other half. In Jape’s rendering mechanism, a formula on a
previous line is only accessible if it represents an immediate antecedent
or it represents a left formula (a hypothesis, in the language we use to
talk about Jape proofs). The lines and boxes describing subtree n aren’t
direct antecedents of anything in subtree n +1. There is nothing else for
it: they have to be hypotheses; that is, they have to be introduced by
cut steps. And then, by induction, it’s clear that every backward step
has to generate new hypotheses. This apparently absurd situation is the
only solution to the problem that fits the bill.
The way to generate new hypotheses, low enough down in the tree that
they can be accessed by lines which might need them, is of course to
use CUTIN. The tactic which is behind the menu entry for ∧ intro, for
example, is

TACTIC "∧ intro backward" IS SEQ "∧ intro" fstep fstep

TACTIC fstep IS

ALT (ANY (MATCH hyp))

(trueforward SKIP)

MACRO trueforward(tac) IS

LETGOAL _A (CUTIN (LETGOAL _B (UNIFY _A _B)

tac))

(ANY (MATCH hyp))

– apply the ∧ intro rule, then apply the fstep tactic to each of its
antecedents. The fstep tactic checks that the tip it is applied to can’t
be closed by an identity step (if it can, there’s no need to introduce
a new left formula) and then applies trueforward; that tactic records
the consequent of the tip it is applied to (LETGOAL); then runs CUTIN,
unifying the new cut formula with the original consequent and applying
the argument tactic (in this case simply SKIP to the left subtree of the
cut; finally, back at the original position in the tree, closes the tip with
an identity step.
The effect, since this mechanism is used for every backward step, is to
close every backward step by identity with a left formula generated lower
down in the tree. All the identity steps will be invisible in the box-and-
line display, because they are elided in stage 2 of the rendering algorithm;
the lower position will be above the positions which inserted hypotheses
visible to the backward step; stage 3 of the rendering algorithm, applied
recursively, exposes hypotheses in lowest-first order; it follows that the
lines of backward steps, if fstep is uniformly applied at every stage,
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appear in the correct order. In effect, the antecedents of a backward step
are inserted below and push the lines above them upwards, rather than
growing the proof above the step itself.
The total effect, if we think of cuts as augmenting an environment and
rule steps as generating nodes, is to generate a DAG. A cut which intro-
duces a left formula A in effect produces a tree which is described by the
formula “let line = treeA in tree” where tree can refer as many times as
necessary to line. This is a description of the spanning tree of a DAG.
It seems inside out, and it is odd to use the proof tree in this way, but
it does work!

5 Pointing to Formulae

In a sequent, left formulae are separated from right formulae by the turn-
stile, so that a selection-click on a left formula is spatially and obviously
distinct from one on a right formula. Jape’s tactic language was built
from the first to allow discrimination between left (LETHYP) and right
selections (LETCONC). When Bernard Sufrin and I first implemented box-
and-line display of tree proofs, we retained the same distinction, since
left formulae were labelled premise or assumption, and right formulae of
tips were unlabelled and below a line of dots.
Before the developments described in this paper, stage 3 of the render-
ing mechanism hid two sorts of cut steps: one where the cut formula
was a hypothesis alone, with no lines above it that could use it as a
target conclusion; the other where the cut formula was a conclusion,
with no lines below it that could call upon it as hypothesis. All formu-
lae in the display, whether generated normally or by forward steps, could
then be classified as hypothesis or conclusion, and clicks on them treated
appropriately as left or right selections. This meant that the rendering
mechanism couldn’t deal with raw cut steps – ones which generated a
formula that was a possible bridge between hypotheses and conclusion,
but not yet connected to either – because it wasn’t possible to classify the
occurrence of the cut formula as purely hypothesis or purely conclusion.
Under this rendering mechanism active conclusion formulae appeared
below a line of dots, and hypotheses were those formulae above an active
conclusion which didn’t grey out when the conclusion was selected. All
very well, provided that you clicked on a conclusion before every step,
but novices didn’t do that very often (remember, they prefer to reason
forwards). Some more emphatic distinction seemed necessary, and even
before implementing forward steps I began to make hypothesis selections
– boxes open downwards – visibly distinct from conclusion selections
– boxes open upwards. Also, following Bernard Sufrin’s lead from his
implementation of the Jape GUI module for Linux, I made the selection
boxes red as shown in figure 16.
True forward steps made it essential to deal with raw cuts. In an ∧ intro
step, for example, the left-hand formula can be used as a conclusion to
be proved from the lines above it, as in figure 17, or a hypothesis to
be used in the lines below it, as in figure 18. As these examples show,
Jape’s rendering mechanism can now hide all cut steps, and interprets
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5: E→(F∧G) → intro 3-4

4: 

. . .

F∧G

3: E assumption

2: E→F ∧ elim 1

1: (E→F)∧(E→G) premise

Fig. 16. Directed selection boxes

clicks on the top half of an ambiguously-usable cut formula as conclusion
selection (upward-pointing), on the bottom half as hypothesis selection
(downward-pointing). In either case the closed end of the selection is
drawn with a dashed line, intended to suggest that it’s only a temporary
assignment of rôle.

4: (E→F)∧(E→G) ∧ intro 2,3

3: 

. . .

E→G

2: 

. . .

E→F

1: E→(F∧G) premise

Fig. 17. A cut-conclusion

4: (E→F)∧(E→G) ∧ intro 2,3

3: 

. . .

E→G

2: 

. . .

E→F

1: E→(F∧G) premise

Fig. 18. A cut-hypothesis

The selection gesture now makes more demand on a prover’s motor con-
trol than before, but the main issue is that the hypothesis/conclusion
distinction sometimes has to be chosen by the prover. That means that
novices now have to understand the distinction, where previously they
might have been able to ignore it and blunder through. I think that
perhaps this is a good thing.

6 Assessment

The four mechanisms discussed above made quite a difference to the
usability of the logic encoding that I presented to my first-year under-
graduate class, but they haven’t been documented or widely publicised
nor yet independently assessed, and so it’s difficult to assess their even-
tual impact. The selection gesture improvement seems like a no-brainer,
though a scientific evaluation would be needed to be certain. The modi-
fied logic encoding, with its improved error messages, its elimination of
incomplete steps, its more rational set of logical rules and its correct
display of box-and-line proofs, seems to be a success with novices and
is unlikely to be completely misconceived, though my experience of ed-
ucational evaluation warns me that there must be many points of detail
which could be improved.
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What is not to be celebrated is the means of implementing all this.
Throughout the early development of Jape[4, 12, 5, 13, 7], Bernard Sufrin
and I made great play of the notion that what is on the screen is an
interpretation of what is in the machine, eliding unnecessary parts and
showing tidied up versions of others. What was in the machine was sup-
posed to be transparently an encoding of a logic; what appeared was
supposed to fit the demands of proof development and display. It was
and is the case that sequent trees are the easiest and most transpar-
ent way to represent formal logical proofs. It’s easy to understand how
to implement operations like applying a rule at a tip, or deleting the
subtree(s) above a node. It’s easy to implement a mechanism to enforce
a proviso like “c must not occur in this sequent”, and thus implement
privacy conditions (eigenvariable conditions) on quantifier rules.
We also aimed to provide a lightweight way of encoding logics in Jape’s
rule and tactic notation. The developments described here seem to have
subverted that aim: in my latest encoding of natural deduction the en-
coding of logical rules is a mere 45 lines and 1.4K characters; the tactics
and definitions which support interaction via clicks and menu commands
are 800 lines and 37K where, prior to improvement, they had been only
54 lines and 2K.
Much of the extra encoding volume is tactic programming that con-
structs error messages for particular situations. I’m confident that that
is an inevitable cost of attempting to generate messages by interpreting
user’s intentions, though no doubt it would be worth searching for more
transparent and economical representations of the search. The rest of
the increase is caused by the complexity of the representation of forward
steps, the need to use them everywhere, and the fact that they have to
be carefully crafted if they aren’t to break down with inexplicable error
messages, to generate duplicate hypothesis lines, or loop for ever. In the
particular case of natural deduction, which was the second example I
tackled, it wasn’t very difficult to get it right but then (a) I designed the
mechanisms, so I understood them, and (b) in the other example, which
was a treatment of Hoare logic and had to deal with large displays, I
never quite got it right. It’s hard to avoid the conclusion that for Jape
tactic programming, this may already be a bridge too far.
Least satisfactory of all is the use of cuts to implement a DAG. The
tree mechanism, which was until recently quite clearly behind the imple-
mentation of box-and-line proofs, is now little more than the scaffold on
which quite a different structure is built. Worst of all, DAG generation is
imperfectly implemented: in particular, the treatment of transitive rea-
soning is not integrated into it, and it does not support the next obvious
step, which is moving lines around in a box-and-line display to produce
a more pleasing arrangement.

7 Where Next?

Jape was designed as a sequent tree calculator, because Bernard Sufrin
and I understood the syntax and semantics of trees. We knew we could
get the tree part right and then work from a solid engineering basis. For a
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long time this architecture was a success, and the difficulty of rendering
a tree proof in box-and-line form was comparable to the difficulty of
rendering a tree proof directly.4 Now it’s a very much more complicated
business, and the complexity extends outside the module that actually
renders the picture into the tactic interpreter (via CUTIN), the prooftree
navigator (because of the need to carefully interpret paths once a cut
step has been inserted), and worst of all the logic encoding (via fstep

and the like).
One way forward is obvious. All that the complexity is accomplishing is
the preservation of an illusion that what you see – a box-and-line proof,
i.e. a DAG – is really there. If the illusion were reality, it would surely
be much easier to implement the insertion of a line, which is all that
CUTIN does. And if the DAG were the underlying representation, new
mechanisms can be imagined which are impossibly daunting today: users
could rearrange the lines of a displayed proof, for example, and it might
be possible to satisfy undergraduate students’ desire for a mechanism
which would take in their pencil-and-paper proofs and comment on their
correctness.
The drawback of such a development would be that Jape would no longer
embrace forms of logic that don’t fit DAGs. That would be a pity, but two
lessons I have learnt from building Jape are to recognise the beauty of
natural-deduction-style logics on the one hand, and to realise the range of
logical invention and hence the difficulty of squeezing many useful logics
even into Jape’s sequent idiom. BI[11] and its cousin separation logic[10],
for example, have trees in their left contexts, which is hard to mimic in
Jape let alone implement effectively. Jape could usefully retreat from
the hubris of universal aims and be made to support natural deduction
reasoning even better than it does now.
All that is perhaps. It would be a significant effort to comprehend and im-
plement the semantics of box-and-line proofs so that all the mechanisms
Jape currently supports are accurately translated, and so that there is
room for development.5 It would be a still larger effort to re-design and
re-implement all the parts of Jape that work on the tree. Maybe the
recent port to Windows[1] is my last push, and Jape’s swansong.
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Interactive disproof

Richard Bornat

School of Computing Science, Middlesex University. R.Bornat@mdx.ac.uk

Abstract. The proof calculator Jape has been extended to allow dis-
proof, using Kripke forcing semantics. Users draw graphs to depict a
situation, and Jape uses subformula colouring to signal the status of the
situation and its components. The mechanism hasn’t been scientifically
evaluated, but it has been heavily tested in use. Some deficiencies are
noted.

1 Introduction

Jape[3, 5, 6, 1] is a proof calculator. It was devised for use in educa-
tion, specifically for early education in formal proof, and for running
lightweight experiments with novel logics in formal methods research. It
has a claim to be novel in that the calculator is designed to support the
user interface rather than the other way around.

Recently I had experience of using Jape as the foundation of a first course
in logic (until then my experience had been limited to advising others
and observing[2] the results). Jape’s formal proof mechanisms had been
overhauled, as reported elsewhere[4], to increase its usability. In the first
year of use, those improvements certainly seemed to be helpful. Stung by
the criticisms of colleagues, however, I decided also to try to teach some
model theory. Since constructive proof is so much more straightforward
than classical proof (it really is!), my course focussed on constructive
proof. It seemed only right that I should tackle constructive model theory.

The most fruitful way, I imagine, of incorporating model theory into a
course on proof is to treat it as a means of disproof. If you can show
a counter-example in the model, and if the logic is sound (ours is, but
proof of soundness is not a part of the course) then a formal proof is
impossible. You can even use a failed search for a constructive proof to
guide the search for a constructive counter-example. You can have fun,
in those cases where a classical proof and a constructive counter-example
exist, comparing proof and counter-example of contentious examples.

All of this was done, for one year, on blackboard and on paper. The
contrast between the ease with which most students learnt from Jape-
supported proof search, where the machine was accepted fairly readily
as an accurate and impartial arbiter in difficult cases, and the pain they
experienced with paper-and-pencil counter-examples, where the only ar-
biters were fallible teachers, was stark. Constructive counter-models are
graphical constructs with very simple rules: it was plain that machine
support might be provided, and so I attempted it.
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2 A scant introduction to Kripke semantics

Classical logic is based on the notion of truth. A properly formed as-
sertion is either true or false, independently of our understanding of
it. The corresponding ‘method of truth tables’, enumerating all possi-
ble states of the support for an assertion, is familiar to most computer
scientists, at least for the propositional case and for the purposes of de-
signing hardware. Kripke’s constructive model using possible worlds[8,
7], though graphical and very accessible, is less well known. I therefore
give a very brief introduction, at the level of engineering mathematics
rather than foundation.

now (no proof of E)

the future (proof of E found)E

now (no proof of E),
and there will never be one

Fig. 1. Two alternative views of the present

Constructive logic is based on the notion of proof. A properly formed
assertion can be proved or disproved or there can be no evidence either
way. (It’s not a three-valued classical logic – it’s odder than that[7].) In
contrast with classical logic, then, it’s reasonable to consider a distinction
between ‘now’ and ‘the future’: we might have no proof of assertion E
now, but one might be found tomorrow, as recently was the case for Fer-
mat’s Last Theorem, and as we might hope for Goldbach’s Conjecture.
In the semantics the two possible situations can be shown by alterna-
tive diagrams, as in figure 1. The first (left-hand) diagram describes a
situation in which there is no proof of E, and none will ever be found.
The second (right-hand) world describes a situation in which there is no
proof of E now, but one will be found. We don’t know, when we don’t
have a proof of E, which of these worlds we are living in, so it might well
be the second. Since constructivists interpret ¬E as ‘there will never be
a proof of E’, the second world denies both E and ¬E, and thus the
classical law of excluded middle. On the other hand, a diagram with just
a single world and no future development, like the left-hand one above,
corresponds to the classical model.
Jape supports the drawing of these possible-world diagrams. The natural
deduction encoding described here uses the definitions of figure 2 where
w ≥ w′ means you can travel from w to w′ by following upward lines in a
diagram. The glory of this collection is the →, which captures beautifully
the notion that I am forced to accept A → B if, however things might
develop, whenever I’m forced to accept A then I’m also forced to accept
B.
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w � A ∧B iff w � A and w � B
w � A ∨B iff w � A or w � B
w � A → B iff for every w′ ≥ w, if w′ � A then w′ � B
w � ¬A iff for no w′ ≥ w, w′ � A
w � ∀x.P (x) iff for every w′ ≥ w and every i, if w′ � actual i then w′ � P (i)
w � ∃x.P (x) iff for some i, w � actual i and w � P (i)

Fig. 2. Constructive forcing semantics of natural deduction

3 Drawing counter-examples

The assertion (E → F )∨(F → E) has no constructive proof. An attempt
to prove it using constructive rules in Jape gets stuck quite quickly, as
illustrated in figure 3. There is still a constructive rule which is applicable
– from contradiction conclude F – but it’s pointless to try it because
you can’t generate a contradiction from E. The experienced counter-
example generator recognises from the structure of the stuck proof that
the counter-example will probably involve a world at which there is a
proof of E but no proof of F .

4: (E→F)∨(F→E) ∨ intro 3

3: E→F → intro 1-2

2: 

. . .

F

1: E assumption

Fig. 3. A stuck constructive proof

Choosing Disprove in the menus splits the proof window into two panes
and shows a minimal semantica situation, as illustrated in figure 4. The
red-ringed blob in the upper pane is the currently-selected world; the
assertion below it is coloured to show the status of its components in
that world. Atomic assertions E and F are black, to show that they are
not forced. The arrow in E → F , like the brackets surrounding that
subformula, is coloured violet to show that the subformula is forced –
trivially, because E appears nowhere in the diagram. The arrow and
brackets of F → E are coloured similarly, for similar reasons. The dis-
junction connective, between the brackets, is violet because F → E is
forced, and the whole assertion is underlined in violet to make clear that
it is forced. A counter-example demonstrates that an assertion does not
always hold by showing a situation in which all the premises are forced
but the conclusion is not. This is not yet a counter-example.
A new world can be created by option-dragging the base world, producing
figure 5. Note that the new world makes no change in the colouring,
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Fig. 4. The beginning of a disproof attempt

because it introduces no future developments. Then E can be forced
at the new world by dragging the E tile from the right-hand side of
the window and dropping it on the new world, producing figure 6. Now
the colouring changes: E → F is no longer forced, because there is a
reachable world at which E is forced and F is not. But F → E, and
therefore the whole assertion, is still forced for the same reason as before.

E

F

 ! (E→F)∨(F→E)

Fig. 5. An extra world

E

E

F

 ! (E→F)∨(F→E)

Fig. 6. A labelled extra world

At this point the experienced counter-example generator knows just what
to do to complete the disproof: do for F what was just done for E. That’s
justified because the first proof step picked out the left-hand half of the
disjunction, and we might as easily have picked the right, giving figure
7. Previously, to make a new world I dragged a new one out of the base
world. That is the right thing to do again, but it is no longer the only
thing to do, so I illustrate the effect of alternative choices. First, the
easy way and a correct move: dragging a new world out of the base and
dropping F onto it completes a disproof, signalled in figure 8 by the fact
that the assertion is now not underlined.



66 Richard Bornat

4: (E→F)∨(F→E) ∨ intro 3

3: F→E → intro 1-2

2: 

. . .

E

1: F assumption

Fig. 7. Stuck again

E F

E

F

 ! (E→F)∨(F→E)

Fig. 8. The completed disproof

The other, more laboured, route to a counter-example starts by extending
the E world as in figure 9. Jape enforces monotonicity when the new
world is created by including E in the new world. Note that the colouring
and underlining of the assertion is unchanged from the single-E situation.
Then when F is dropped on the new world to give figure 10 we find that
F → E is still forced, because in the top world, the only world in which
F is forced, so is E. This situation isn’t a counter-example.

E

E

E

F

 ! (E→F)∨(F→E)

Fig. 9. Extending the upper world

E

E F

E

F

 ! (E→F)∨(F→E)

Fig. 10. Not a counter-example

It’s possible to go forward in at least two ways. One way is to undo back
to the two-world situation and do the right thing from there (Jape applies
undo and redo to the last pane – proof or disproof – that you clicked
in, rather than using an overall interaction history). Alternatively, you
can modify the current situation by deleting parts of it. Monotonicity
stopped us making a world with just F in it, so first I decide to get rid
of the link I just made (but not the world): press on the link from the
E world to the E, F world and drag it to the swing-bin in the bottom
right of the disproof pane (the line stays attached to its endpoints and
drags rubber-band fashion till it is dropped in the bin, which lights up,
as it should, to receive the undesired object – but it’s hard to capture
that moment!), giving figure 11. Option-dragging the base world onto the
isolated E, F world makes a new link, giving figure 12. Finally, throwing
the undesired E in the bin takes us back to the counter-example of figure
8.
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E F

E

E

F

 ! (E→F)∨(F→E)

Fig. 11. An isolated world

E F

E

E

F

 ! (E→F)∨(F→E)

Fig. 12. A different connection

4 Exploring diagrams

The definition of A → B – where A is forced, B must be forced as well
– is the glory of Kripke’s model. It’s also quite hard to grasp at first.
I give some assistance to novices by allowing them to experiment with
different situations, and more by allowing them to explore a situation –
counter-example or not – to see where particular subformulae are forced.

Figure 13, for example, is the result of clicking on one of the worlds
of figure 10. The colouring of the assertion is now not as it was when
the base world was selected. Occurrences of E are now violet, but F is
still black (atomic assertions are forced if they are present, not forced
if absent). The black arrow shows that E → F is not forced, and the
colouring of the basic assertions shows that that’s because E is forced
and F isn’t; similarly, it shows why F → E is forced. The disjunction,
which is the overall assertion, is still forced because one of its components
is forced.

That situation shows the novice why E → F isn’t forced in the base
world – it must hold everywhere above the base world, not just in one
place, and the intermediate world contradicts it. Clicking on the top
world makes the same point more strongly, producing the classical single-
world evaluation of figure 14. Now everything is forced: both the atomic
assertions, both the implications and the disjunction. Implication, in
this semantics, is a promise rather than a static property, and a promise
broken in one world is broken in all the worlds below it. Although E → F
holds in the top world, and it would hold in the root world if it didn’t
have descendants, it doesn’t hold in the intermediate world and that’s
enough to say that it doesn’t hold in any world which has that one as a
descendant.

E

E F

E

F

 ! (E→F)∨(F→E)

Fig. 13. Another evaluation

E

E F

E

F

 ! (E→F)∨(F→E)

Fig. 14. A classical evaluation
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Dragging and dropping is extensively supported in Jape’s treatment of
constructive disproof. You can drag worlds onto worlds or lines, and lines
onto worlds. You can drag anything – worlds, labels, lines – into the swing
bin (it’s the most straightforward mechanism for deletion, vastly easier
to use than a “select; delete” technique). Using drag and drop, plus an
occasional focus-click, for every action in the proof pane is a worthwhile
simplification, a reasonably quiet interface.

5 Working with quantifications

Forcing semantics of quantification relies on named individuals inhabit-
ing a universe. Adding individuals to the logic, via the pseudo-assertion
actual <name>, makes it possible to give a much more coherent account
of Jape’s proof capabilities. Using individuals in disproof requires a little
care, and Jape is not yet completely developed in this direction.
Consider, for example, the assertion

actual i, ∀x. (R(x) ∨ ¬R(x)) , ¬∀y.¬R(y) � ∃z.R(z)

It looks unexceptionable: in a non-empty universe (there is at least the
individual i), where R is a decidable property, not false everywhere, there
must be some individual with property R. But it’s one of the entries in
Jape’s “Classical conjectures” panel, so even the novice can guess that
it must have a constructive disproof as well as a classical proof.
The proof, shown in figure 15, is easy once you realise that the decidabil-
ity hypothesis was inserted as a sop to the constructivists, and even the
non-emptiness of the universe is nothing to do with anything. But the
constructive attempt, though it uses all the premises and explores more
avenues, gets stuck as in figure 16 because it can’t make the same first
move.
Never mind! The stuck proof tells us what to do: make a world with an
individual i (line 1), another with i1 (line 7), don’t have R(i) (line 6),
but do have R(i1) (line 8). Jape’s starting point for a disproof, shown
in figure 17, colours actual i black, because it doesn’t occur at the root
world, underlines the second premise, which is forced trivially because
there are no individuals in the diagram, and doesn’t underline the third
for similar reasons. The conclusion then isn’t forced because there is
no individual to stand witness. The tiles on the right allow us to make
worlds involving the only individual (i) and the only predicate (R) in
the assertion. They won’t be enough, but we can make a start.
Recall that to produce a counter-example we must make a situation in
which all the premises are forced and the conclusion is not. So the first
step must be to force actual i in the root world (figure 18). Observe
that actual i is now forced, and both ∀s are too, because ¬R(i) is now
forced. The ∃ is still black. And notice that the formulae inside the
quantifications are grey: a new kind of colouring.1 Greyness signifies that
a formula isn’t strictly relevant to the status of the assertion, and that’s

1 For those of you reading in black and white, as they almost used to say on UK
television, the grey bits look just like the violet bits. Sorry!
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12: ∃z.R(z) contra (classical) 4-11

11: ⊥ ¬ elim 10,3

10: ∀y.¬R(y) ∀ intro 5-9

9: ¬R(i1) ¬ intro 6-8

8: ⊥ ¬ elim 7,4

7: ∃z.R(z) ∃ intro 6,5

6: R(i1) assumption

5: actual i1 assumption

4: ¬∃z.R(z) assumption

3: ¬∀y.¬R(y) premise

2: ∀x.(R(x)∨¬R(x)) premise

1: actual i premise

Fig. 15. A classical success

15: ∃z.R(z) ∃ intro 14,1

14: R(i) ∨ elim 4,5-5,6-13

13: R(i) contra (constructive) 12

12: ⊥ ¬ elim 11,3

11: ∀y.¬R(y) ∀ intro 7-10

10: ¬R(i1) ¬ intro 8-9

9: 

. . .

⊥

8: R(i1) assumption

7: actual i1 assumption

6: ¬R(i) assumption

5: R(i) assumption

4: R(i)∨¬R(i) ∀ elim 2,1

3: ¬∀y.¬R(y) premise

2: ∀x.(R(x)∨¬R(x)) premise

1: actual i premise

Fig. 16. A constructive failure

actual i

R(i)

actual i, ∀x.(R(x)∨¬R(x)), ¬∀y.¬R(y) # ∃z.R(z)

Fig. 17. The start of a constructive disproof

actual i actual i

R(i)

actual i, ∀x.(R(x)∨¬R(x)), ¬∀y.¬R(y) # ∃z.R(z)

Fig. 18. An individual added
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true in this case, because R(x) and R(y) aren’t interesting in a universe
containing an individual i: only R(i) matters. I shall return to the issue
of evaluation and colouring of quantified formulae below.
We can press on. The stuck proof suggests (because of its box structure)
that we should make a new world containing an individual i1. It’s easy
to make a new world by option-dragging the root world, but we don’t
have a tile with actual i1. Jape lets us add individuals to the model by
double-clicking an ‘actual’ tile. This solves our immediate problem, and
we can drag and drop the result onto the upper world (figure 19).

actual i

actual i actual i1

actual i

actual i1

R(i)

actual i, ∀x.(R(x)∨¬R(x)), ¬∀y.¬R(y) # ∃z.R(z)

Fig. 19. A new world and a new individual

We still don’t have R(i1) to drop onto the model, but double-clicking
a predicate tile gets you a novel instance built up from the available
individuals (if there is more than one possibility, a choice dialogue lets
you pick the one you want). That new instance can be dropped onto the
diagram and the disproof is complete (figure 20) – all premises forced
(shown by underlining) and the conclusion unforced.

actual i

actual i actual i1 R(i1)

actual i

actual i1

R(i)

R(i1)

actual i, ∀x.(R(x)∨¬R(x)), ¬∀y.¬R(y) # ∃z.R(z)

Fig. 20. A completed disproof

This is all very well: the stuck proof shows the expert how to proceed, and
the interface supports all the necessary moves. But the display doesn’t
help the novice to understand why it’s colouring the assertion as it does.
Most of the syntax colouring is grey, telling us that the literal subformu-
lae aren’t used, and that there is more behind the scenes to be explained.
Exploring the worlds doesn’t help much at all, as figure 21 shows.
At this point I have to say that, as a designer, I’m stumped. I’d like
to design an interaction that allows a novice to double-click (say) on
∃z.R(z) and find out why it isn’t forced at the base world (there’s only
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actual i

actual i actual i1 R(i1)

actual i

actual i1

R(i)

R(i1)

actual i, ∀x.(R(x)∨¬R(x)), ¬∀y.¬R(y) # ∃z.R(z)

Fig. 21. A lot of colour and little illumination

one individual available and R(i) isn’t forced at the base world) or why
conversely it is forced in the upper world (there we can call on i1 and
R(i1)). That might be supported, in this trivial example, by a little drop-
down menu, and the results might be helpful. But in a more complex
example using nested quantifiers we would want to explore further, and
need to explore what we see in a way that drop-down menus in the
assertion don’t seem to support.

6 Deficiencies

Explanation is partly supported in the propositional case, hardly sup-
ported at all in the predicate case, as discussed above. I suspect this is
a considerable stumbling block for the average novice.
Layout of the labels decorating a world is primitive: they are shown as
a single line of text extending right from the world. In a large diagram
those text lines confusingly overlap other objects.
When drawing complex structures a single-history undo is sometimes
irksome. It would be worth experimenting with an object-focussed undo,
though I’m conscious of the need to preserve a quiet interface.

7 Evaluation

This mechanism hasn’t been independently evaluated. It’s been given to
two successive first-year classes of undergraduates to use, in the first
year under my supervision. My informal assessment is that students
find Jape’s proof mechanisms, especially since they were subjected to
thoughtful evaluation in [2], relatively easy to use, and formal proof cor-
respondingly relatively easy to learn. They find disproof harder to un-
derstand and in practice they struggle with the disproof interface. (Then
most of them then find Hoare logic, which was taught without Jape sup-
port in the final section of the course, quite impenetrable, but that’s
another story!)
On the other hand many of them do learn about models and disproof
using Jape, and all appear to be grateful for the unbiased verdict of a
calculator on their attempts to answer exercises. The interaction with the
disproof calculator is much more like what many of them would hope to
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have with a proof calculator: they can put in a copy of what they have
written on paper, and receive a judgement, provided that their pencil
and paper version is not too outlandish.
Clearly it would need a dispassionate evaluation by a trained education-
alist to tease out the interface difficulties from the conceptual misunder-
standings, so that interactive disproof in Jape can perhaps become as
smoothly successful as its proof mechanisms.
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Abstract. We give a short overview of the KeY prover, which is the
proof system belonging to the KeY tool [1], from a user interface per-
spective. In particular, we explain the concept of taclets which is the
basic building block for proofs in the KeY prover.

1 Introduction

The goal of the ongoing KeY Project [1] is to make the application of formal
methods possible and effective in a real-world software development setting.
One of the main products of the KeY Project is the KeY Tool, which allows the
specification and verification of Java Card [8] programs. The KeY Prover is an
integrated interactive and automated theorem prover that is used in the KeY
tool to reason about programs and specifications.

The logic employed by the KeY prover is a dynamic logic (DL) for Java
Card [2]. This can be viewed as a kind of first order multi-modal logic, where
modal operators are indexed by programs. A diamond formula 〈π〉φ means that
there is a terminating execution of the program π after which φ holds, a box
formula [π]φ means that φ holds after every terminating execution.

Most of the proof rules available in the KeY system symbolically execute
programs in DL formulae. There are also some induction rules to reason about
loops and recursion. The “core” of the calculus is however first-order, in the sense
that there is no quantification over functions or sets, no lambda abstraction,
etc. The prover uses a sequent-style calculus, which is augmented with meta
variables to allow the delayed choice of quantifier instantiations, similarly to the
free variables used in first order tableau calculi.

As program verification cannot be done fully automatically for realistic pro-
grams, it was important to make the interactive user interface of the KeY prover
intuitive and powerful.

The KeY tool can be downloaded free of charge from the KeY project home
page at http://i12www.ira.uka.de/~key.
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Fig. 1. The main window of the KeY prover

2 The Prover Window

In Fig. 1, the main window of the KeY prover is shown. In the left part of the
window, the whole proof tree is displayed, showing the applied rules and the case
distinctions, which correspond to splits in the proof tree. Using the “tabs”, one
can also choose to display only a list of open goals, or the user constraint. The
user constraint allows the user to control the instantiation of meta variables.
The proof steps displayed in the proof view have pop-up menus which allow the
user e.g. to cut off parts of the proof at a certain point.

The right part of the window displays the sequent that is currently being
worked on. A formatting engine in the style of Oppen’s pretty-printer [7] is used
to print sequents with a structured layout. As is visible in the figure, the formula,
sub-formula, term, etc. that is currently under the mouse pointer is highlighted.
Highlighting, in conjunction with layout, helps the user in understanding the
structure of a complex formula.

Clicking on an operator in a formula displays a pop-up menu giving a choice
of rule applications possible for that sub-formula, see Fig. 2. In the KeY prover,
the rules from which proofs are built are combined with the information of how
the user should interact with these rules, to form entities called taclets, see next
section.

We display the proof tree and the current sequent together in one window,
using a split pane, for the following reason. It makes perfect sense to work on
several proofs at a time. For instance, during construction of a new proof, one
might want to consult an older one for reference. It is also conceivable, though
not yet implemented, to cut and paste parts of proofs. In such a setting, having
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Fig. 2. Choosing a taclet to apply

separate windows for proof trees and sequents would make it hard for the user
to see which belongs to which.

3 Taclets

Most existing interactive theorem provers are “tactical theorem provers”. The
tactics for which these systems are named are programs which act on the proof
tree, mostly by many applications of primitive rules, of which there is a small,
fixed set. The user constructs the proof by selecting the tactics to run. Writing a
new tactic for a certain purpose, e.g. to support a new data type theory, requires
expert knowledge of the prover.

In the KeY prover, both tactics and primitive rules are replaced by the taclet
concept.1 A taclet combines the logical content of a sequent rule with pragmatic
information that indicates how and when it should be used. In contrast to the
usual fixed set of primitive rules, taclets can easily be added to the system.
They are formulated as simple pattern matching and replacement schemas. For
instance, a very simple taclet might read as follows:

find (b −> c ==>) if (b ==>) replacewith(c ==>) heuristics(simplify)

This means that an implication b −> c on the left side of a sequent may be
replaced by c, if the formula b also appears on the left side of that sequent.

Apart from this “logical” content, the keyword find indicates that the taclet
will be attached to the implication and not to the formula b for interactive

1 Taclets have been introduced under the name of schematic theory specific rules
(STSR) by Habermalz [6]. The concept of interactive theorem proving through direct
manipulation of formulae was inspired by the theorem prover InterACT [4].
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selection, i.e. it will appear in the pop-up menu when the implication is clicked
on.

Taclets can be part of heuristics. The clause heuristics(simplify) indicates that
this rule should be part of the heuristic named simplify, meaning that it should
be applied automatically whenever possible if that heuristic is activated. The
user can interactively change which heuristics should be active at a certain time.

While taclets can be more complex than the typically minimalistic primitive
rules of tactical theorem provers, they do not constitute a tactical programming
language. There are no conditional statements, no procedure calls and no loop
constructs. This makes taclets easier to understand and easier to formulate than
tactics. In conjunction with an appropriate mechanism for heuristic application,
they are nevertheless powerful enough to permit comfortable interactive theorem
proving [6]. For the automated execution of heuristics, the idea is that any pos-
sible taclet application will eventually be executed (fairness), but certain taclets
may preferred by attaching priorities to them.

Also note that taclets are rather lightweight entities. It is for instance abso-
lutely possible to introduce dozens of ad-hoc taclets to reason about some specific
data type in an intuitive way. The set of taclets should and can be designed in
such a way that usual human reasoning about some application domain is re-
flected by the available taclets. An important consequence of attaching taclets to
operators is that the taclets for a certain data type will almost all be attached to
operators of the according type. For instance, taclets for reasoning about num-
bers are attached to operators like + or >=, etc. This means that when the user
clicks on a specific operator, only those taclets will be visible that are relevant
for that operator in that context. This significantly reduces the burden on the
user that is usually associated with a large set of rules.

In principle, nothing prevents the formulation of a taclet that represents
an unsound proof step. It is possible however, to generate a first-order proof
obligation from a taclet, at least for taclets not involving DL. If that formula
can be proved using a restricted set of “primitive” taclets, then the new taclet
is guaranteed to be a correct derived rule.

No provision is currently made in the user interface for the construction
of taclets. They are given in the textual form shown above and read into the
system by a parser. In future versions, a possibility to define taclets within the
user interface might be added to the system.

4 Implementation

The KeY prover is implemented in the Java programming language [5], using
the Swing [9] GUI library. The coordination between the displayed proof tree,
the current sequent, etc. and the underlying logical data structures follows the
Model, View, Controller architecture, making intensive use of the Listener design
pattern (see [3]). While this is not the fastest conceivable technique, it has helped
to provide a good modularization of the system.
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Highlighting and generation of position-dependent pop-up menus depends on
having a fast mechanism to find the term position corresponding to a certain
character in the displayed sequent. This is achieved using position tables, which
record the start and end of nested formulae and terms in every sub-formula/term
of the sequent. Position tables are built by the pretty-printer during layout, at
a low additional cost, and they are very efficient. There is no perceivable delay
due to highlighting when the mouse is moved over the sequent.

For a pleasant user experience, it is also important that the available taclets
at a certain position are displayed with minimal delay when the user clicks some-
where. This is achieved using a number of indexing data structures. For every
open goal, a taclet application index is kept, that stores all taclet applications
possible in a sequent at any position. It is organized in such a way that quick
access to the applicable taclets is possible based on the position in sequent. Only
taclet applications that are actually possible are stored. Regard for instance the
taclet given in the previous section, which requires the presence of b in the an-
tecedent. If that formula is not present, a corresponding taclet application will
not be put into the taclet application index, and thus will not be displayed to
the user. In the current implementation, the taclet application index is sim-
ply recalculated before each interaction, but it would be possible to cache most
taclet applications between taclet applications, as most of the sequents remain
unchanged.

In order to calculate the taclet application index efficiently, a taclet index is
used. This contains the set of all available taclets, and provides an operation to
determine a set of candidates that might be applicable, given some formula and
its position in a sequent. The idea is to go through all sub-formulae of a newly
introduced formula in a sequent and ask the taclet index for a (hopefully small)
set of potentially applicable taclets. It is then checked whether all conditions
of the taclet actually are satisfied, and if so, a corresponding taclet application
is put into the taclet application index. What indexing mechanism is sensible
for the taclet index is of course dependent on the set of taclets in use. Many
of the taclets currently used in the KeY prover serve the symbolic execution
of programs. We use a hash table indexed by the top operator, and in case of
program modalities, by the type of the first executable statement in the program
in question. This gives very acceptable performance for interactive use: the time
required to apply a rule, to build the new taclet application index and to layout
and display the new sequent lies mostly below half a second. The standard set of
taclets usually worked with comprises several hundred taclets for propositional
and predicate logic, integers, sets and above all for Java Card. When taclets
are applied automatically by the “heuristics”, performance ranges between 10
rule applications per second for the more complicated symbolic execution taclets
to several hundred per second for simple propositional logic.

The performance might become unacceptable in the future, due for instance
to an enlarged taclet base. In that case, our course will be to progressively
optimize the indexing data structures. In fact, this has already been done twice
in the past: originally there was no taclet index at all. As the number of predicate
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logic rules grew, hashing on the top function symbol was introduced. Finally, with
the addition of DL rules, indexing on program statements became necessary.

Another conceivable future optimization is to compile taclets: As taclets have
a quite operational semantics, it would be possible to produce Java byte code for
the actions of a taclet, instead of the current interpretive approach. It is not clear
weather this will become necessary, as the system performs quite satisfactorily
so far.

5 Conclusion

We have briefly described the KeY prover from a user interface perspective.
In particular, we have introduced the concept of taclets, which consist of the
logical content of a sequent rule, paired with pragmatic information on how and
when to apply it. We have also given a short overview of some of the non-trivial
implementation issues involved.
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Abstract. Interactive theorem proving systems for mathematics require
user interfaces which can present proof states in a human understand-
able way. Often the underlying calculi of interactive theorem proving sys-
tems are problematic for comprehensible presentations since they are not
optimally suited for practical, human oriented reasoning in mathemati-
cal domains. The recently developed CORE theorem proving framework
[Aut03] is an improvement of traditional calculi and facilitates flexible
reasoning at the assertion level. We make use of COREs reasoning power
and develop a communication layer on top of it, called the task layer. For
this layer we define a set of manipulation rules that are implemented via
COREs calculus rules. We thereby obtain a human oriented interaction
layer that improves and combines ideas underlying the window inference
technique [RS93], the proof by pointing approach [BKT94], and the focus
windows of [PB02].

1 Introduction

In interactive theorem proving (ITP) it is important that information about
a proof state is presented in an intuitive way in order to help the user in the
selection of a next proof step. Ideally, the knowledge (assertions) available to
prove a focused goal (i.e. its logical context) is presented in a suggestive manner
supporting a uniform handling of assertion selection and application. Consider
for example a situation where a goal formula B has to be derived from some
formulas Ax1, . . . , Axn (we say that Ax1, . . . , Axn are in the context of B). If
we further assume that the formula (∀x.Q[x]) ⇒ (B ∧ C) is amongst the Axi
then we could present this situation in the form shown in Figure 1(a). Using
this representation the formulas in square brackets represent all the information
that is available to infer the goal B. In the situation above it seems promising to
apply the assertion (∀x.Q[x])⇒ (B∧C) to transform B into ∀x.Q[x] as depicted
in Figure 1(b).

In most current ITPs such a style of presentation and reasoning is difficult.
The reason for this is that these ITPs are typically based on calculi that have
not been developed for practical reasoning but for proof-theoretic considerations.
These calculi often represent a proof state as sets of sequents or clauses and
sometimes even require formulas to be in a certain normal form which makes
a presentation like the above difficult. Furthermore, assertions can often not be
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Fig. 1. Intuitive presentation of proof tasks: goals appear together with the assertions
available in the context.

applied directly to a subgoal and have to be explicitly decomposed through the
application of calculus rules before they can be used in a proof. The need for
explicit decomposition is one reason why natural deduction style calculi and
sequent style calculi are far less intuitive and human oriented as we actually
wish.

Autexier [Aut01,Aut03] recently developed the CORE theorem proving sys-
tem as a means for the integration of multiple proof paradigms into one frame-
work. The system supports a proof style that is based on contextual rewriting
and it furthermore exploits ideas of the window inference technique [RS93]. The
novelty of the system lies in the fact that it does not make use of a fixed set of
calculus rules that are defined over the syntactic structure of formulas; rather,
it allows the user to freely focus the reasoning process on subformulas of the
overall goal formula while the system internally updates the logical context of
these formulas while avoiding explicit decomposition. The context of a subfor-
mula is then made available to the user in form of transformation rules, so called
replacement rules, which can be used to directly transform the subformula in the
current focus. One of the advantages of this reasoning style is that it supports the
application of assertions in a more intuitive way, while formula decomposition
is treated implicitly. In fact, the stepwise unwrapping of subgoals and assertions
is replaced by flexible focus relocations and replacement rule applications. How-
ever, although CORE is a potentially well suited basis for ITP it is not yet free
of problems. A major drawback is that, until now, it is only possible to display
the context of a formula as a usually long and unstructured list of replacement
rules.

In this paper we develop a uniform communication layer — called task struc-
ture — on top of the CORE reasoning framework. This communication layer is
intended to serve as the exclusive interface between CORE and the user and be-
tween CORE and automated proof procedures, such as the proof planner Multi
[Mei03] of the Ωmega mathematical assistant system [SBF+03]. Task structures
allow to display the formulas in the context of a formula in the style used in Fig-
ure 1 and also provide a uniform framework for application of these formulas.
The overall idea is that reasoning on the task structure reflects flexible reasoning
with assertions while all logic level aspects (including decomposition) are real-
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ized via CORE and thus hidden from the user. We thereby gain a system that
improves and combines the ideas of the window inference technique [RS93], the
proof by pointing approach [BKT94], and the focus windows of [PB02]. By map-
ping the proof steps performed at the task level into sequences of CORE calculus
rule applications we can furthermore guarantee the soundness of the steps taken
at task level.

The remainder of the paper is outlined as follows. In Section 2 we introduce
the CORE system before we describe the task structure in Section 3. Section 4
demonstrates the benefits of our approach at hand of a small example.

2 The CORE System

CORE supports flexible contextual rewriting: When focusing on a subformula F ′

of a goal F for manipulation the CORE system determines the logical context
of F ′ and makes it available to the user as a set of replacement rules R. The
replacement rules in R can be directly employed for manipulation of F ′.

This supports a natural way of reasoning which treats formula decomposition
implicitly and which resembles Huang’s [Hua94] reasoning on the assertion level.
We illustrate this at hand of the following theorem:

(M ∧N) ∧ (M ∧N ⇒ P )⇒ P (1)

In CORE we can use the implication M ∧N ⇒ P in the context of P to replace
P by M ∧ N . This is realized with the help of the replacement rule P →<
M ∧N > which is generated from the respective implication. Application of this
replacement rule to P thus yields

(M ∧N) ∧ (M ∧N ⇒ P )⇒M ∧N (2)

The newly introduced M∧N can now be replaced by true through application of
the replacement rule (M ∧N)→< true > which we obtain from the subformula
(M ∧N) on the left hand side of the implication. Thus, we have

(M ∧N) ∧ (M ∧N ⇒ P )⇒ true (3)

which CORE simplifies to true.
This small example illustrates COREs key characteristics: Reasoning at the

assertion level is made possible through the generation of replacement rules from
the assertions in the context of a subformula. Furthermore, the proof problem is
always represented and maintained in its entirety instead of being decomposed
into smaller pieces as in sequent- and natural deduction style calculi.

2.1 Proof Theoretic Annotations

CORE is based on the notions of signed formulas and indexed formula trees
(Ifts) which go back to Smullyan [Smu68] and Wallen [Wal90]. We only briefly
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α α1 α2

(A ∧B)− A− B−

(A ∨B)+ A+ B+

(A⇒ B)+ A− B+

(¬A)+ A−

(¬A)− A+

β β1 β2

(A ∧B)+ A+ B+

(A ∨B)− A− B−

(A⇒ B)− A+ B−

Fig. 2. Uniform Notation (Propositional Types)

δ δ0

(∀x.F [x])+ F [x/c]+

(∃x.F [x])− F [x/c]−

γ γ0

(∀x.F [x])− F [x/c]−

(∃x.F [x])+ F [x/c]+

Fig. 3. Uniform Notation (Quantifiers); respective variable conditions are introduced
and maintained by CORE for these cases

sketch them here and refer to [Aut03] for a more detailed introduction. CORE
supports a variety of different logics, including higher-order and modal logics,
however, for sake of simplicity, we only consider a classical first-order system in
this paper.

Definition 1 (Signed Formulas) A signed formula is a pair (A, p), where A is
a formula and p ∈ {+,−, 0} the polarity of A. We usually write Ap instead of
(A, p).

Signed formulas are assigned a uniform type to distinguish between disjunc-
tive formulas (type α), conjunctive formulas (type β), universal formulas (type
γ) and existential formulas (type δ). The tables in Figures 2-4 define the types
of signed formulas and also determine how type information is propagated to
the major subformulas of a signed formula.

In the remainder we denote by α(αp1
1 , α

p2
2 )p a signed formula F of type α and

polarity p. The αpii are the major subformulas of F with polarities pi. Formulas
of type β, γ and δ are denoted in a similar way. To indicate the type of a formula
we frequently attach the type information to the topmost connective of a for-
mula, e.g. (A∧β B)+. We furthermore abbreviate α(F1, α(F2, . . . , α(Fn−1, Fn)))
as α(F1, . . . , Fn) and use a respective notation for β.

Intuitively, the information encoded in annotated signed formulas describes
the ”behavior” of these formulas in sequent calculus derivations. The polarity
(+/−) of a signed formula is just another representation of the succedent/antece-
dent distinction used by Gentzen [Gen35] in the sequent calculus. Wallen [Wal90]
interpretation is: Instead of distinguishing between formulas in the antecedent Γ
and succedent ∆ by using the sequent symbol ` (i.e. Γ ` ∆), he simply annotates
all formulas that would occur in the antecedent Γ of a sequent (after application
of the appropriate sequent calculus rules) with a negative polarity (−), and
formulas that would occur in the succedent of a sequent with a positive (+)
polarity. The uniform type of a formula describes whether the subformulas into
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ε ε1 ε2

(A⇔ B)− A0 B0

(s = t)− s0 t0

ζ ζ1 ζ2

(A⇔ B)+ A0 B0

(s = t)+ s0 t0

Fig. 4. Uniform Notation (Equivalences and Equations); the major subformulas of
equivalences and equations are of polarity 0 (the undefined polarity)

which the formula would be decomposed after application of the corresponding
sequent calculus rule occur together in the same sequent (i.e. in the same branch
of the proof) or will be parts of different sequents (i.e. different proof branches).
In the former case the formula is assigned the uniform type α while in the latter
case it has uniform type β.

Furthermore, the types δ and γ are assigned to formulas with a quantifier as
topmost logical connective (i.e. formulas of the form Qx.F [x] with Q ∈ {∀,∃}).
Type δ is assigned to formulas which topmost quantifier binds a variable with
an Eigenvariable condition and γ refers to freely instantiable variables. For more
details on the respective variable conditions introduced and maintained by CORE
for these cases we refer to [Aut03].

Negative equations and equivalences are of type ε and their constituents have
undefined polarity. ζ and ε formulas are displayed in Figure 4.

Signed formulas F can be represented as trees where each node is labeled
with a signed subformula of F . For each node n with label N in such a tree we
require that the child nodes of n are labeled with the major subformulas of N .1

This leads to the notion of an indexed formula tree (Ift). The Ift for formula
(1) is given in Figure 5. For a formal definition of an Ift we refer to [Aut03] and
[Wal90].

We say that two nodes of an Ift are β-related (respectively α-related) to
each other if they have a common father (the first common predecessor) that is
labeled with a signed formula of type β (respectively α).

We distinguish between dependent and independent nodes in an Ift.

Definition 2 (Dependent Occurrence) Let a be a node in an Ift R. We say
that a is dependent in tree R if there is a node b in R that is β–related to a.
Otherwise we call a an independent occurrence in R.

It it useful to introduce a partial ordering ≺ on the set of nodes of Ifts:
n1 ≺ n2 if and only if n1 is an ancestor of n2.

Indexed formula trees are used in CORE to represent the quantifier depen-
dencies of a proof state in the following way: When we load a goal formula G
together with axioms Ax1, . . . , Axn from which we want to derive G the system
creates an Ift for the signed formula (Ax1 ∧ . . . ∧ Axn ⇒α G)+. The system
also creates a free variable indexed formula tree (Fvift) for the same formula.
Fvift and Ift together represent a CORE proof state where proof search ma-
nipulates the Fvift while the Ift is used to maintain the dependencies between
quantifiers. The Fvift can be easily obtained from an Ift by simply removing

1 We define F and G to be the major subformulas of F ∧G,F ∨G,F ⇒ G,¬F . Any
Q[x/t] is a major subformula of the formulas ∀x.Q[x] and ∃x.Q[x].
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(((M ∧N) ∧ (M ∧N ⇒ P1))⇒α P2)+

((M ∧N) ∧α (M ∧N ⇒ P1))−

(M ∧α N)−

M− N−

((M ∧N)⇒β P1)−

(M ∧α N)+

M+ N+

P−1

P+
2

Fig. 5. Indexed formula tree for (((M ∧ N) ∧ (M ∧ N ⇒ P )) ⇒α P )+. Subscripts of
literals are added for later reference.

all nodes of type γ and δ. Note that when we remove a node of type γ we must
α-relate its children. For our propositional logic example formula (1) the Fvift
is identical to its Ift displayed in Figure 5.

2.2 Logical Context and Replacement Rules

We have already referred to the concept of a context of a subformula inside a
larger formula. This concept is essential for the understanding of CORE. Making
use of annotations of signed formulas we are now able to give a more precise
definition of the logical context of a formula: two formulas F and G belong to
the same context if they are α-related.

Intuitively, all formulas that would occur together in a sequent calculus
derivation of a goal G belong to the same context. Note that the information
available in Ifts and Fvifts is sufficient to statically determine the logical con-
text of any given subformula.

In CORE we can use the formulas available in the context of a subformula
directly as replacement rules in a proof. We formally define the notion of re-
placement rules as follows:

Definition 3 (Replacement Rules) Let a be a node with polarity p in some
Fvift T . Then i→< v1, . . . vn > is a replacement rule for a, if

1. i is α-related to a by the first common ancestor c, and
2. (a) {v1, . . . , vn} contains exactly those occurrences that are β-related to i

and occur below c (i.e. c ≺ vi), or
(b) v1 and i are left- and right-hand side of a negative equation or equivalence

and {v2, . . . , vn} are all occurrences that are β-related to v1 and i and
occur below c.

A positive (negative) occurrence M+ (M−) without any β-related nodes gener-
ates M− → true+ (M+ → false−) as a replacement rule.

CORE provides a set of 12 ”calculus rules” which can be used to manipulate
Ifts. The rule that is most important for us is the one that applies a replacement
rule to a subformula. We do not formally introduce the complete set of calculus



Interactive Proof Construction at the Task Level 87

rules here and instead refer to [Aut03]. For the realization of the task structure
another aspect of CORE is more important which is known as window inference.

2.3 Window Inference

On top of the calculus rules described above, CORE supports reasoning with a
so called window inference technique which is based on ideas of [RS93]. In this
section we describe this communication layer which makes it possible to focus the
reasoning process to subformulas of the overall goal. This can be done by placing
a window (focus) on a subtree of the Fvift. As a result, the surroundings of
this window are hidden from the user. However, this operation does not alter the
proof state but only restricts the view on it to a particular subtree. The context
of the active window is then made available to the user as a list of replacement
rules.

The window inference mechanism of CORE consists of rules to focus and
unfocus certain subformulas as well as window versions of each of the CORE
calculus rules. It is worth pointing out that these window inference rules do not
extend the reasoning capabilities of CORE. Rather, the window versions of the
calculus rules are internally realized purely based upon the CORE calculus rules
and the rules for opening and closing windows.

Opening and Closing Windows The two basic window rules are those for
opening and closing windows on subformulas (subtrees). By applying these op-
erations to a Fvift we impose a window structure on this tree. As a window
structure for a Fvift R we understand a partial function fR from an enumer-
able set W of unique window identifiers into the set of subtrees of R (i.e. their
roots). Intuitively, when opening a new window w on a subtree r in R then we
add the tuple (w, r) to fR. Closing a window is exactly the inverse operation
which removes a tuple from fR. We will depict a window structure fR on a
Fvift R by drawing boxes around subtrees r for which a window w exists (i.e.
if fR(w) = r). Figure 6 (left) shows the Fvift for P (x)⇒ (Q(x)∧R(x))+ after
opening windows on P (x) ⇒ (Q(x) ∧ R(x))+, P (x)−, and R(x)+ respectively.
Figure 6 (right) shows the same tree with a new window structure where the
window on R(x) is closed.

Windows w that correspond to subtrees f(w) that are maximal with respect
≺ are called active windows. These are the windows that can be manipulated by
application of CORE calculus rules.

Definition 4 (Subwindows) If w is a window in a Fvift R then the set of all
subwindows of w is defined as

Subwindows(w) = {w′|f(w) ≺ f(w′) and w′ is a window in R}

Windows can be closed, provided that they do not contain any subwindows.
Note that opening and closing of windows never affects the Fvift, but rather
the ”view” the user takes on the problem represented by the tree.
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P (x)⇒α (Q(x) ∧R(x))+

P (x)− (Q(x) ∧β R(x))+

Q(x)+ R(x)+

P (x)⇒α (Q(x) ∧R(x))+

P (x)− (Q(x) ∧β R(x))+

Q(x)+ R(x)+

Fig. 6. Sample window structures for the Fvift for P (x)⇒ (Q(x) ∧R(x))+

2.4 Interactive Theorem Proving with CORE

Within CORE the user currently works with the window inference mechanism.
This means that when the user invokes CORE in interactive mode on a goal
G with axioms Ax1, . . . , Axn it assembles an Ift for the formula (Ax1 ∧ . . . ∧
Axn ⇒α G)+ and creates an initial window on G which is presented to the user.
The content of this window can then be altered by applying the window versions
of COREs calculus rules. Typically this will be an application of a replacement
rule. Proof search in CORE is therefore characterized by two major kinds of
choices2:

1. Focus choice: The selection of a subformula in the active window on which
the user wants to focus the proof search.

2. Rule choice: The selection of a replacement rule.

While COREs inference mechanism is in principle well suited for interactive
proof construction, optimal support for focus and rule choice is still challenging.
One challenge is related to rule choice since the context of a formula is currently
available only as a usually long and unstructured list of replacement rules. This
is not what we had in mind when we described the intuitive presentation of
a proof in Section 1. To make things even worse, there are already dozens of
replacement rules even for rather trivial problems. In particular, the number of
replacement rules that can be generated from a subtree of a Fvift is exponential
in the number of nodes in that tree.

This motivates our task structure that allows for presenting the context of
a subformula in an appropriate way, that is, as a list of assertions. The task
structure also supports a uniform application mechanism for the replacement
rules associated with these assertions.

3 Tasks – Organizing Proof Search

Informally, a task is an active window together with the assertions in its con-
text. In the following, we formally define tasks and also introduce a set of rules
operating on tasks. Thes rules realize the transformations needed for intuitive

2 CORE also provides a cut-rule which we do not discuss here.
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interactive proof construction with CORE (see the previous Section). These rules
are in turn implemented via COREs window inference rules. Thus tasks introduce
a new interaction layer on top of COREs window inference mechanism.

The concept of tasks was originally developed in the context of automated
proof construction with Ωmegas [SBF+03] proof planner Multi [Mei03]. The
task structure presented here is an extension and adaptation of this work for
the CORE system. An important new idea is to employ tasks as a common and
uniform interface for automated and interactive reasoning processes simultane-
ously.

3.1 A Calculus for Tasks

Intuitively, tasks denote subgoals together with all the formulas that can be used
to close this subgoal (all formulas that are α-related to the subgoal). Accordingly
a task will simply be defined as a list of windows that all occur in the same
context. However, before we make this intuition formal we transfer the notion
of dependent occurrences to windows.

Definition 5 (Conditional Window) Let w be a window on a subformula F in
a Fvift R. We say that the window w is conditional in R iff the node in R that
is labeled with F is dependent in R. Otherwise we call w unconditional in R.

Definition 6 (Task) Let R be the Fvift of the current proof state. A task T
is a set of annotated windows T = {w1, . . . , wn, g} for R with exactly one goal
window g and support windows {w1, . . . , wn}. Additionally we require that the
following holds if R′ is the smallest subtree in R that contains all windows in T :

1. the subtrees denoted by the w1, . . . , wn are α-related between each other,
2. all support windows of T are unconditional in R′.

We denote tasks T = {w1, . . . , wn, g} with goal window g as w1, . . . , wn�g. This
notation is a horizontal version of the vertical representation of Figure 1.

Selecting one window as the goal window plays a role when reasoning inter-
actively. The idea is that in an interactive proof only the goal window can be
manipulated and therefore we will introduce a shift-rule for the explicit exchange
of the goal window of a task.

Here we find an important difference to the sequents in the sequent calculus.
In the sequent calculus it is relevant on which side of ` a formula occurs. In
CORE this information is already encoded in the polarities of each formula. We
can therefore freely exchange the order of windows in a task. This also motivates
the decision to define a task as a set of windows. Also note that a task Σ, ap�aq

does not necessarily correspond to an initial sequent in the sequent calculus
because the a′s might have the same polarity (i.e. p = q).

The constraint that no support window of a task must be conditional is
important because the content of support windows will be presented to the user
as some directly available knowledge that can be used to derive the formula in
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the goal window of the task. If the content of the support windows would be β-
related to subtrees that lie outside the respective window, then these trees would
automatically become conditions for any replacement rule that is generated from
this window; that is, the β-related subtrees would represent implicit ”knowledge”
which will be introduced in form of new proof obligations. We assume that this is
less suited for interactive proof construction as the user might want to be able to
see whether certain formulas in the context are dependent on further formulas,
before applying them in the form of a replacement rule.

As an example consider the formula (D+ ⇒β (s = t)−)− ⇒α B[s]+. Without
the requirement that support windows must be unconditional we could generate
the following task for the above formula: (s = t)− � B[s]+. However, although
this task gives the impression that the equation s = t could be used directly to
transform B[s] to B[t], this is not the case, as s = t is dependent on D+ and
hence the replacement rule s →< t,D+ >, instead of s → t has to be used to
carry out the transformation.

Because tasks are basically representations of subgoals we next define when
a task is closed.

Definition 7 (Closed task) A task Σ�G is closed iff there exists a w ∈ Σ∪{G}
such that w denotes a proved subtree; that is, w is either true+ or false−.

The initial problem to derive a goal G from axioms Ax1, . . . , Axn is repre-
sented by the system as a Fvift for the signed formula (Ax1∧. . .∧Axn ⇒α G)+.
The initial task then contains a window for the goal formula G as the goal for-
mula and one window for each of the axioms as supports. This motivates the
following definition of an initial task.

Definition 8 (Initial Task) Let G be a formula and Ax1, . . . , Axn formulas that
represent axioms from which G should be derived. Let further R be a Fvift for
(Ax1 ∧ . . . ∧ Axn ⇒α G)+, wi a window on Axi and g a window on G, then
w1, . . . , wn � g is the initial task for G.

From now on we will not distinguish anymore between a window and the
formula it contains when we represent tasks. Hence, the initial window for G
with axioms Axi will be represented as Ax1, . . . , Axn�G. Note that this implies
that we can encounter tasks of the form Σ,Ap, Ap �G. In this case the Ap are
syntactically equal formulas that occur in different windows. However, because
we are dealing with windows, rather than formulas we have to treat the Aps as
different entities.

A goal window of type β can be split into two tasks by decomposition of the
goal formula. We always keep track of all tasks that are created during a proof
attempt with the help of an agenda.

Definition 9 (Agenda) An agenda is a set of tasks. An initial agenda is an
agenda that contains only the initial task for a goal G.

Tasks in the agenda can be manipulated by decomposition of the goal window,
application of a replacement rule to the goal formula, closing of the window on
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Σ � α(ApA , BpB )

Σ,BpB �ApA
αL

Σ � α(ApA , BpB )

Σ,ApA �BpB
αR

Σ � α((¬(A−p))p)

Σ �A−p
α¬

Σ � β(ApA , BpB )

Σ �ApA Σ �BpB
β

Σ�

δ
γ ((Πx.F [x])p) Π ∈ {∀, ∃}

Σ � F [x]p
γδ

Σ �G[ApA ]

Σ1 �ApA Σ2 �G1, . . . , Σn �Gn
Focus

Σ �G G′ = Parent(G)

Σ �G′ Subwindows(G′) = ∅ FocusClose

Σ, F �G

Σ,G� F
Shift

Σ � �
∅ Close

Σ � i
Σ, i� v1 . . . Σ, i� vn

Apply(i→< v1, . . . , vn >)

Σ �G

Σ,A− �G Σ �A+
Cut(A)

Fig. 7. The task manipulation rules. The rules αL, αR, α¬, and β are subsumed by
the rule Focus.

the goal formula, or selection of a different goal window (Shift). In Figure 7 we
introduce a set of rules that allow us to perform exactly these manipulations.
The rules are of type rule : TASKS → 2TASKS , that is, by application of a rule
to a task this task is replaced in the agenda by zero or more tasks. Hence, these
rules can only be applied in forward direction. We now investigate each of these
rules in turn.

α-decomposition Decomposition of a goal formula of type α is the simplest of the
task manipulation rules. It realizes the decomposition of a task with a disjunctive
goal formula. In order to decompose a formula α(ApA , BpB ) new windows on the
ApA and BpB have to be opened and one new window has to be chosen as the
new goal window. To be able to select either subwindow as new goal window we
define three rules: αL, αR, and α¬.

β-decomposition Decomposition of a task with a goal formula β(ApA , BpB ) will
lead to a split of the task into two tasks with goal formulas ApA and BpB

respectively. This is realized through rule β.
β-decomposition requires a little more effort than α-decomposition. The rea-

son is that there must be no conditional support windows in a task. That is,
after decomposition of a goal formula β(G1, G2) the constituents G1 and G2 can
only become support windows if we make them unconditional when applying
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α

Σ (A ∧β B)+ ∨α (C ∧β D)+

(A ∧β B)+

A+ B+

(C ∧β D)+

C+ D+

Fig. 8. Fvift for the task Σ, (A∧B)+
� (C ∧D)+. Dashed lines indicate existing but

inactive windows.

β

α1

Σ (C ∨α (A ∧B))+

C+ (A ∧β B)+

A+ B+

α2

Σ (D ∨α (A ∧B))+

D+ (A ∧β B)+

A+ B+

Fig. 9. A logically equivalent Fvift to the one in Figure 8. This tree would result from
the decomposition of the tree in Figure 8 if we realize the β-decomposition with the
help of the Schütte-rule. The left subtree below α1 corresponds to task Σ, (A∧B)+

�C+

while the subtree below α2 represents task Σ, (A ∧B)+
�D+.

β-decomposition. This can be done by splitting up the goal formula β(G1, G2)
while retaining the context ϕ around it. We can achieve this by applying a rule of
the form ϕ(β(A,B))→ β(ϕ(A), ϕ(B)) which is described in [Sch77] and [Aut03].
Autexier [Aut03] shows that this Schütte-rule is admissible in the CORE calculus.

To see why we need the Schütte-rule, consider a task Σ, (A∧B)+
�(C∧D)+.

A Fvift for this task is shown in Figure 8. If we implement the β-decomposition-
rule with the help of the Schütte-rule we not only change the window structure
of the Fvift as we do with the α-decomposition-rule, but we also change the
Fvift itself. For instance, if we β-decompose the goal window (C ∧ D)+ we
obtain the new Fvift in Figure 9.

We see that the task Σ, (A ∧ B)+
� C+ corresponds to the minimal Fvift

R1 with root-node α1 and task Σ, (A∧B)+
�D+ is represented by the minimal

Fvift R2 below α2 (cf. Figure 9). It is important to note that C+ and D+

are unconditional in the respective trees R1 and R2. Hence, we can easily make
them support windows of a task. This will be important below when we define
the Shift-rule.

γ− and δ-decomposition Focusing on the major subformula of a γ- or δ-formula
does not change the set of assertions in the context of this formula. It only has
an effect on the variable conditions maintained by CORE.

Compound Decomposition Steps The single decomposition rules above can be
combined in a macro-rule that allows us to focus directly on a particular sub-
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formula Ap inside the goal window of a task. The uniform types of the nodes
in a Fvift that occur on a path between the selected subformula Ap and the
root G[Ap] of the goal window uniquely define a sequence of decomposition steps
that need to be applied in order to obtain the chosen formula as a goal window
in a single step. The macro-rule Focus therefore provides great freedom in the
selection of subwindows and simultaneously keeps track about the generated
subgoals Σ2 �G1, . . . , Σn�Gn that appear as new tasks in the agenda. Accord-
ingly, the Focus-rule can replace the rules αR, αL, α¬, β, and γδ since they are
now subsumed.

FocusClose It is often necessary to undo a decomposition of the current goal
window of a task, which has to be realized by closing the focus of the goal
window G and with it, all other foci below the parent of G. The FocusClose-rule
provides exactly this functionality. Note that the FocusClose-rule allows us to
undo decomposition steps. Closing windows below a node of type α is easy. To
close children below a β-node we need to use a reversed Schütte-rule.

The Shift-rule The Shift-rule changes the goal formula of a task. This is par-
ticularly important because the rules defined here only allow for manipulation
of goal windows. Consider for instance a situation where we have a window on
a formula Ap and a window for (A ⇔ B)− amongst the support windows for a
goal G; that is, Σ, (A ⇔ B)−, Ap � G. If we now want to apply A ⇔ B in a
forward step to Ap we first have to make Ap the goal window. This can be done
with the Shift-rule.

Because we realized β-decomposition with the Schütte-rule we can ensure
that goal windows are always unconditional which is a prerequisite for the above
definition of the Shift-rule.

Closing tasks Tasks are removed from the agenda in case they are closed. This
is done by the Close-rule which deletes any task Σ � � from the agenda, where
� ∈ {true+, false−}.

Replacement Rule Application The way tasks are defined, all replacement rules
for a goal window can be generated from the support windows of a task. In
the rule Apply which applies a replacement rule to a task we to ensure that no
”information” gets lost. To see what is meant consider a task of the form

Σ,G+, (A+ ⇒β B−)− �A−

The window on (A+ ⇒β B−)− justifies the replacement rule A− → B−. In-
tuitively, application of the replacement rule to A− should yield an additional
window on B− such that the task that results from application of this rule is
Σ,A−, G+, (A+ ⇒β B−)− � B−; i.e application of the rule should not remove
A− from the task. However, merely applying this rule to A− would replace A−

by B−, which would yield Σ,G+, (A+ ⇒β B−)− � B−. This is not quite what
we want since we might need to make use of A− again.
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The solution to this problem lies in the application of the contraction rule to
the goal window; that is, we copy the goal window before the application of the
replacement rule.

The way the rule is defined here can only be applied to the topmost occur-
rence i in a goal window and not to subformulas of i. However, this is no problem
since we can always focus on a subterm with rule Focus first. Alternatively the
rule can easily be extended to operate on subformulas of i as well.

Cut-rule The introduction and speculation of new lemmata plays an important
role for interactive theorem proving. For this we introduce the rule Cut. This rule
allows to introduce a lemma A into the context of a goal G. As a consequence,
a new task with the goal to prove that lemma is generated. Implementation of
this rule in CORE is quite straightforward as CORE already provides a cut-rule
which we can use directly at the task level when we update the window and task
structure.

3.2 Tasks in Interactive Proof Search

Tasks enable a compact presentation of a proof situation. Instead of listing all
replacement rules that can be generated from the context, the support windows
give us access to the assertions which we can list line by line on top of the GUI
screen, followed by the goal window at the bottom. Such a presentation of a
task is meant to resemble the presentation of proofs in mathematical textbooks,
where available assertions (axioms and definitions, etc) are mentioned before the
theorem is stated3.

In a system state where the user is shown the current task he has the following
options to continue the proof. He can either focus on parts of the goal formula
(this includes simple as well as compound decompositions) or apply any other
of the task manipulation rules. Application of one of the assertions that are
represented by the support windows are realized with the Apply-rule by simply
clicking on the respective formula. The system then presents all replacement rules
that can be generated from the chosen support window. It is then the choice of
the user to identify the replacement rule that encodes the preferred application
direction of the assertion. This is already an improvement to the situation where
the user was presented with all replacement rules for the current window; that
is, the replacement rules generated from all formulas in the context.

However, it is possible to do even better. For many of the rules that can
be generated from a single support window in a task, one can see in advance
that they are not applicable in the goal window. For other rules it is likely that
they do not represent a suitable application of the formula from which they were
generated. As a consequence, the system currently uses a heuristic to generate
only those rules that are likely to represent the intended application direction of
the assertion (see Section 4).
3 Of course, in mathematical texts this is often done implicitly or indirectly in the

sense that the available mathematical knowledge is referenced by stating the theory
or domain context of a proof problem.
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Fig. 10. GUI of the CORE system. The initial task for the example from Section 4 is
shown in the window on the right-hand side.

Hübner[Hüb03] describes how replacement rule selection can be supported
by the agent-based suggestion mechanism ΩAnts which was until now only used
in conjunction with the Ωmega [SBF+03] theorem proving system and has now
been adapted to this new environment which will provide the basis for the next
generation of Ωmega.

4 Tasks - A Worked Example

In this section we illustrate interaction at the task layer at hand of an example.
The proof problem is given as4

Theorem 1 For sets A and B with A ⊆ B holds that 2A ⊆ 2B.
This statement is encoded as:

∀A,B.A ⊆ B ⇒ 2A ⊆ 2B (G)

We assume that the following axioms defining ⊆ and 2M are given:

∀M,N.M ⊆ N ⇔ (∀z.z ∈M ⇒ z ∈ N) (Ax1)

∀X,M.X ∈ 2M ⇔ X ⊆M (Ax2)
4 We use 2X to denote the powerset of a set X.
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4.1 A Natural Deduction Proof

We first sketch a natural deduction proof of the above proof problem which will
then be compared to the proof we construct at the task layer. Our natural de-
duction proof can be divided into 6 different parts as indicated by the boxes
B1–B6 below. The conceptual steps addressed in these boxes are indicated by
their headlines. Some subproofs employ derived rules (tactics), such as Transi-
tivity of ⊆ or subsequent applications of ∀I with ∀∗I . Hence, they expand to even
larger proofs in a pure natural deduction calculus.

B1 We start with goal G and focus on the right hand side of the implication.
[a ⊆ b]1....
2a ⊆ 2b

a ⊆ b⇒ 2a ⊆ 2b
⇒1
I

G
∀∗I

B2 Then we apply the definition of ⊆ as given in Ax1.
Ax1

2a ⊆ 2b ⇔ (∀z.z ∈ 2a ⇒ z ∈ 2b)
∀∗E

2a ⊆ 2b ⇐ (∀z.z ∈ 2a ⇒ z ∈ 2b)
⇔El

[a ⊆ b]1....
∀z.z ∈ 2a ⇒ z ∈ 2b

2a ⊆ 2b
⇒E

B3 We focus on the right hand side of the implication of the current subgoal.
[a ⊆ b]1
[c ∈ 2a]2....
c ∈ 2b

c ∈ 2a ⇒ c ∈ 2b
⇒2
I

∀z.z ∈ 2a ⇒ z ∈ 2b
∀I

B4 We apply the definition of 2M as given in Ax2.

Ax2
c ∈ 2b ⇔ c ⊆ b

∀∗E

c ∈ 2b ⇐ c ⊆ b
⇔El

[a ⊆ b]1
[c ∈ 2a]2....
c ⊆ b

c ∈ 2b
⇒E

B5 We apply transitivity of ⊆.
[a ⊆ b]1
[c ∈ 2a]2....
c ⊆ a [a ⊆ b]1

c ⊆ b Transitivity-of- ⊆



Interactive Proof Construction at the Task Level 97

B6 We finish the proof by applying the definition of 2M once more.
Ax2

c ∈ 2a ⇔ c ⊆ a ∀
∗
E

c ∈ 2a ⇒ c ⊆ a
⇔Er [c ∈ 2a]2

c ⊆ a
⇒E

4.2 A Proof at Task Layer

At task layer the natural deduction derivations described in B1-B6 collapse into
single interactions. We present tasks as in Figure 1, that is, each support window
is displayed in one line and the content of the goal window is shown below the
supports.

In Figure 10 we can see that the presentation of tasks we use here is very
similar to the way they are actually presented in the current GUI of our system.
In the GUI we are experimenting with different colored formulas to indicate the
polarities of formulas in order to improve readability.

The initial task of our proof problem is:
[

(Ax1) (M ⊆ N ⇔ (z ∈M ⇒ z ∈ N))−

(Ax2) (X ∈ 2M ⇔ X ⊆M)−

]

(A ⊆ B ⇒ 2A ⊆ 2B)+

(4)

The first step is straightforward: we focus on the right hand side of the implica-
tion and obtain





(Ax1) (M ⊆ N ⇔ (z ∈M ⇒ z ∈ N))−

(Ax2) (X ∈ 2M ⇔ X ⊆M)−

(3) (A ⊆ B)−





(2A ⊆ 2B)+

(5)

where (A ⊆ B)− occurs now as a new support window. Next we apply the
definition of ⊆ to the goal formula (2A ⊆ 2B)+. In the GUI this is done by
clicking on the assertion formula Ax1. In general, the problem of determining
the applicable rules involves higher-order unification and is hence not decidable.
We are therefore employing a heuristic approach that computes for the selected
formula a set of replacement rules that are “most likely” appropriate, that is, we
currently employ an imperfect filter. From the suggested rules the user then has
to select one rule for application. For the given situation the heuristic computes
the single applicable rule (i.e. (M ⊆ N)+ →< (z ∈ M ⇒ z ∈ N)+ >). The
application of this rule results in the new task:





(Ax1) (M ′ ⊆ N ′ ⇔ (y ∈M ′ ⇒ y ∈ N ′))−
(Ax2) (X ∈ 2M ⇔ X ⊆M)−

(3) (A ⊆ B)−





(z ∈ 2A ⇒ z ∈ 2B)+

(6)



98 Malte Hübner, Christoph Benzmüller, Serge Autexier and Andreas Meier

Note that although the application of the replacement rule generated from Ax1
has instantiated the variables M and N , we now have an uninstantiated ver-
sion of Ax1 with fresh variable copies M ′ and N ′ in the supports. From now on
we always assume that after application of an assertion we have an uninstanti-
ated version in the supports, without indicating this explicitely. In the system
these fresh copies of applied and thus instantiated assertions are automatically
generated by CORE.

In a next step, we apply Ax2 to the subformulas z ∈ 2A and z ∈ 2B respec-
tively. After clicking on the assertion Ax2 the system suggests to apply the rule
X ∈ 2M →< X ⊆ M > where we merely have to determine the application
position, that is, (z ∈ 2A) or (z ∈ 2B). We apply it first to the former and then
repeat the step and apply to the latter subformula. We obtain the new task:





(Ax1) (M ′ ⊆ N ′ ⇔ (y ∈M ′ ⇒ y ∈ N ′))−
(Ax2) (X ∈ 2M ⇔ X ⊆M)−

(3) (A ⊆ B)−





(z ⊆ A⇒ z ⊆ B)+

(7)

We now focus on the right hand side of the implication in the new subgoal and
obtain:









(Ax1) (M ′ ⊆ N ′ ⇔ (y ∈M ′ ⇒ y ∈ N ′))−
(Ax2) (X ∈ 2M ⇔ X ⊆M)−

(3) (A ⊆ B)−

(4) (z ⊆ A)−









(z ⊆ B)+

(8)

The rest of the proof consists now in showing (or, if available, applying a lemma
for) the transitivity of ⊆.

4.3 Discussion

The previous example illustrates that whole proof blocks in natural calculus
are replaced by single and far more intuitive steps at task layer (which are
probably in a different order). In summary, we can identify the following three
main advantages of the task layer for interactive proof construction:

– It allows to conduct proofs in a way that resembles natural deduction style
proofs while at the same time it hides many distracting details of the natural
deduction level. Assertion formulas can now be applied to the goal window
in a uniform way with the help of simple mouse clicks in the GUI.

– Proofs at the task layer are much shorter and fewer interactions are required.
For instance, we do not need to apply quantifier elimination rules because
this is done implicitly by CORE. Focusing onto subformulas is realized as
single steps, which are ideally realized again in the GUI by simple mouse
clicks.
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– Tasks allow us to present assertions in an intuitive way to the user. This
is a prerequisite for fruitfully supporting the above aspects. In combination
with the fact that many branchings of the proof are avoided (cf. backward
application the⇒E-rule) this supports a convenient way to construct proofs.

Further aspects are:

– Since the task level is simply an additional, independent layer on top of
CORE soundness of our approach is guaranteed by the underlying CORE
system (see [Aut03]).

– Proof methods and automated theorem provers can be easily defined and
added to the system to support automated proof construction (see [Hüb03]).
This means that tasks can not only be manipulated by application of de-
composition and basic rewriting steps but also through application of macro-
steps that are described as proof methods.

Work in the direction of intuitive proof presentation and manipulation has
been described by Bertot et al. [BKT94]; they show how to focus in a sequent
calculus proof to certain subformulas. However, although the approach goes into
the right direction it is still very tightly connected to the sequent calculus.

5 Conclusion and Future Work

We have introduced task structures as an intuitive front end for interactive
theorem proving based on the CORE system. Our approach is not committed to
a particular underlying calculus and it supports very flexible proof construction.
This is different to the proof by pointing approach which is strongly connected to
the sequent calculus. In Section 4 we have illustrated how explicit decomposition
of assertions as required in sequent and natural deduction style calculi is replaced
by a uniform application mechanism that avoids decompositions.

In a next step we will now evaluate how well the task transformation rules are
suited to model human proofs in the domain of naive set theory. Benzmüller et al.
[BFG+03a,BFG+03b] have collected in an experiment on tutorial dialogues with
a mathematical assistant system a first corpus of proofs in this domain against
which we want to evaluate the naturalness of the task manipulation rules. We
also want to investigate whether assertion application at the task layer can be
further improved by stronger and better filter; see for instance [VBA03] for
ongoing work.
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Abstract. We describe a set of new features, whose design is partially
motivated by the features of modern programming environments, that
has been developed for the PVS theorem prover. We also discuss in detail
how these features can be added to other theorem proving environments
that use Emacs as a front-end. The major contribution is an integrated
lexer and parser (constructed with the semantic Emacs package) for the
PVS language that makes Emacs context-aware. This framework auto-
matically enables a broad set of new functionality including the ability to
browse PVS constructs (declarations, theories, types, proofs, etc.), quick
access to construct definitions in three new ways (a short-cut sidebar,
menus, or implicit hyperlinks), contextual help, and context- and type-
aware completion. Other new features discussed include the ability to
visually expand and collapse structured elements of specifications and
sequents, the graphical representation of language elements (with little
impact on the ability to cut-and-paste terms), and a user-extensible,
type-aware pretty-printer that has been added to the PVS prover.

1 Introduction

The user interfaces (UIs) of modern, popular theorem provers provide all the
core functionality necessary to write specifications and perform proofs. Unfor-
tunately, most of these features seem to focus on the mathematics, rather than
the mathematician.

Only the most advanced UIs provide features approximating those of the
rudimentary programming environments of a decade ago (e.g., symbol comple-
tion, syntax highlighting, and basic documentation lookup). As a result, theorem
prover users, especially those that are also prolific programmers, have begun to
demand many of the features of modern integrated development environments
(IDEs).
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Because the design of most theorem proving environments decouples the UI
from the prover, there is some “modality impedance” between the two domains.
For example, the UI is unaware of the user’s intent in all but the most general
fashion. This impedance exists because nearly all of the “intelligence” of these
tools is in the prover, rather than the UI.

We suggest that the generic facilities, both conceptual and technical, of ad-
vanced programming environments (like those available for working with pro-
gramming languages like C++ and Java) are applicable to the UIs of modern
theorem provers. To that end, this paper discusses our initial work in improving
the user interface of PVS. Our subgoal is not to force the user to work in a new
way, but only provide a generic set of new features that can help users write
specifications and perform proofs.

Our primary contribution is that we have made the PVS UI aware of the
semantic context in which the user is working. The PVS UI has been augmented
by adding a front-end lexer and parser for the full PVS language. This infrastruc-
ture represents high-level PVS constructs (declarations, theories, types, proofs,
etc.) in a generic fashion. This generic representation enables the use of a wide
range of new tools previously available only to traditional programmers using
modern Integrated Development Environments.

The new functionality available through this parser-based approach includes
a construct browser, quick access to construct definitions via a short-cut sidebar,
menus, or implicit hyperlinks, contextual help, and context- and type-aware
completion.

We have also added other new functionality to both the PVS UI as well as
the prover itself. In addition to the previously mentioned ones, the UI has two
new features. First, we have added the ability to visually expand and collapse
structured elements of specifications and sequents. Second, language elements
can be represented graphically rather than textually, but with little impact on
the ability to cut-and-paste terms. Finally, a user-extensible, type-aware pretty-
printer has been added to the PVS prover.

1.1 Related Work

Other environments provide some of the features that we have added to PVS.
To our knowledge, none provide all of them as a coherent unit, nor do any use
an integrated parser to enable the features we discuss herein.

Mathematics Environments Mathematics environments provide interactive
UIs. Most theorem proving environments come from a bare-bones tradition. Most
effort is spent focusing on the mathematical rather than visual infrastructure.
Until recently, with the growing adoption of Proof General [2], interfaces were
nothing more than glorified command-lines [15].

We regard Proof General and PVS as the most widely used environments
with the most advanced UIs. Both use Emacs as a front-end, so much of their
power is simply a side-effect of that choice. Features like syntax highlighting,
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completion, and hypertext documentation are examples of such pleasant side-
effects. Neither Proof General nor, obviously until now, PVS has the features
that we discuss in the following pages.

Some theorem proving environments like Jape and CtCoq have been used
as UI/HCI testbeds [4, 5, 15]. Many of the innovations that were originally in-
troduced in specialized environments have now found their way into general
purpose front-ends (e.g., proof-by-pointing in Centaur and CtCoq is now avail-
able in ProofGeneral, the PPML-based layout and pretty-printing facilities of
CtCoq are partially functionally reproduced in some of this work, etc.).

General purpose computation environments, particularly quality commercial
environments like Mathematica, Maple, and Matlab, have rich UIs. It is not
uncommon to provide WYSIWYG-ish interfaces that use mathematics fonts
and provide direct editing of terms with a point-and-click, drag-and-drop UI.
While we are not attempting to duplicate such fancy UIs, we should note their
visual features are compelling and inspirational, but their editing features and
flexibility are actually inferior to most sophisticated environments like those we
mentioned above. We plumb the features of these commercial environments like
any other quality pool of UI ideas.

Coupling an advanced UI like that of Mathematica to a prover like PVS is
an interesting experiment [1]. But, as neither tool was designed as a reusable
component, such coupling would be difficult. Instead, we try to learn from these
advanced mathematics environments, borrowing the features that we find most
useful in our day-to-day work.

Programming Environments Modern programming environments3, contrary
to theorem proving environments, provide a large, rich set of UI features. Com-
mon features that are not specific to traditional (non-mathematical) program-
ming (that is, they might be applicable to mathematical systems like theorem
proving environments) include code browsing, automatic code and documen-
tation formatting, type-aware and template-based completion, general project
management, and integrated help, API documentation, process tracking, and
revision control support.

Many currently popular environments have recently added refactoring func-
tionality [7, 14]. Refactoring is the process of changing the implementation of a
system in order to improve some aspect of the implementation while preserv-
ing its capabilities. Examples of refactoring include safe renaming of program
features (variables, functions, methods, etc.), function extraction and insertion,
and safe modification of feature visibility (e.g., making a public variable private,
automatically writing getter and setter methods, and automatically inserting
these methods at all program locations that access the original public variable).

3 Some of the tools with which we have experience and from which we borrow ideas
include Borland’s jBuilder and Together ControlCenter, Eclipse, Eiffel Studio, In-
telliJ IDEA, jEdit, Metrowerks CodeWarrior, NetBeans, Oracle9i JDeveloper, Sun
ONE Studio, and the various “Visual*” tools (i.e., Microsoft’s Visual Studio, IBM’s
VisualAge, WebGain’s Visual Café).
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We believe that each new feature, after it has seen moderate success in the
mainstream programming community, should be evaluated as a potential addi-
tion to theorem proving UIs. This work is the initial result of such an evaluation.

While we have evaluated features from over a dozen modern IDEs, we should
note that the tool with which we have the most experience, and to which we
always return after experimenting with these other environments, is, of course,
Emacs.

2 The Semantic Package

Adding the new capabilities we had envisioned to the PVS UI requires one
either (a) write PVS-specific functionality for Emacs or (b) rely upon a generic
language-based framework that enables the use of existing and future tools based
upon the framework. With an eye toward saving time, increasing reliability, and
taking advantage of the hard work of other Emacs enthusiasts, we choose option
(b). And, after evaluating the various generic framework’s available for Emacs,
we chose to use the semantic package.

The semantic package (a collection of related code) for Emacs is used to
build lexers and parsers in Emacs Lisp (elisp) [12]. To use the semantic package
with a new language, thereby enabling all semantic package-based tools (which
we discuss at length in Section 4), one must write a grammar specification of
the language. We discuss the process of adding a new language to the semantic
package in Section 3.

The semantic package includes, at its core, a lexer generator, and a compiler
compiler, or what is known as a bovinator in the semantic package’s nomencla-
ture. The core utility is the semantic bovinator which has similar capabilities
to the GNU bison compiler compiler [6]. Since the semantic package was not
designed to be as feature rich as these tools, it uses the term “bovine” for cow,
a lesser cousin of the yak and bison.

Recent versions of of the semantic package (mid-2003) include a second com-
piler compiler called wisent (the European bison), which is effectively a full GNU
bison implementation in elisp. The work described in this paper does not yet
use wisent.

We chose to use the semantic package because once a language has been
added to the it, many powerful tools become available for use. Essentially, by
relying upon a generic foundation, we enable

3 Adding Support for the PVS Language to the Semantic
Package

To enable all of the semantic package-dependent tools available for Emacs we
must write PVS language support for the semantic package. First, a PVS lexer
must be created that properly tokenizes the PVS language to a format that the
semantic package parser understands. Then, a PVS parser must be created that
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generates an abstract representation (an s-expression that represents a parse
tree) of the lexed input in a form that the semantic package’s tools understand.

This section covers the details of this process, thus only need be read by
developers of Emacs-based theorem proving environments who wish to enable
semantic package-based tools for their environments. General readers interested
in the new features of the PVS UI should feel free to skip to Section 4.

3.1 Lexing

The first step of parsing is to break up the input file into its fundamental com-
ponents, known as tokens. This process is called lexing. The output of a lexer is
a sequence of tokens.

Token Specification Each language has a core set of structures that must be
specified to construct a lexer. First, every language has a set of keywords, symbols
with special meaning within the language. Second, basic types like identifiers,
strings, characters, and floating point and integer numbers all have a standard
representation. Finally, comments have a particular structure.

Other syntactic tokens that need be considered include quoted characters,
opening and closing parenthesis-like constructs (e.g., ‘(’, ‘)’, ‘{’, ‘}’, ‘[’, ‘]’, etc.),
comment prefix and suffixes, newlines, punctuation, strings, symbols, and whites-
pace. A few of these constructs have particular importance in some languages,
so we will examine them in more detail.

Values. The structure of basic values like numbers are specified in the semantic
package using regular expressions. For example, numbers in PVS are simply se-
quences of the digits 0 though 9. The default number lexer in the semantic pack-
age will lex values like those in the C and Java programming languages (numbers
with an optional minus sign, in decimal, hexadecimal, and octal, floating point
numbers, numbers in exponential notation, etc.), which is inappropriate for PVS
number value parsing. The structure of PVS’s numbers are specified by setting
the variable semantic-number-expression to value “(<[0-9]>+)”. This regu-
lar expression means “match any contiguous sequence of the digits 0, 1, . . . , 9
as a single token”.

Symbols. The default definition for a symbol in the semantic package is a se-
quence of characters and underscores. PVS’s symbols can include question marks
as well, thus the definition of symbol is also replaced.

Punctuation. The notion of “punctuation” in the semantic package is defined as
“any token that is exactly one character long”. PVS has a large set of special
symbols that are more than one character long, but because of this limited
definition of punctuations, they must be parsed by basic grammar rules rather
than handled within the lexer.
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For example, one would normally consider the PVS operator “##” as punctua-
tion, but instead it must be parsed with the trivial rule “HASH HASH : HASH HASH ;”
where HASH is the token ‘#’.

Parenthesis-like operators also must be single characters. Thus, PVS’s multi-
character operator pairs like “{|” and “|}” must be lexed in the same fashion.

Whitespace. Whitespace is usually one of those things that one can ignore when
parsing. Unfortunately, some programming languages, like Python, given se-
mantics to whitespace [20]. In the case of Python, nesting level and scope are
determined by whitespace indentation. The semantic package can handle such
situations via a built-in flag that changes the manner in which the lexer handles
whitespace. Fortunately, whitespace in PVS can be wholly ignored.

Comments. The final issue that must be addressed is comment specification. If
comments are not important to parsing (i.e., they have no semantics), then the
semantic package’s lexer must only know how comments start and end. Other-
wise, we must specify to the semantic package that there are no comments in the
language being lexed and write production rules for the grammar of comments.
We currently use the former strategy when parsing PVS, noting to the semantic
package that PVS comments begin with the ‘%’ character and continue until the
end of the line.

Case Distinction. The default behavior of the semantic package’s lexer is to
match keywords in a case-sensitive fashion. This behavior is controlled by the
variable semantic-case-fold.

PVS is a strange language with regards to case-sensitivity (partially by de-
sign, and partially by the case-sensitivity features of Allegro 6). In PVS 3, key-
words are case insensitive, but all other symbols are case sensitive [16]. Currently,
we lex in a case-sensitive fashion and provide a function that will indicate if any
keywords are used in a non-standard lowercase or mixed-case fashion.

Semantic Lists The semantic package must understand parenthesis-like struc-
tures because it handles lexing of such structures specially. When lexing takes
place, a “depth” is specified. If depth is not specified, then all parenthesized se-
quences of tokens are elided into semantic lists. That is, every sequence of input
symbols “( t0 t1 . . . tk )” is represented by exactly one token.

This elision is done for two reasons: speed and refinement. Ignoring all tokens
between pairs of parenthesis-like constructs means that the lexer can be very fast.
Low level structures like mathematical expressions, and medium-level structures
like delimited code blocks (e.g., curly braced-delimited code blocks in most Algol-
like programming languages) are simply not important to understanding the
high-level structure of a document—and understanding such structure is the
whole point of the semantic package.

When the depth of parsing is specified (by a non-negative integer value), then
all semantic lists up to and including that nest depth are lexed. That is to say,
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if depth is 2, then every top level parenthesized expression e, and any outermost
parenthesized expression contained in e, is lexed. All deeper expressions continue
to be lexed as semantic lists. Such a lexing strategy lets us refine lexing depth on
demand, only lexing (and thus parsing) the details of an input file as necessary.

This combination of refinable, fast lexing is necessary because, as we will dis-
cuss later, the semantic package’s lexer and parser is often running continuously
while a user edits a file.

Building a Lexer A “major mode” in Emacs is a set of customizations specific
to editing text of a particular sort. For example, major modes exist for editing
Java, C, LATEX, Texinfo, etc. Happily, the PVS system comes with a basic major
mode for the PVS language. Thus, most of the work is done for us.

Building a lexer with the semantic package can be quite easy. If Emacs sup-
ports the input language with a “major mode”, then the job is trivial. If a major
mode does not exist for the input language, a basic one can be written in just a
few lines of elisp.

The semantic package uses the major mode’s syntax table (a definition of
which characters are opening deliminters, which are parts of words, which are
string quotes, etc.) for the basic definition of language tokens. This information
is augmented by the grammar author via an explicit specification of keywords
and punctuation.

For example, for the PVS language we have the following specification:

%token AND "AND"

%put AND summary

"Binary logical operator; typically conjuction:

<expression> AND <expression>"

...

%token LEFT_BRACE open-paren "{"
%token RIGHT_BRACE close-paren "}"
%token SEMI_COLON punctuation ";"

The first line specifies that the token “AND” is represented in BNF by the
shorthand symbol AND. Additionally, attached to this symbol is a string that
is tagged as a “summary”. (We’ll discuss summaries in Section 4.1.) Left and
right curly braces are specified as open and close parenthesis-like structures with
the open-paren and close-paren token types. Lastly, semi-colon is specified as
punctuation.

The structure of the values of the basic types of the input language must be
specified to the semantic package’s lexer so that values will be lexed properly.
For example, if strings are delimited with unusual characters, or as discussed
earlier, numbers are not written as in the C programming language, extra work
is necessary to denote such.

Once all of these definitions are written, the lexer is complete. There is no
explicit “create lexer” function, it is encapsulated in the parser construction
discussed in the sequal.
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The primary entry point for the lexer is the semantic-flex function. Nor-
mally, it is never called by a user, as it is usually called by the parser auto-
matically. Only when debugging the lexer is it necessary to manually call this
function. See Section 3.3 for details.

3.2 Parsing

To parse a language with the semantic package a BNF specification, much like
those written for use with the GNU bison tool, must be written. This speci-
fication has all the standard parts of a compiler compiler input file: a prelude,
a description of terminals and non-terminals, production rules, etc. Production
rules for the semantic package are written in elisp. The BNF specification is
compiled using the bovinate function into a parse table. This table is used to
drive parsing; the BNF is simply a convenient input format for the grammar
author.

For some languages it is difficult, if not impossible, to write a BNF gram-
mar. In such situations, contextual information can be collected during parsing
to help make parsing decisions, or alternative parser infrastructures can be used
to generate parse trees. For example, the semantic package includes a regular-
expression-based parser for the Texinfo documentation language, whose gram-
mar cannot be specified with BNF [12].

The semantic package comes with BNF grammars for the C, C++, Emacs
Lisp, Erlang, Java, Scheme, and Makefile languages. It comes with wisent gram-
mars for awk, calc (a tutorial), Java, Simula, Python, and the semantic package’s
input language itself. Basic support for parsing the Texinfo and LATEX languages
is also available.

Language Settings Several settings are available to let the language grammar
author specify properties of the language that is being parsed by the semantic
package. All settings start with the ‘%’ character. We only mention a few of the
more important settings here.

The %start setting specified the top-level production rule of the grammar.
The %outputfile setting dictates where the grammar generated from the BNF
input file should be written. Setting %parsetable is used to indicate the name
of the parse table that is generated from the BNF.

Tokens are specified with the %token keyword. Each token has a name (an
elisp symbol), a type, and a textual representation. The textual representation
is what is matched during parsing (in either a case-sensative or case-insensitive
fashion, as discussed in Section 3.1) to recognize the token. The token type is one
of open-paren, close-paren, or punctuation. Examples of token declarations
were shown in the preceeding section. Tokens without a type are keywords.

The %put setting attaches an arbitrary set of symbol-value pairs to a token.
Specific properties, like the summary property shown in the earlier example, are
used in special ways by various semantic package tools. See Section 4.1 for a
discussion of how summary is used in particular.
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The semantic package builds a parser that understands basic scoping rules.
Most languages have a character or a short string that separates the names of
scopes. For example, in Java the period character separates package names. In
PVS, the period character is also used as the scope name separator. This infor-
mation is supplied to the semantic package via the semantic-type-relation-
separator-character variable. Thus, for PVS this variable is set to ‘.’, which
informs the semantic package that each period used in a identifier signals the
use of a new nested context. This hint is used during completion to determine
the appropriate scope for the completion match.

The important constructs of a language are indicated with the setting seman-
tic-symbol->name-assoc-list-for-type-parts. For an object-oriented pro-
gramming language like Java, the set of constucts includes classes, variables,
methods, imports, and packages. For PVS, our core set of constructs is modules,
theories, variables, constants, parameters, axioms, postulates, assumptions, for-
mulas, and types4. We are also considering adding conversions and auto-rewrites
to this set. There is a supplimentary set of constructs that is not used for short-
cuts or menu generation (both of which are discussed later), but are used for
features like completion. The supplimentary constructs are libraries, importings,
and exportings.

Parse Rules The semantic package’s parse rules are very similar to those of
the yacc and bison input formats. Each rule is of the form

RESULT : MATCH1 (optional-lambda-expression1)

| MATCH2 (optional-lambda-expression2) ;

RESULT is a non-terminal symbol and each MATCH is a list of elements that are
to be matched if RESULT is to be made. These elements can be tokens, text,
regular-expressions, or non-terminals.

The optional lambda expressions are the production rules of the grammar. If
MATCH1 is matched, then the production rule represented by optional-lambda-
expression1 is executed. These elisp expressions are used to build the parse tree,
track stages in the parse, or do whatever else the grammar developer desires as
they are arbitrary lambda expressions.

Optional Lambda Expressions The optional lambda expressions (OLEs)
used in the semantic package’s production rules have a short-hand syntax that
is designed to simplify the specification of standard parse tree substructures.
For example, an OLE of the form “( $1 )” results in a lambda return which
consists entirely of the string or object found as the first element of a match.
Functions can, of course, be called in OLEs. The OLE “( (foo $1) )” executes
the function foo on the first match of the rule and returns the result.
4 We differentiate postulates from formulas in the same manner as the PVS prelude:

postulates are provable by decision procedures. Types include datatypes and co-
datatypes.
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A comma character is used as shorthand in OLEs to denote catenation. So,
the OLE “( ,(foo $2) )” executes foo on the second match of the rule and
splices the result into the return list of the OLE. An apostrophe is used to denote
list construction in a similar manner. The OLE “( ’(foo) )”, for example, calls
the function foo with no arguments and puts its result into a list, and splices
that list into the return list of the rule.

Helper Functions. Three helper functions are also available for OLEs.
An OLE of the form “(EXPAND token nonterminal depth)” performs a

recursive parse on the token passed to it. This token is often a semantic list,
as discussed in Section 3.1. The parameter nonterminal is the name of the
parse rule from which the parser will start this recursive subparse. The depth
parameter, which must be an integer value of at least 1, specifies how far the
parser should descend into semantic lists during the expanded parse.

The helper function EXPANDFULL is just like EXPAND except that the parser
will iterate over nonterminal until there are no more matches. This simplifies a
common case and helps with error skipping during subparsing.

Finally, the ASSOC helper function is used by writing OLEs of the form
“(ASSOC symbol1 value1 symbol2 value2 ...)”. This expression is used to
create an association list where each symbol is in the list if the associated value
is non-nil. The created structure is a standard list of dotted pairs.

Translation Strategy for PVS Rules There were two options for writing a
BNF grammar for the PVS language. First, there is a BNF specification available
(via the function help-pvs-bnf) of the top-level constructs in the PVS language
in the built-in help for PVS. Alternatively, the specification used to generate the
actual PVS parser is available in the source distribution of PVS.

Rewriting EBNF. Either of these sources has to be significantly reworked be-
cause the semantic package’s BNF parser does not handle Extended BNF, thus
does not support repetition constructs like ‘+’ and ‘*’5.

Because we wanted to gain significant experience with the semantic package
and we wanted to be able to parse the full PVS language (not just the top-most
forms), we chose to reformulate the full language specification from the source.
To deal with the lack of extended BNF, we reformulated all EBNF terms in the
following regular fashion.

– Terms of the form rule foo? (zero or one applications of foo) are rewritten
as

optional_rule_foo : rule_foo

| EMPTY ;

5 This is an unfortunate omission from the Semantic package version 1.4 that is reme-
died with the new wisent parser framework in the upcoming Semantic package ver-
sion 2.0.
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where term EMPTY matches the empty input.
– Terms of the form rule foo+ (one or more applications of foo) are rewritten

as

one_or_more_rule_foos : rule_foo one_or_more_rule_foos

| rule_foo ;

Note that the longer match proceeds the shorter match in this rule. This is
necessary because the rule framework matches rules in the order that they
are specified.

– Terms of the form rule foo* (zero or more applications of foo) are rewritten
as

zero_or_more_rule_foos : one_or_more_rule_foos

| EMPTY ;

This means that all rules that are used in the starred form necessitate writing
a complementary one-or-more rule.

Lists. To parse mark-separated lists (e.g., comma separated lists) we rewrite
rules in a regular form as well. A rule written in the pseudo-EBNF of the PVS
source grammar of the form “{rule foo ++ ’,’}”, which means “one or more
comma separated matches of the rule rule foo”, is rewritten as

one_or_more_comma_separated_rule_foos :

rule_foo COMMA one_or_more_comma_separated_rule_foos

| rule_foo ;

A similar obvious structure holds for rules of the form “{rule foo ** ’.’}”:

zero_or_more_period_separated_rule_foos :

one_or_more_period_separated_rule_foos

| EMPTY ;

where one or more period separated rule foos is like the above example with
COMMA replaced by PERIOD.

Parenthesized Expressions. Finally, we write parenthesized expressions in a stan-
dard form. A rule of the form “( rule foo )” is written as

parenthesized_rule_foo : LEFT_PARENTHESIS rule_foo RIGHT_PARENTHESIS ;

The use of all of these regular forms result in a grammar that is longer than
it need be because all constructs are explicit and the grammar is not collapsed
to minimal form. The tradeoff for this increase in grammar length is that the
semantics of every rule is completely clear by name. As a result, the semantic
package’s PVS grammar has just over 300 rules while the original Ergo grammar
has around 110 rules.
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Parse Trees All semantic package-based tools are designed to work with parse
trees that have the same basic (but extensible) format. That is, all input lan-
guages scanned by the semantic package’s parsers generate parse trees with the
same basic structure. The benefit of this approach is that tools that are based
upon the semantic package are language-neutral; e.g., the semantic package-
based code browser works equally well with C++ as with Java.

In general, all tokens returned by the parser are of the form

("NAME" TYPE-SYMBOL ... "DOCSTRING" PROPERTIES OVERLAY)

NAME and TYPE-SYMBOL are the only mandatory components. NAME is a string
that represents the nonterminal, usually a named definition that the language
will use elsewhere as a reference to the syntactic element found.

TYPE-SYMBOL is a symbol representing the type of the nonterminal. Valid
type symbols are any elisp symbol.

DOCSTRING is a required slot for a nonterminal, but can be nil. This slot is
used to summarize the nonterminal in the parse tree. Many languages have docu-
mentation written in a comment nearby a declaration. In these cases, DOCSTRING
is nil, and the function semantic-find-documentation is used to find the doc-
umentation instead.

PROPERTIES is a slot generated by the semantic package’s parser harness and
is not provided by the grammar author. This slot’s values includes the properties
mentioned earlier that are specified via the setting %put, discussed in Section 3.2.

Finally, the OVERLAY property specifies the location of the token—its begin-
ning, ending, and buffer.

Some default token types have an extra slot called EXTRA-SPEC that is used
for common extra specifiers. These specifiers provide optional additional details
which are used by various semantic package-based tools. Examples of such con-
structs are: information about type hierarchy, the number of levels of dereferenc-
ing in a variable, the number of levels of pointers in a variable, the type modifiers
of a type declaration, const-ness of an expression (i.e., whether an expression is
constant or not), exception signatures for languages like Java, constructor and
destructor identification, etc.

Standard Tokens The standard tokens for nonterminals for functional lan-
guages are of types variable, function, type, include, and package. Each has a
specific structure which semantic package-based tools expect. We reuse the first
and third standard token types for the PVS grammar, as PVS has variables and
types. We map basic types function to formula, include to import, and pack-
age to library to match the PVS vernacular, but each construct’s structure is
unchanged from that of the default.

For example, a semantic package type declaration token has the form

("NAME" type "TYPE" (PART-LIST) (PARENTS)

EXTRA-SPEC "DOCSTRING" PROPERTIES OVERLAY)

A type token is used, for example, to represent C++ structures, unions,
enumerations, typedefs, and classes. They are used to represent PVS types and
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(co)datatyes. NAME is the name of the type, and TYPE is the classifier of the type
(e.g., “class”). PART-LIST is a list of entries that are found inside of compound
types (e.g., the fields of a structure). PARENTS is used for two purposes: it is
either a list of parent types (used if the language has a notion of inheritance and
TYPE is a type that exhibits inheritance), or, in the case of an alias type, it is
the type that is aliased. All the other fields have been discussed previously.

PVS Rules Here is a small excerpt from the PVS semantic package BNF
grammar. The rule in the original PVS grammar source file that describes how
to parse a PVS theory is as follows:

theory ::= ’THEORY’ [exporting]^e ’BEGIN’ [assuming-part]^a

[theory-part]^t ’END’ id

<module([noexp()|exporting]^e,

[noass()|assuming-part]^a,

[notheory()|theory-part]^t,id)>;

This rule is rewritten in the following form for the semantic package.

theory : THEORY optional_exporting

BEGIN

optional_assuming-part

optional_theory-part

END symbol

( (progn

(setq semantic-current-pvs-theory (car $7))

(clrhash semantic-current-pvs-theory-formulas)

((car $7) theory $2 $4 $5 nil)) ) ;

This match should be nearly self explanatory but for the OLE. The symbols
that are capitalized are tokens, e.g., THEORY is the token “THEORY”. The first
line of the OLE is tracking the current theory that is being parsed by storing its
name in the variable semantic-current-pvs-theory. This information is used
during parsing in a variety of ways, but primarily as a hash into a table that
stores information about the formulas of a theory. That table is cleared in the
second line of the OLE. The final line of the OLE returns the theory token that
represents the full parse tree of the PVS theory that has been parsed by this
rule.

3.3 Debugging

Debugging a lexer and parser for the semantic package can sometimes be difficult.
Although debugging facilities are provided, they are very rudimentary.

Debugging the Lexer As mentioned earlier, the primary entry point for the
lexer is the semantic-flex function. To debug the lexer, the easiest thing to do
is to manually call this function in a buffer that you wish to lex and examine the
returned list of tokens. As the lexer is automatically generated from information
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in the major mode, and given that the semantic package’s lexers are generally
quite simple, this manual debugging process is usually sufficient to determine
that the lexer is correct.

Debugging the Parser The only interface to debugging a parser within the
semantic package is the function bovinate-debug.

While debugging, two windows are visible within Emacs. One shows the file
being parsed. In that window the syntactic token being tested is highlighted.
The second window shows the BNF source and the current rule being matched
is indicated with the cursor.

Additionally, in the minibuffer, a brief summary of the current parse con-
text is shown. The initial part of the summary is a dotted pair of the form
“(TYPE START . END)”, indicating the current type being parsed and its begin-
ning and end positions in the source buffer. The rest of the display is a list of
all strings collected for the current rule thus far.

When all matches of the current rule fail, normally the parser restarts with
the top-level rule. This makes semantic package parsers robust, as they must per-
form best-effort parsing while a user is editing a file. The debugger, on the other
hand, exits in this situation. It can also be exited by calling keyboard-quit.

We suggest debugging grammars in a bottom-up fashion, testing various
subtrees of the grammar independently. For example, expression parsing was
tested prior to formula parsing in PVS.

4 Capabilities Enabled by the Semantic Package

Once we have added our new lexer and parser to the semantic-package for our
language as described in Section 3, a number of useful features are automatically
available in Emacs.

A comprehensive elisp API is also available for the semantic package to let
a tool author query and manipulate a parse tree in a large number of ways. As
such programming is not the focus of this paper, we will just discuss the pre-built
tools that are available for semantic package-enabled system like our improved
PVS UI.

4.1 Built-in Generic Functionality

The two main pieces of “built-in” functionality are contextual help and smart
completion.

Contextual Help The summary information %put on tokens, as discussed
in Section 3.1 is used for contextual help. When the cursor is on a token, or
within the block associated with a token for more than a specified period of time
(usually a few hundred milliseconds), the specified help message is displayed in
the minibuffer.
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This functionality is used to document the grammar of constructs (a kind
of context-aware help-pvs-prover-commands) as well as the common usage of
operators like the conjunction example earlier in this paper.

Scope-aware and Type-aware Completion Normal completion in Emacs
(activated via the dabbrev-expand function and its relatives) dynamically searches
backwards from the current point to the preceding word for which the current
word is a prefix. This works well in practice, but is completely ignorant of the
syntax and semantics of the language in which the user is working.

Modern programming environments offer scope- and type-aware completion.
These IDEs parse and typecheck the input file as the user edits. When completion
of a construct (e.g., a type, variable, or method name) is requested, a list of
all legitimate (type-correct and visible within the current scope) alternatives is
shown.

Unfortunately, because of PVS’s heavy use of overloading and parameteriza-
tion, we have not yet reached this level of type-aware completion in our new PVS
UI6. At this time, when a completion is requested, only those constructs that are
visible in the current scope and potentially type-correct are shown. Completion
choices are shown in a scope-dependent order, with matching declarations in
inner scopes shown before those in outer scopes.

4.2 Semantic Package Aware Tools

Three tools are currently available that are semantic package aware as well. All
three of these tools work with our new PVS UI. A PVS user need not take
advantage of all of these tools (for example, the authors do not care for menus)
as they can be enabled and disabled independently.

Additionally, because these are language-generic tools, some readers who are
Emacs users are probably already familiar with them. Most importantly, gaining
experience with any of these tools is leveraged across all languages supported by
the semantic package. This represents an excellent investment of time-for-utility
on the part of Emacs power-users.

Essentially, each of these three tools offers different ways to organize the same
set of information. The fact that three choices are available today is a good thing
because different users work in different ways.

We emphasize that all future tools built with the semantic package will au-
tomatically work with our new PVS UI.

Imenu The Imenu facility is built into recent versions of Emacs. It offers a way
to find the major definitions in a file by name, via a nested set of menus. Any
readers who have used the AucTeX or Java Developer’s Environment (JDE)
packages have possibly used Imenu many times without knowing it.

6 Currently the semantic package-based parser front-end is not communicating with
PVS’s typechecker, but we plan on adding this feature in the future.
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The PVS user can now specify with Emacs’s customize feature which PVS
constructs (possibly none) are shown in a summary menu. By default, all con-
structs are shown in a hierarchical menu, organized by theory.

Speedbar Speedbar is a package for Emacs that summarizes information about
the current buffer’s context. The original inspiration is the “explorer” often used
in modern development environment, office packages, and web browsers.

In the speedbar frame or window, a tree view is show of the current buffer.
A node in the tree can be expanded or contracted with a click of the mouse or
with a keypress. When a construct in the summary tree is activated (again, with
a mouse click or keypress) the point (cursor) in the current buffer jumps to the
corresponding element in the source file.

Once again, the PVS user can customize which PVS constructs are summa-
rized in their speedbar.

ECB – The Emacs Code Browser The Emacs Code Browser is a source code
browser for Emacs. It is a global minor-mode which displays a (user customiz-
able) set of windows that can be used to browse directories, files, and file contents
(i.e., the substructures identified during parsing with the semantic package).

The ECB has several very nice features. First, if you an arrange the frames
and windows of your working environment in a manner that works best for you,
ECB will remember their positions automatically. Second, one of the windows
available in ECB is a “history” of the buffers that you most recently visited.
Third, you can indicate to ECB the paths relevant to your current project and
it will automatically include those in its speedbar-like built-in frame. This means
you do not have to wade through the filesystem to find that one file that defines
a theory that you need. Instead, it is available with just one or two clicks of the
mouse.

We have discussed only some of the features of Imenu, Speedbar, and ECB.
The reader is encouraged to discover about these excellent Emacs packages even
if they are not PVS users. See [3, 13] for more information about ECB and
Speedbar. Imenu is a built-in part of all modern Emacsen, so see your Emacs
info documentation for more details on it.

4.3 New Functionality

Two pieces of functionality that combine the use of the semantic package with
other standard Emacs features are also part of this work.

Visually Manipulating Substructures Emacs offers at least three “outline”
modes. These modes are used to show and hide various substructures of a doc-
ument, like an outline. We have designed an outline minor mode for the PVS
UI.

To hide a construct, we must have byte-accurate information about the
source. This means that the parse tree must be up-to-date, at least with respect
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to the subregion that is being hidden. As parsing does not take a negligible
amount of time, we selectively update the parse tree on demand.

Typically a file is re-parsed only when its buffer is saved. To determine if the
parse tree needs updating during outline operations, we first examine whether
a parse of a file is necessary by examining the buffer-modified flag of its
associated buffer. If the buffer has been modified, we attempt to re-parse only
the region of the buffer that approximately corresponds to the construct being
hidden. If this parse fails, a full file parse is initiated.

We also use “electric” actions to hint at when a construct has been signif-
icantly changed. For example, if a bracketing keyword like THEORY or END is
added or deleted, it is likely the case that the parse tree needs to be completely
updated. Likewise, large scale kills or yanks also trigger a full re-parse.

An idle-timer is used to trigger background parse tree updates when the user
has not interacted with Emacs for a user-specified amount of time (typically
around 30 seconds, much like the lazy-lock package’s lazy-lock-stealth-time).

Structures are hidden and shown via modified mouse actions or via the stan-
dard keymaps of outline mode. A hidden structure is indicated with an elided
hypertext region (automatically highlights when touched by the mouse pointer)
containing four periods. This representation was chosen so that it is similar to
the elision that PVS pretty-printing performs today, but different enough that it
is clear the elision is due to outline mode and not PVS itself. Touching a hidden
structure with the mouse pointer for an extended period of time will temporarily
un-hide the structure for examination.

As with normal outline mode, incremental searches on a buffer with hidden
regions finds matches in hidden text, and such matches are made temporarily
visible. If the user exits the search within such a temporarily hidden region, the
text remains visible.

In general, PVS outline minor should be familiar to users who have used
other outline modes and should not distract the user from his or her work in any
way.

Extended Implicit Browsing The final piece of new functionality added to
the PVS UI is extended implicit browsing.

The Hyperbole package was the first environment for Emacs to provide ex-
tensive implicit hyperlinking [22]. A system is implicitly hyperlinked if visual
constructs can be selected in some manner without the use of any explicit (e.g.,
literal hyperlinks) source text link constructs.

For example, automated spell-checking functionality, like that found in Emacs
or Microsoft Word, is an example of implicit hyperlinking. In such an environ-
ment, the source document, perhaps a research paper, is implicitly hyperlinked to
one or more dictionaries. The purpose of this particular hyperlinking is typically
word spelling correction and definition and synonym lookup.

In general, the actions of an implicit hyperlink can either be informational
(e.g., the definition of an operator or variable) or corrective (e.g., correcting the
spelling of a variable).
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In Hyperbole, an implicit hyperlink is activated by using what is known as
the “action button”. The default action button is a shifted middle mouse button,
though of course the definition is user configurable.

Prior to this new work, PVS supported several kinds of implicit hyperlinks.
Coincidentally perhaps, PVS supports the same default action, a shifted middle
mouse button click. Using the action button, the type declaration of a construct
is shown in a small information window. The key sequence Control-. (bound
to the function show-expanded-form) is used to show the expanded form of
a construct, and ESC Control-. (goto-declaration) is used to jump to the
definition of a construct. Likewise, a set of ESC-prefixed commands let a user list
all declarations in a theory, find where an identifier or declaration is used, etc.
(See the various *-declaration* functions in the file pvs-browser.el.)

We improve on this functionality by increasing the number of recognized
implicit hyperlink types. PVS keywords can now be activated to show their full
definition related and usage information. Also, a variety of implicit link types
can now be used in PVS comments including URLs, ISBN numbers, embedded
image references, RFC titles, Emacs Info nodes, Texinfo cross-references, mail
addresses, various compiler messages, pathnames, outline nodes, man pages, key
sequences, table of contents entry, tag location, bibliography references, and
some other more esoteric types7.

We think that the types of particular utility for PVS are URLs, embedded
images references, Info nodes, and key sequences. URLs are obviously useful
to cite relevant papers or other source material for the documented construct.
Embedded images can be used to show pretty-printed versions of specific terms,
sequents, or proof structures, a la the “preview-latex” package8. Info nodes can
be used to cross-reference other Emacs and PVS documentation, in particular
the PVS release notes, which are the only part of the PVS documentation that at
this time uses Texinfo. Finally, embedded key sequences (e.g., terms like “{ ESC
Control-. }” which execute the specified key sequence when action selected)
can be used to document PVS UI behavior and trigger PVS actions so that, for
example, the PVS tutorial can be more interactive and automated.

We are sure that PVS users will find other surprising and interesting ways
to use this new functionality.

5 Pretty-Printing in PVS

We have also added a user-extensible, type-aware pretty-printer to the PVS
UI. This work is currently orthogonal to the semantic package-based work of
Section 4.

The PVS input syntax is currently limited to ASCII characters. This is fairly
restrictive, but PVS allows operators to be overloaded, using the type system

7 See the file hibtypes.el in the Hyperbole distribution for more details.
8 We are considering integrating the functionality of preview-latex into PVS but have

not yet begun this work [8].
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and theory hierarchy to determine the operator in any given context. Overload-
ing is very convenient, and heavily used in mathematics; the context usually
makes clear which operator is meant. For example, the PVS prelude has four
declarations for the caret operator “^”.

Pretty-printing the concrete PVS syntax is not difficult. Pretty-printing in
PVS is handled using the Common Lisp Pretty Printing facility [19, Chapter 27]
with a set of methods that walk down the PVS abstract term structures, which
are implemented in CLOS.

In pretty-printing for LATEX, with X-Symbol, UNICODE or other output,
where there are many more operator symbols available, it may be desirable to
map these PVS operators to output operators of a different format. For example,
one might wish to use e2 for e^2 (exponentiation), and Bn

m for B^(m, n) (bit
vector extraction). However, to properly translate such forms, more information
is needed (in particular, types and resolutions).

The PVS LATEX printer is driven from typechecked specifications. It allows
substitutions to be made, and, by using the resolution information, can distin-
guish operators based on arity and the theory where the operator is declared.
Types are not currently used, in order to keep the substitutions file simple9.

Other approaches are available for pretty-printing that are especially useful
when embedding different logics in PVS. For example, Skakkebaek [18] gen-
erated a new parser for the Duration Calculus, mapping its abstract syntax to
subclasses of the PVS abstract syntax. Instances of these classes could be pretty-
printed using specialized methods, but typechecking, proving, etc. would use the
methods for the superclass. This works well, but it is not easy to define a new
grammar in PVS10. Defining a new grammar for the Duration Calculus was not
too difficult because it copied most of the PVS grammar and simply added a
few new operators. Another difficulty is that as a proof is developed, terms get
introduced that are part PVS and part Duration Calculus, and though they
would be pretty-printed, the result could be confusing to the user.

In Pombo [17], PVS was used to provide the semantics of Ag specifications,
defining the semantics of First Order Dynamic Logic and Fork Algebras, along
with rules and strategies that allow a user to reason in Ag. Here there were
conversions defined, such as a meaning function, and arguments such as the
current world of the Kripke structure, that by default are included in the prover
interaction, but add clutter to the proof. In this case the function for pretty-
printing applications was modified in order to suppress the meaning function
and the world argument.

A better approach would be to define a “hook” that allows a user to specify
how to print specific terms. This would be similar to the hooks used in Emacs,
which are lists of functions that are invoked one after another until one of them
succeeds. We expect to add such a hook to the PVS pretty-printer that lets a user

9 In order to properly provide support for types, parts of the substitutions file would
need to be typechecked, and it is not trivial to determine the typechecking context.

10 PVS currently uses the Ergo Parser Generator [10], which has a number of quirks
that make it difficult to use.
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register pretty-print functions on a per-type basis. Each hook function would
check if the term given is one that requires special pretty-printing treatment,
and would then perform the pretty-printing and return an indication that the
pretty-printing has been done. If none of the hooks are applicable, then the
default pretty-printing is used. We expect that some general functions will be
provided that make it easy to perform common tasks, like suppress arguments,
and recognize applications whose operator is a constant of a specified theory
and type. In its full generality, these hooks act as semantic attachments for the
customized pretty-printing of terms of any form.

This works fine for some things, but not all pretty-printing tools can be in-
tegrated into Common Lisp. For such tools the resolution and type information
should be provided. The most promising approach to this is to provide the ab-
stract syntax in XML because most existing languages have facilities for reading
XML documents. This is done, for example, in OMDOC, which provides an ex-
tension for PVS that generates OMDOC abstract syntax from typechecked PVS
specs [9]. There are future plans for generating XML that directly reflect the
internal abstract syntax of PVS, and this could easily be used to build a new
pretty-printer.

5.1 X-Symbol Integration

Even though there are limitations in pretty-printing heavily overloaded expres-
sions in PVS, we have integrated initial support for interactive pretty-printing
using the X-Symbol Emacs package [21].

X-Symbol is a package capable of interactively rendering specific charac-
ter sequences in a buffer with non-ASCII characters (e.g., actual mathematical
symbols, Greek letters, etc.). A standard set of mappings for all the core PVS
operators is provided with our new PVS UI extensions. All uses of an overloaded
operator look identical at this point in time.

While writing PVS specifications and performing proofs in PVS, cutting and
pasting terms is a very frequent user operation. Unfortunately, when a character
sequence rewritten with X-Symbol is copied in Emacs (whether through a mouse
or keyboard action), exactly the rendered text is put into the copy buffer. The
original source text is lost, and it is what is needed for a legitimate paste, since
PVS does not understand the pretty-printed characters.

We have circumvented this cut-and-paste problem in the following fashion. In
the margin of the pretty-printed buffer adjacent to every pretty-printed construct
is a commented elided region. The region is just a comment from PVS’s point
of view, and Emacs is not rendering the contents as it is hidden via the PVS
outline minor mode. Inside of this comment is the original source text of the
pretty-printed construct. Therefore, when a user needs to cut-and-paste a term,
she must only double-click on the elided region to obtain a copy of the term in
question.

We find this mode of interaction quite convenient but believe that more
experience with mixed-mode representations in theorem proving environments
is necessary.
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6 Conclusion

There remain several new features and refinements that we would like to make
to the new PVS UI.

First, we have not yet added a graphical toolbar to represent some of the
new features. We have witnessed that some Emacs users will simply ignore new
features until they have such toolbars, so we plan on adding them soon.

Keeping track of the importing and exporting relationships between PVS the-
ories is a complex and sometimes time-consuming task. A new semantic package
that is under development called COGRE can graphically represent semantic
package parsed structures [11] (initially, COGRE’s focus is UML diagrams).
In COGRE, a graphical representation can be manipulated to change the un-
derlying associated data. We think some experimentation with the graphical
representation of theory relationships is warrented.

Finally, UI operations involving parameterized theories are weak. We would
like to better support completion and summarization of such parameterized sub-
structures.

This work will be made available in late 2003, probably as part of a new PVS
3 distribution.
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Proving as Programming with DrHOL:
A Preliminary Design

Scott Owens and Konrad Slind

School of Computing, University of Utah

Abstract. We discuss the design of a new implementation of the HOL
system aimed at improved graphical user interface support for formal
proof. We call our approach Proving as Programming, since we believe
that metalanguage programming is a central aspect of proof construc-
tion. Thus we look to contemporary programming environments for in-
spiration on how to provide graphical support for proof. In particular,
our implementation builds upon DrScheme, a popular programming en-
vironment for Scheme.

1 Proving as Programming

We have begun work on DrHOL, a new implementation of the HOL logic. DrHOL
is systematically derived from HOL-4 [8] and aims at improving user interfaces in
many aspects of work in HOL: development of proof procedures, construction of
terms and definitions, interactive proof, and embedding of object languages are
seen as candidates for better interface support. We believe that programmability
is an essential part of all these activities. To support our view, we will discuss the
ways in which we will adapt an advanced programming environment, DrScheme
[3], into a proof environment for HOL-4. The main question being investigated—
and it will take a while to obtain comprehensive answers—is : How can support
for programming also support proof ?

The issue of programmability in proof is interesting. One one hand, there
is a long history of tactic proofs, stemming from the invention of tactics and
tacticals in the original LCF system. Since tactics and tacticals are metalan-
guage programs, the construction of compound tactics to prove a goal can be
considered programming. Thus we have a large body of historical evidence that
programmability is A Good Thing. On the other hand, the declarative approach
to proof has recently garnered much attention1 [10, 6, 13, 9, 11], and is often pre-
sented as a way of abolishing programming from the activity of constructing
proofs. A declarative proof is written in a fixed proof language, which may be
processed in a variety of ways. Importantly, the specification of a proof in the
proof language is independent of the means of achieving the proof. This allows
declarative proofs to be processed in more ways than tactics, which can only
be executed. As a result, declarative proofs are more readable and maintain-
able than tactic proofs. However, declarative proofs can be more verbose than
1 Although its roots in the Mizar system are quite old by the standards of the field.
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procedural proofs, and may contain more explicitly given terms. That the two
approaches are not completely distinct is illustrated in [12], which demonstrates
that declarative proof may be quite concisely implemented via tactics.

One of the early reasons for having programmability was extensibility. Since
most of the basic tactics for LCF embodied quite small reasoning steps, compos-
ing them into larger steps was accomplished by tacticals and, often, by extended
ML programming. Later work, especially in Isabelle, showed that long and intri-
cate tactics could often be replaced by parameterized proof tools, such as first
order provers and simplifiers. The amazing increases in computational power
available to researchers have validated the move to more powerful proof tools.
Interactive theorem proving has thus become much more efficient in terms of
user time and effort, with the obvious caveat that when one gets well and truly
stuck on a proof, no amount of automation will help.

However, in extended proof developments, we still find that highly automated
tools are not completely adequate: the ability to write ad hoc proof procedures
and custom term construction functions on the fly is a key facility. Similarly,
when a sequence of steps re-occurs in proof, then programming is needed to
avoid unnecessary repetition: this is just code reuse by procedural abstraction.
To us, this implies that there is no real gap between online and offline construc-
tion of proof procedures. Thus a proof environment should support interactive
construction of programs.

Proving as programming should not be confused with Proofs as Programs,
a slogan associated with constructive logic. That slogan has specific and deep
technical content behind it, while our slogan is more a methodological attitude.

2 DrScheme

DrScheme is a graphical program development environment for the Scheme pro-
gramming language. DrScheme presents a single window with two nested win-
dows, called the definitions window and the interactions window. The definitions
window (the upper one) contains a program that users can execute, save to disk,
and access in the interactions window. The interactions window (the lower one)
provides a “read-eval-print loop” (REPL), in which users can experiment with
their programs. Both windows implement the same programming language, use
the same error messages, and report result values using the same syntax. When
a user presses the “execute” button the interactions window is cleared, the pro-
gram in the definitions window is executed and the resulting definitions are
placed in the interactions window for the programmer to inspect and manipu-
late. The programmer can handle infinite loops with the “break” button. When
pressed, the break button stops the currently executing program within either
window. DrScheme provides the usual emacs-like program editing features in
both the definitions and interactions window, such as auto-indenting and paren-
thesis matching. The definitions window has a Check Syntax feature that draws
graphical arrows from a variable use to its binding when the user moves the
mouse over the variable. Check Syntax also implements α-consistent variable
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Fig. 1. DrScheme

renaming. While most program editors can graphically highlight the locations
of compilation errors in the program’s source text, DrScheme can also highlight
the locations of runtime errors and uncaught exceptions when they occur.

To support both student and professional programmers, DrScheme provides
several different language levels. A Language Level is a particular dialect of
Scheme tailored to the needs of a certain class of students or professionals. Stu-
dents usually work with a subset of Scheme that they can completely understand.
This enables DrScheme to provide error messages that mention only concepts
the students already understand. For example, the “Beginning Student” lan-
guage level does not have anonymous functions and syntactically restricts the
function position of an application expression to be a variable. Students often
have difficulty at first in placing parentheses correctly and might write ((+ 1
2)). A Scheme system would report a runtime error indicating 3 is not a func-
tion. However, Beginner Scheme reports a compile-time error indicating that the
expression (+ 1 2) appears in the function position of ((+ 1 2)) where only a
variable is allowed.

DrScheme is widely used to teach beginning programmers; the language levels
are used to structure the course and have been proven and classroom tested over
the past 8 years. The text [2] serves as the foundation of the course.

Each language level is implemented by a compiler that translates programs
from the language level’s dialect into DrScheme’s primitively supported Scheme
dialect. For student language levels, these compilers primarily detect static errors
and introduce code for better explanation of run-time errors.
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Besides levels of a particular language, DrScheme can also support differ-
ent languages: a proof-of-concept ALGOL60 language level exists, and work is
underway to support several Java and OCaml language levels for pedagogic pur-
poses [5]. Although these language implementations are technically similar to
levels within a language (each being basically a compiler from the particular
language to Scheme), they operate on a much grander scale. In particular, care
must be taken to ensure that these languages interoperate nicely with Scheme
programs.

The core of the DrScheme system is an interpreter called mred (pronounced
‘Mister Ed’). mred interprets a dialect of Scheme that includes integrated graph-
ical interface widgets. DrScheme itself is just a program written in this dialect
that executes on the mred interpreter. DrScheme executes the user’s programs
directly in the mred interpreter, which supports sophisticated primitives that
allow DrScheme to work robustly in the presence of misbehaving user programs
[4]. Higher language levels can use the same facilities. DrScheme can run on
the platforms that mred supports: Apple, Microsoft Windows and Unix with
X-windows.

3 DrHOL

The HOL theorem prover is implemented in the SML programming language
as a library of SML functions. The two main activities in HOL are constructing
new logical terms and performing inference steps. Both of these activities require
programming in SML. In the case of terms, the proper SML data constructors
must be invoked to generate the term2 and in the case of inference steps, the SML
function that performs the inference step must be invoked. Occasionally a new
inference rule or tactic needs to be written in terms of other existing inference
functions. These facts lead us to the central conclusion that theorem proving
in HOL is an inseparable activity from programming in SML. Hence our thesis
that theorem proving in HOL should occur in a programming environment.

DrHOL is being implemented as a language level in DrScheme with a two-
step approach.

1. An SML language level will be implemented via an SML to Scheme compiler.
This will allow the existing body of HOL source code to be run inside the
DrScheme environment and to interoperate with Scheme programs. Thus a
HOL user will be able to use HOL in the DrScheme environment as he does
currently. However, he will have access to the helpful programming features
of DrScheme.

2. HOL itself will be extended and modified to support greater integration into
DrScheme. This step will allow more advanced user-interface features to be
added to HOL, while maintaining a tight integration with the development
environment.

2 Built in custom term parsers simplify this task
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3.1 SML to Scheme

We have chosen to provide programming environment support for HOL by cre-
ating a general purpose SML to Scheme compiler, although this is by no means
the only possible approach. Because both HOL and DrScheme will be Scheme
programs running on the mred Scheme interpreter, our approach will support
a tight integration between the theorem prover and programming environment.
Our SML to Scheme translation maps each externally visible SML construct
into an equivalent Scheme construct, so that interoperation between Scheme and
SML programs will not be difficult. For some SML constructs, such as structures,
Scheme has no suitable built in construct. However, using Scheme’s macro sys-
tem, we can create new Scheme constructs without exposing implementation
details to the programmer.

To simplify the task of building an SML compiler, we use the parser, over-
loading resolver and type checker from the Moscow ML compiler, all of which
are written in SML. We currently invoke this front end in a separate process,
but eventually intend to bootstrap the front end by translating these parts of
the Moscow ML compiler into Scheme with our compiler.

We will briefly discuss several approaches that avoid building an SML to
Scheme compiler and explain why we have not chosen them.

– Use an SML interface widget package to build DrHol in SML [7].
Building a new extensible, production quality programming environment is
a much more difficult and time consuming project than building an SML to
Scheme compiler. Moreover, MoscowML, our current ML platform, doesn’t
support threads.

– Translate HOL into a Scheme program manually.
While this might be feasible for some small core of HOL, the entire system is
altogether too large. Furthermore, it’s not future-proof : we want to be able
to use future HOL libraries that will be written in SML.

– Invoke a separate Moscow ML process from DrScheme to evaluate SML pro-
grams.
Two-process systems have been tried and found, in our opinion, to be less
robust than desired. They have problems with dealing with undesired be-
haviour (breaking loops, interpreting error messages) and with interpreting
returned values.

3.2 Safety

Via the SML type system, HOL guarantees that any theorem in the system
has been proven through the application of a series of basic inference steps to
some basic theorems. Knowing that theorems have been built using only a few
simple and well-tested rules provides a HOL user with confidence that theorems
produced in HOL are indeed correct. It is quite important that we provide this
invariant in our Scheme system, not only when dealing with translated SML pro-
grams, but also when dealing with Scheme programs that use parts of the HOL
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system. Thus our compiler must preserve the observational equivalence relation
for SML programs when put into Scheme contexts as well as SML contexts.

HOL implements theorems as an SML datatype and relies on the type system
to ensure that no data constructed otherwise can be considered as a theorem.
We ensure this property holds even when Scheme programs handle theorems by
translating SML’s datatype constructors into mred’s define-struct form, which
provides data abstraction facilities. HOL uses SML’s structure system to restrict
access to the theorem constructors, so that only the basic inference steps may
see them. Since we translate SML structures into a Scheme implementation of
structures, the theorem constructors are protected from Scheme programs just
as they are protected from SML programs.

4 Benefits of DrHOL

HOL users will benefit from the integration of HOL into DrScheme almost im-
mediately by taking advantage of the programming features of DrScheme listed
previously. Beyond that, DrHOL will be extended to support more advanced
capabilities ranging from modest extensions to ambitious projects. In the end,
we hope our system will provide a better system for interacting with HOL than
current alternatives.

4.1 Definitions and Interactions

Although [1] shows how HOL may be accessed purely through a language-neutral
API, currently the most common way to interact with HOL is through an SML
REPL. For many tasks, REPL interaction is ideal. Users can quickly try many
different approaches to proving a theorem and get immediate responses from
the system. DrScheme’s interactions window provides a convient-to-use REPL
whose robustness surpasses most existing interactive modes for emacs.

Once exploration is finished the user needs a record of construction of the
expression (be it a type, term, definition, theorem, or more complex entity). The
record needs to be easily executed on demand, because the expression might be
needed in the construction of another expression. Currently users must carefully
look back through their interactions buffer and find the steps that made actually
progress in the construction and manually copy them into a separate file. We
will be able to assist the user in this process by providing automatic support for
moving expressions from the interactions window into the definitions window.

4.2 Graphical Syntax

DrScheme supports the encapsulation of syntax in graphical containers. When a
programmer adds a graphical container to the interactions or definitions window,
the container is treated as a single character by the editor while the cursor is
outside of the container. When the cursor is placed inside the container the pro-
grammer can edit the container’s contents as though it were a separate window.
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These containers can be used to implement different syntaxes in much the same
way as Moscow ML’s antiquote or Lisp’s quasiquote and unquote mechanisms.
Compared to these techniques, graphical containers for syntax provide a much
more easily recognized visual cue to the programmer that a different syntax is
in use. Furthermore, none of the container’s contents need to be prefixed with
escape sequences since its extent is delimited graphically instead of textually.

DrScheme currently supports two different kind of containers: comment boxes
and XML 3 boxes. The comment boxes contain comments whose contents are
ignored. XML boxes contain literal XML text typed in directly. The contents of
an XML box are converted to an s-expression when the box is encountered by
the parser. The programmer can also insert a Scheme box into an XML box. The
Scheme box’s contents are evaluated as a Scheme program and the results placed
into the XML box’s resultant s-expression. The presence of the XML box lets
DrScheme know exactly how the contents of the box should be treated. Inside
an XML box, DrScheme automatically inserts the matching closing tag for each
opening markup tag the programmer writes.

DrHol will provide HOL term boxes to allow the programmer to input and
output HOL terms directly and in a natural syntax. For example, the HOL term
box can automatically replace LaTeX like symbol commands (\alpha) with the
actual symbol. It will also be able to color the term syntax to distinguish between
logical constants, free variables and bound variables and, via Check Syntax,
provide graphical arrows linking their definitions and uses. Interoperability with
external tools may be achieved via exporting types, terms, theorems, and theories
in emerging standard XML-based formats such as OpenMath or OMDoc.

4.3 Help System

We will be able to integrate the existing HOL help system with the programming
environment. For example, the user will be able to select a HOL function with
the mouse and open a new window with the documentation for that function.
The user will also be able to select a logical constant from a HOL term and
retrieve its definition. These facilities are more extensive and easier to use than
the current HOL help system which either (a) dumps out a textual message
to the interaction loop, thus obscuring the proof state; or (b) depends on an
external web-browser.

4.4 Goal Stack Management

HOL keeps a global state that tracks which obligations remain in proving some
particular theorem. These obligations naturally form a tree, however for histor-
ical reasons HOL uses a goalstack interface that tracks only the leaves of the
tree. Although this is one of the most heavily used tools in HOL, DrHOL will
provide user-interface support for managing proof state directly as a tree. We
expect that these additions will require moving beyond the two-window format
3 XML is the W3C’s eXtensible Markup Language.
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that DrScheme currently supports, with an extra window that directly displays
either the proof tree or goal stack. Then the user can graphically navigate the
remaining proof obligations and DrHOL can automatically generate the final
proof script from a completed proof tree.

4.5 Embedding other logics in HOL

A common activity in HOL is to embed computer languages and logics. This
approach allows the user of the domain-specific logic to use all of HOL’s tools and
power when proving things in the logic as well as when constructing proof tools
for the logic. Sometimes, however, the embedded language doesn’t require such
an extensive and complicated interface. Occasionally, the logic’s only interface
should be graphical. Our system would allow a domain-specific GUI extension
to the DrHOL environment to be constructed alongside the logic’s embedding.
In particular, an embedding may require support for different syntax or even
point-and-click proof tools.

5 Future Work

Although a future work section may seem strange in a design paper, we can see
goals that will be achievable once our basic design has been implemented.

– We can implement a language level that supports only a subset of the func-
tionality of the HOL system. For example, one could envision a language
level that introduced ‘the essence of HOL’ by restricting inference steps to
only natural deduction style introduction and elimination rules for the logical
connectives (as was done in Tom Melham’s successful HOL course). Another
language level useful for teaching beginners would be tactic-based, along the
line of a Ten Tactic HOL method of teaching beginners (this teaching ap-
proach was used by Graham Birtwistle in the late 1980’s). In such a level, a
goal stack window would have a fixed number of buttons corresponding to
the fixed repertoire of allowed tactics. Such restricted environments would be
able to offer improved support for beginning users, by thoroughly supporting
a comprehensible collection of inference tools.

– With an integrated theorem prover available in the programming environ-
ment, Scheme or SML programmers could have ready access to theorem
proving for developing and analyzing their programs. To take a simple but
challenging example, one could envision a language level which enforced ter-
mination, via HOL proof, of each recursive function introduced by a user.

6 Conclusion

We have presented a preliminary design for an SML language level in DrScheme,
and on top of that, a level for the HOL-4 implementation of the HOL logic. This
system, DrHOL, will provide an extensible basis for integrating and investigating
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user-interface support for interactive theorem proving. Underlying our design
is the assumption that ‘if proving is programming, then a good programming
environment can be adapted to be a good theorem proving environment’. To
give some substance to this viewpoint, we have discussed specific areas where
the facilities of DrScheme can be used to improve proof development. We expect
that many other such opportunities will arise as this work matures.

A major source of encouragement for us is the vigorous ongoing development
of DrScheme by its talented group of developers. Just as we plan to adapt their
insights about graphical support for programming, we hope our work on sup-
port for proof in DrHOL will provide useful ideas and challenges in the future
development of DrScheme.
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Abstract. We describe an interaction console for interactive proof ex-
ercises using proof planning as back-engine. Based on the proof planning
situation, the console offers suggestions for proof steps. These sugges-
tions can dynamically be adapted, e.g. to the user and to pedagogical
criteria. This adaptive configuration is possible because the suggestion
mechanism and proof planning are clearly separated. Therefore, a config-
uration can represent pedagogical knowledge which would not be possible
by using proof planning alone.

1 Motivation

Our motivation for the described work and its follow-ups is the improvement
and system-support of learning to prove mathematical conjectures. Empirical
studies [11] suggest that students’ deficiencies in their mathematical compe-
tence with respect to understanding and generating proofs are connected with
the shortcoming of students’ self-guided explorative learning opportunities and
the lack of (self-)explanations during problem solving. Such explorative learn-
ing can be supported by tools. This motivated the integration of the interactive
proof tool Ωmega into the user-adaptive learning environment ActiveMath [7].
Moreover, empirical results suggest that instruction with proof planning meth-
ods can be a learning approach that is superior to the traditional learning for
proof [8]. This motivates the implementation and integration of the interactive
proof planning component of Ωmega into ActiveMath. However, integrating
any interactive system is insufficient for education because for effective learning
more requirements have to be met.

What is necessary in order to support learning mathematical proof?
In general, an educational context requires additional features (compared with
a mere assisting system) for effective learning such as

– adaptivity [5] and
– faulty proof attempts whose (coached) discovery and repair are a major

source of learning [13].
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Adaptation and personalization may effect the content, the possible or pre-
ferred problem solving alternatives/strategies, the level of detail of proof, the
appearance, etc. For instance, an exercise about the limit of a concrete sequence
can be solved by either using only the definition of the limit or by applications
of theorems. The choice for one of the proof ideas should depend on the learner’s
capabilities and knowledge.

Erroneous situations or faulty suggestions are not appropriate for a system
that is devised for problem solving assistance. For a learning tool, however, it
might not be the best idea to always make only correct suggestions as it is for an
assistant system because then the student might just click on suggestions rather
than learn anything. For instance, when the student should prove the limit of
a sequence by applying theorems and she is already familiar with the theorems
then it would be to restrictive to suggest only applicable theorems.

The decision on when to make which faulty suggestions will, of course, depend
on the student’s situation and on her capabilities. In more detail, it depends on
the student’s learning goal, the learning context, her learning history, and the
competency of the student (all represented in ActiveMath’s student model)
as well as on the pedagogical strategy. Therefore, the suggestions should be
dynamically generated depending on the student model and on the pedagogical
strategy.

The main contribution of the paper is the description of the technology un-
derlying the adaptable suggestions, adapted problem solving strategies, and their
usage. This includes the representation of configurations comprising the proof
strategy (proof idea) and a set of agents each representing reasons for suggesting
a particular proof planning method in the proof process. This also includes the
interaction and suggestion mechanism as well as the adaptation functionality. It
shows how agents can be tailored to serve certain mathematical criteria or learn-
ing goals that are represented in ActiveMath’s student model. It describes how
the student can employ different proof planning strategies and take advantage
of the proof planner’s automatic mode that is running in the background while
the student interactively attempts to prove a theorem.

2 Preliminaries

2.1 ActiveMath

ActiveMath is a web-based learning environment (for mathematics) [7]. It
generically integrates several back-engines for exercising and exploratory learning
– among them the computer algebra systems Maple and MuPad and the theorem
proving system Ωmega.

One reason for using proof planning in a learning environment for mathemat-
ics is that methods represent typical steps in mathematical reasoning. Therefore,
the communication and teaching of those methods should enable a student to
extend and improve their reasoning skills. There is some empirical evidence for
this hypothesis [8].
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ActiveMath generates (mathematics) learning material user-adaptively,
i.e., dependent on the learner’s goals, learning scenarios, preferences, and mas-
tery level. The adaptivity is based on a student model that includes

– the history of the learner’s actions
– her preferences
– her mastery level of concepts and skills with a range between 0 and 1.

The student model is updated by diagnoses of the learning activities such as
reading and problem solving. A student’s exercise performance is evaluated and
the evaluation is passed to the student model for updating it.

This student model can be queried by the mechanisms cooperating with
Ωmega. For instance, the suggestion mechanism may query the history in how
many previous exercises the student correctly applied the method M in an
only-correct setting and what the student’s mastery level of M is, in order
to determine whether the next exercise will include an application of M in an
also-faulty setting.

2.2 Ωmega

For interactive proof exercises two functionalities of the theorem proving system
Ωmega [12] are employed: automatic proof planning [9] and the support of in-
teractive proof planning by an agent-based command suggestion mechanism [2].
The combination of proof planning and the suggestion mechanism is described
in the Section 3, but first we introduce them separately.

Proof Planning. Proof planning in Ωmega was originally conceived for auto-
mated theorem proving. Proof planning is a technique in theorem proving that
aims at reducing the search space by proving at the level of methods which can
encapsulate complex proof steps and by introducing meta-level guidance [3, 10].

Proof planning starts with a goal that represents the conjecture to be proved.
It continues by applying methods for which the application conditions are satis-
fied and this generates new assumptions or reduces a goal to subgoals until no
goal is left. The resulting sequence of instantiated methods constitutes a solution
proof plan.

Successful proof construction requires also to construct mathematical objects,
i.e., to instantiate existentially quantified variables by witness terms. In proof
planning meta-variables are used as place holders for witness terms, and the
planning process proceeds until enough information is collected to instantiate
the meta-variables.

The proof planner has an automatic and an interactive mode. In the auto-
matic mode the proof planner searches for a solution proof plan, i.e., in each
intermediate state it searches for applicable methods and valid instantiations.
Mathematics-oriented heuristics guide this search. In interactive proof planning,
the user makes the search decisions and these include the choice of methods and
the instantiation of meta-variables.
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To structure the available proof planning methods and make the proof plan-
ning process more hierarchical, strategies have been devised. A proof planning
strategy is specified by a set of methods and search heuristics. Different proof
planning strategies correspond to and implement different proof ideas.

Command Suggestion Mechanism. Ωmega has a mechanism to suggest
applicable tactics and their parameters. A suggested command usually consist
of the name of a tactic and a list of parameters, e.g., the proof lines which the
tactics should be applied to. The mechanism is implemented by agents. Each
tactic and each argument is represented by one agent which checks whether
there are instantiations of the command in the current proof context. We reuse
this mechanism in the context of interactive proof planning for the generation
of method suggestions.

3 Interactive Exercises with Ωmega in ActiveMath

Interactive exercises with Ωmega are represented by OMDocs [4]. This represen-
tation includes a textual and/or diagrammatic representation, a formalization
of the theorem, and Ωmega-specific commands. When a student decides to per-
form an Ωmega-exercise during a session, ActiveMath starts Ωmega with its
graphical user interface and a (bi-directional) XML-RPC connection is estab-
lished between Ωmega and a proxy in ActiveMath. The formal description
of the exercise and the commands are sent to Ωmega and the interactive proof
planning dialog is launched. When the exercise is finished by the user, some in-
formation about the Ωmega-session is sent to ActiveMath’s user model. For
instance, the number of successful and of faulty method applications for relevant
methods is returned, the number of unjustified lines, and whether the automatic
mode was used.

Previously, proof planning in Ωmega, in particular, its graphical user in-
terface was not well-suited for interactive proof learning by students since it
requires too much attention for and knowledge about the system handling and
could not be adapted to the student’s situation.

3.1 Interaction Console for Proof Planning

In order to improve Ωmega’s education potential we reduced the complexity of
the required interaction by developing the interaction console. This is a first step
for improving pedagogical usability.

Fig. 1 shows Ωmega’s user interface enriched by the interaction console in
a stage, where methods have already been applied to the initial problem. In
the interactive mode the user has to specify which goal to work on next, the
method (and possibly parameters) she wants to apply, etc. In order to help the
user to concentrate on the proof construction, the interaction is via a console
only (shown in Fig. 2 in more detail). The relatively simple dialog window offers
restricted suggestions rather than Ωmegas full functionality.
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Fig. 1. The user interface with a graphical proof presentation, the sequence of proof
lines, and the interaction console.

The user can choose a proof line (goal) for which several method names are
suggested (actions). When the student selects an action, she may be asked for
additional parameters, e.g., which proof lines should be used as premises. Then,
the proof planner tries to apply the method. The next column of the interaction
console (variables) displays the meta-variables of a proof plan for which a witness
can be provided by the user. The last column allows the user to delete proof steps
and undo instantiations of meta-variables.

During interactive proof planning the proof planner runs in the background,
checks the applicability of methods selected by the user and provides feedback.
The button with the computer symbol at the top of the interaction window starts
the automatic proof search of the proof planner. The purpose is to help the user
in case she got stuck altogether during the proof construction. Furthermore, the
automatic mode of the proof planner can give hints on how to proceed. This
functionality can be disabled by ActiveMath, if it prevents learning (see, e.g.,
[1]). The button with the hand interrupts the automatic mode and switches back
to interactive proof construction. We also implemented a version in which the
proof planner applies only one method in automatic mode.

To make the most frequent user interactions easy to perform only few key
strokes should be necessary for those interactions. Therefore, selecting a method’s
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Fig. 2. The interaction console for interactive proof planning.

name for input is a better design than typing full method names. Moreover, to
remember a name causes more working load than to recognize the name as an
appropriate one. Therefore, again choosing a method from a list of suggested
ones causes less distraction from the actual learning and understanding of proof.

3.2 Method Suggestions by Agents

The degree and kind of assistance can vary depending on the learning situation.
For this purpose, the agent-based suggestion mechanism is used to create the
suggestions of actions and their parameters. For each method one or several
agents are implemented. Each agent analyses the proof situation and returns
the method as a suggestion, if certain criteria specified in the agent-declaration
are fulfilled.

Note that the suggestion agents are independent from the proof planner and
from the application conditions of the methods. Agents can suggest methods
that are not applicable at all, or can suggest parameters for a method which
do not fulfill the application condition of the method. That is, depending on
the agent’s design the freedom to interact with the proof planner can be more
or less restricted, more or less guided, and they can represent certain pedagog-
ical strategies as described in section §3.3. In particular, faulty suggestions can
deliberatively be introduced for learning from failure.

Agents for interactive proof planning are currently implemented for the fol-
lowing classes of problems:

– limit theorems [10],
– group homomorphisms,
– properties of residue classes [6].
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3.3 Configurability and Adaptability

A configuration consists of a problem solving strategy and a set of agents, one
agent for each method of the strategy. A configuration can encode pedagogical
goals, ideas, or needs.

Choice of Strategy. There can be different proof planning strategies available
for the configuration of an exercise. An example for selecting a strategy adap-
tively is the following. For proving problems about properties of residue classes
there exist three different proof planning strategies. The strategies implement
different ways to prove the theorems. The first strategy tries to apply theorems,
the second strategy reduces the problem to an equation for which a general so-
lution must be found, the last strategy introduces a case split over the (finitely
many) elements of a residue class. The decision for a strategy can depend on the
knowledge of a student (whether she knows the theorems that are the prerequi-
sites of the first strategy) but can also result from her performance in previous
exercises in which, e.g., the other strategies have been trained already. Such
configuration heuristics can be encoded by pedagogical rules. For instance, put
naturally

IF studentKnowledge(prerequisites (firstStrategy)) > medium
AND studentKnowledge(firstStrategy) < medium
THEN present exercise-for(firstStrategy)

IF studentKnowledge(firstStrategy) > medium
AND studentKnowledge(secondStrategy) > medium
AND studentKnowledge(thirdStrategy) < medium
THEN present exercise-for(thirdStrategy)

These rules do not refer to the agents yet.

Choice of Agents. If the goal is to most rapidly prove a conjecture and deep
learning is unimportant (as in the pure proof assistant situation), then for every
method an agent could be selected for the configuration that checks for appli-
cability and fires, when the method is applicable. However, this is not a typical
goal in learning to prove. Rather, learning would involve to understand why a
method is applicable, what a particular method is actually doing, and for which
purpose it is applied.

For instance, some exercises for group homomorphisms are designed to learn
properties of a group, e.g., associativity of the group operation, existence of a
unit element and existence of inverse elements. All of them are suggested and the
user has to choose the appropriate one. The method agents check whether the
current goal contains elements of a group, instead of checking the applicability
of each method.

The set of agents is chosen depending on the student model including the
learner’s history and the overall material. For instance, no learning material for
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a novice student would start with an example or exercise in which misleading
suggestions for applying a method M are made (also-faulty-configuration). Such
exercises would be placed after some positive experience in order to help the
student to discover misconceptions and use it productively overcome them. This
can be expressed by a heuristic configuration rule like

IF successful(M) in 2 exercises with only-correct-configuration
AND notyet M with also-faulty-configuration
THEN present counter-exercise-for(M) with also-faulty configuration

As a result, an exercise in which M cannot be applied is suggested together
with an agent that suggests M anyway. These rules are not yet implemented but
show the direction.

The configuration module has to be separated from the actual proof planner.
During the generation of user-adapted learning material (including interactive
exercises) ActiveMath queries the student model and evaluates pedagogical
rules that describe which material should be presented and how depending on
values in the student model. For instance, it generates material with exercises
using a method M whose difficulty is appropriate for the student’s mastery level
of the concepts involved in the exercises.

3.4 Future Work

For interactive proof planning the methods must be introduced and the student
has to learn them, e.g., from an ActiveMath course. This is still unusual in
teaching mathematics, where methods appear rather implicit inside of proofs
and have to be extracted by the student. However, empirical results suggest that
learning proof planning methods can be a learning approach that is superior to
the traditional learning for proof [8]. So, we will support the student in learning
methods, with a help button in the interaction console that links to a description
of the method in ActiveMath’s dictionary. We will also extend the feedback
and help available in the future.

The current implementation of configurations allows to have agents which
make faulty suggestions but these agents do not yet cover all important kinds
of possible misconceptions. For example, in most proof planning strategies there
is a method for definition expansion which has a parameter for the defined con-
cept. The user could remember a wrong definition or could have forgotten an
important part of the definition but the application of the method for defini-
tion expansion will always introduce the correct definition. Therefore we want
to experiment with extended possibilities for the interaction to detect more defi-
ciencies of a learner. For example, the parameter window for definition expansion
could ask the user to provide the definition and compares it to the output of the
method that performs the definition expansion.
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4 Conclusion

We described the implementation of an agent-based interaction console to be
used for interactive proof planning during mathematical proof exercises. It real-
izes the following features that are useful for learning:

– bearable complexity
– dynamic suggestions for interaction rather than predefined problem solving

strategies
– among others, faulty suggestions can be used to trigger learning from failure
– modeling pedagogical strategies by configuration comprising sets of agents

and different proof planning strategies
– help for next proof steps provided by automatic proof planning
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Abstract. In this paper we propose a proof format to write formal
proofs motivated by a formalisation of floating-point numbers. This proof
format aims at being adequate for both proof presentation and mecha-
nised proof checking.

1 Introduction

The motivation of this work comes from a long-term collaboration with re-
searchers in computer arithmetic. The goal of this collaboration was to apply
theorem proving technology to validate some new algorithms for floating-point
numbers. The system we have been using is the Coq proof assistant [13]. We
first developed a library for floating-point numbers. Then we have been using
this library to formally prove some properties of new algorithms that were ma-
nipulating expansions, i.e. sorted lists of floating-point numbers. Early results of
this collaboration were reported in [7].

In the computer arithmetic community researchers are rather used to write
proofs on paper to demonstrate the correctness of their new algorithms. There
is a well-established IEEE standard that describes how floating-point numbers
should be represented. So people usually take full advantage of the properties
of this representation to apply ad-hoc optimizations without jeopardizing porta-
bility. Since the standard includes different categories of numbers (normal, sub-
normal, NaN, . . . ), the correctness proofs are often intricate and require a great
deal of tedious checking for a skeptic reader. An example of such a proof is the
19 pages long proof given in [9].

Theorem proving systems are known to be good for checking tedious proofs.
Early works [12, 16, 19] have already illustrated the benefit one can get by using
theorem provers in the particular setting of floating-point numbers. In that re-
spect, our experiment has only reconfirmed this fact. However, it has also shown
some limitations of this approach. Proof systems still need to get further im-
proved in order to make mechanised proofs a natural companion to proofs on
paper. From our point of view, an aspect deserves particular attention: the repre-
sentation of proofs. In systems like Coq proofs are represented by proof scripts.
A script is composed of a set of elementary commands called tactics. Tactics
guide the prover in the search of the formal proof. Due to their nature, proof
scripts are very different from the usual proofs on paper. We believe that this
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simple fact makes proof systems more difficult to use for people already familiar
with writing proofs. In this paper we address this issue.

The paper is structured as follows. In Section 1 we explain how proofs on
paper and proof scripts interact in our experiment. The goal of this discussion
is mainly to motivate our new format for formal proofs. This format is given in
Section 2. In Section 3, we present a prototype system that aims at providing a
user interface to build proofs according to such a format.

2 Proofs on paper versus proof scripts

When starting from scratch, a formalisation in a prover is very often tedious and
always time-consuming. All notions have to be defined from basic principles and
then all the usual properties have to be derived from these initial definitions.
Only after that, it is possible to tackle some applications. This initial formali-
sation amounts to carefully choosing the initial definitions and then finding an
appropriate road to capture all the usual properties. Some experiment is needed
in order to know which definitions work better in a specific prover. In that re-
spect, the situation is not so different from programming languages where an
experienced programmer knows how to do things.

When starting the collaboration, the people in computer arithmetic we were
working with knew very little about theorem proving systems. They were just
aware that these systems could be successfully applied to their area as reported
in [12, 19]. To our surprise, the definitions to be introduced into Coq, which
properties should be proved first, and how they should be expressed were actively
discussed. Our fear was that the formal and sometimes very syntactic aspect of
theorem proving would impede the collaboration at such an early stage. This was
not the case. Moreover, if at the beginning proofs were sketched using the usual
definitions, quickly the specific Coq representation was adopted and elegant
short cuts to prove some basic properties were even proposed. One explanation
of this quick adaptation is that people are already familiar with playing with
different presentations of the same problem. For example, different books about
the same topic usually present different approaches. In that respect, developing
a formalisation in a prover has lot in common with writing a book.

When we passed to actually using the newly developed library to prove the
correctness of some algorithms, the nature of the collaboration changed. Before
the focus was more on the formal statements of the properties and on the struc-
ture of the whole library. Afterwards, when proving the correctness, the main
interest was on the proof. It was only at this stage of the collaboration that we
realized that mastering how to do proofs in Coq would have a very steep learn-
ing curve. In contrast, how to express properties in the logic of Coq was quickly
assimilated. Our modus operandi to check proofs in Coq has nearly remained
unchanged since the beginning. First, the proof was written carefully on paper
with as many details as possible. Then, this document was used as a guide to
produce the script for the proof system. The translation was not faithful in the
sense that we often took advantage of the deductive power of Coq to restructure
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the proofs, mostly to shorten the scripts. In that respect, the proofs on paper
were detailed enough so to be sure that in Coq we would only concentrate on
writing the scripts and in no case on figuring out how to prove a given subgoal.
Then, the proofs on paper and the scripts were taking different roads. The proofs
on paper were reworked, mainly shortened so to be appropriate for insertion in
some technical report. The scripts were also manipulated after the first script
has been obtained. Good practice recommends to reorganize scripts in order to
increase reusability and robustness.

When shown how proofs were actually entered in Coq, the first reaction of
the people we were collaborating with was that Coq proofs were awkwardly
written the other way around. This was true, when translating paper proofs,
we were always starting from the bottom of the text. This is of course because
of the goal-directed flavour of most tactics. Furthermore, as explained before,
the difference between the proof that is published and the proof script that is
stored in the formal development is more likely to be even larger. This has at
least three unpleasant consequences. First of all, it is not exactly true that the
published proof has been formally checked by a theorem prover. What has been
really checked is the conclusion of the proof. In particular, nothing ensures that
the published proof does not contain errors. Fundamental errors are most likely
to have been discovered during the checking in the prover. Still, having just a
single stupid error in a published proof is very annoying specially when the main
claim of the paper is that all the results have been mechanically checked.

The second consequence is that published proofs are of limited interest for
maintaining the formal development. As provers are constantly evolving, keeping
the scripts up to date is a real problem. The published proofs tell very little on
how the corresponding proof scripts are structured. Being able to quickly find
out what a specific subpart of the script is supposed to do is what is really needed
when maintaining scripts.

The third consequence that is closely related to the second one is a lack
of flexibility. It is often the case that, when something has been proved under
particular assumptions, one would like to see the effect of slightly modifying
them. Typically in floating-point arithmetic, one could try to change the base of
the arithmetic, or the rounding mode. Doing such experiments with a mechanized
proof is very simple. One simply needs to change the assumptions and rerun
the scripts. The fact that a proof is not valid anymore is detected when the
application of a tactic fails. Finding out to which actual step of the paper proof
this corresponds is not immediate and requires some non-trivial expertise.

3 Proof format

In order to find an adequate proof format that would reduce the gap between
the structure of proofs on paper and the structure of proof scripts, we had
three sources of inspiration. The first one is the paper [14] by Leslie Lamport
that describes how formal proofs should be written. Reading this paper, it is
clear that the main feature of formal proofs is the structure. A formal proof
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should explicitly expose how the initial problem is decomposed into elementary
subproblems and so on until obvious statements are obtained. One of the main
requirements of a formal proof format is then to highlight the proof structure.

The second source of inspiration comes from the reading of different proofs
in arithmetic. Because they are mostly dealing with transforming inequalities,
the proofs can often be understood just by reading the formulae and forgetting
the text around. This observation echoes a personal anecdote. When learning
mathematics, our teacher in probability was referring to some Russian books
for his course with the sentence “You will see, you get used to Russian very
quickly”. And in fact it was true. With very little knowledge of the language, it
was “somewhat” possible to read mathematics books in Russian. In our format,
we push this observation to the extreme and take as an assumption that only
formulae matter.

The last source of inspiration is the verification condition generator Why [10].
It is used to prove the correctness of programs. For this, the program is anno-
tated with logical assertions. When run on the annotated program, the Why
tool generates a list of conditions. Proving all these conditions ensures that the
annotations in the program are valid. We would like to have a similar mechanism
for our proof format. A proof written in our proof format could be checked by
running a tool and proving the resulting conditions. In program verification, the
tools generating the conditions use elaborate techniques such as the computation
of the weakest preconditions. For proofs, the generation is far more simpler. It
amounts to figuring out for each step of the proof which proposition is proved
under which assumptions. Only some basic slicing technique is needed.

Adding this layer of generation is important. First of all, it makes it possible
to write the whole proof without actually using a proof system. Mechanically
checking the proofs is viewed as a separate activity. Note that in the case of
program verification one expects that the prover would be able to discard auto-
matically at least 80% of the conditions, we expect the same would hold in our
case. Second, the generation creates an explicit link between what is in the proof
and what is proved in the prover. Finally, having this phase of generation makes
it possible to have a format that is independent of a particular prover. In Why
the conditions can be output for different proof systems (Coq, Pvs, and Hol
Light) and adding a new output is relatively simple. We would like the same
to hold for our format.

The definition of the actual proof format derives naturally from these consid-
erations. An appropriate representation of proofs to highlight their structure is
known since decades. It is the natural deduction style proposed by Prawitz [18].
For the actual description of the format a natural candidate is XML [3] whose
purpose is to exactly represent structured objects. In the following, we split the
presentation of the format in two parts. The first part describes how formulae are
represented. The second part describes how the proof structure is represented.
We then conclude the section by illustrating how the generation works.
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3.1 Format for formulae

There already exists a format to represent mathematical objects in XML. It is
called MathML [4]. What we present here is a far simpler version that is only
interested in representing logical formulae. The encoding is straightforward. A
variable is represented by a tag var, a subtag name and an optional subtag type.
For example, a variable x of type A is represented by

<var>
<name>x</name>
<type>A</type>

</var>

Each logical operator is represented by a corresponding tag. For example, the
formula ¬(x ∨ y) ⇒ ¬x ∧ ¬y is represented by

<imp>
<neg>

<or>
<var><name>x</name></var>

<var><name>y</name></var>

</or>
</neg>
<and>

<not>
<var><name>x</name></var>

</not>
<not>

<var><name>y</name></var>

</not>
</and>

</imp>

Special tags are associated to functions and predicates. They contain a sub-
tag with their name and the arguments. For example, the predicate P (f(x)) is
represented by

<pred>
<name>P</name>

<fun>
<name>f</name>

<var><name>x</name></var>

</fun>
</pred>

Finally, each quantifier has its own tag that contains a name and a body. For
example, the formula ∀x.∃y.P (x, y) is represented by

<forall>
<var><name>x</name></var>

<exists>
<var><name>y</name></var>



148 Laurent Théry

<pred>

<name>P</name>

<var><name>x</name></var>

<var><name>y</name></var>

</pred>

</exists>
</forall>

Three aspects have to be pointed out. First of all, we give the possibility for vari-
ables to hold types but types can be omitted. Second, the format for formulae
is generic and mostly inspired by the one adopted in [10]. For example, in Coq
function application is usually curried and f(x, y) is represented as ((f x) y).
Transforming XML formulae into their Coq equivalent is the task of the gener-
ator. Finally, logical connectors are n-ary and quantifiers can have an arbitrary
number of variables. So for example the formula x ∨ y ∨ z is represented by

<or>

<var><name>x</name></var>

<var><name>y</name></var>

<var><name>z</name></var>

</or>

3.2 Format for proofs

As said in our introduction, the source of inspiration is the Natural Deduction
style. Proofs and subproofs are represented by the tag proof. Proofs can be
given a name with the tag name. The conclusion is denoted by the tag concl.
For example, the introduction rule for the conjunction

A B

A ∧B

is represented in our format as

<proof>
<name>and Intro</name>
<proof>

<concl>
<var><name>A</name></var>

</concl>
</proof>
<proof>

<concl>
<var><name>B</name></var>

</concl>
</proof>
<concl>

<and>

<var><name>A</name></var>

<var><name>B</name></var>
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</and>

</concl>
</proof>

Note that the relative positions of the subgoals and the conclusion is not fixed.
Putting the conclusion first gives a goal-directed flavour to the proof. What is
proved is given before explaining why it holds. Putting the conclusion last gives
the more usual forward style. Most of the time a proof on paper is carried out
using the forward style, but for key steps like the application of induction the
conclusions may be given first. This capability to accommodate both styles is
given for free by XML.

Another important aspect is the handling of assumptions. This is illustrated
with the rule for case analysis:

A ∨B

[A]
. . .

C

[B]
. . .

C
C

and its encoding:

<proof>

<name>or Elim</name>

<proof>

<concl>

<or>

<var><name>A</name></var>

<var><name>B</name></var>

</or>

</concl>

</proof>

<proof>

<hyp>
<var><name>A</name></var>

<name>h1</name>

</hyp>
<concl>

<var><name>C</name></var>

</concl>

</proof>

<proof>

<hyp>
<var><name>B</name></var>

<name>h2</name>

</hyp>
<concl>

<var><name>C</name></var>

</concl>

</proof>
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<concl>

<var><name>C</name></var>

</concl>

</proof>

In our format assumptions are represented by the tag hyp. This tag contains the
formula that is assumed and optionally the name of the assumption. Note that
the rules of natural deduction are only used to illustrate our format. The format
is flexible: no limit is put on the number of assumptions and subproofs a proof
can hold, so to make it possible to express any proof step.

Another important mechanism is the introduction of local variable names.
This is illustrated with the universal introduction rule

P (c)
∀x. P (x)

It is represented in our format as

<proof>

<name>forall Intro</name>

<proof>

<var><name>c</name></var>
<concl>

<pred>

<name>P</name>

<var><name>c</name></var>

</pred>

</concl>

</proof>

<concl>

<forall>

<var><name>x</name></var>

<pred>

<name>P</name>

<var><name>x</name></var>

</pred>

</forall>

</concl>

</proof>

As for assumptions and subproofs, more than one local variable can be introduced
in a proof.

The last mechanism we need to complete our format is the justification. It
gives the possibility of explicitly referring to theorems, local assumptions or local
proofs in the proof. Justifications are represented by the tag justification.
This tag contains a list of names. For example, the expression

<proof>

<name>prop2</name>

...

<justification>
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<name>prop1</name>

</justification>
</proof>

defines a theorem prop2 that makes use of another theorem prop1. It allows one
to explicitly provide the dependence in the proof construction. We have extended
the tag justification with the capability of putting some proof script:

<proof>

<name>prop2</name>

...

<justification>

<prover name=”Coq”>...</prover>
</justification>

</proof>

The prover tag is optional and gives the possibility of having a document that
can be checked automatically. Having several prover tags inside the same justi-
fication makes the document checkable by different provers.

The format as it stands satisfies all the requirements expressed in the previ-
ous section. It contains structure information and formulae. To make it human-
readable, we allow text to be inserted inside tags. For example, the previous
proof based on case analysis can be commented with the following texts:

<proof>

<proof>

<concl>

We have
<or>

<var><name>A</name></var>

<var><name>B</name></var>

</or>

</concl>

</proof>

By case analysis
<proof>

Case 1:
<hyp>

Assuming
<var><name>A</name></var>

(<name>h1</name>)
</hyp>

<concl>

We get
<var><name>C</name></var>

</concl>

</proof>

<proof>

Case 2:
<hyp>

Assuming
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<var><name>B</name></var>

(<name>h2</name>)
</hyp>

<concl>

We get
<var><name>C</name></var>

</concl>

</proof>

<concl>

In both cases, we have
<var><name>C</name></var>

</concl>

</proof>

Using a simple style-sheet presentation we get:

We have A\/B

By case analysis

Case 1:

Assuming A (h1)

We get C

Case 2:

Assuming B (h2)

We get C

In both cases, we have C

This example is of course too simplistic and just illustrates how the format
could be made easily readable. The presentation content of our format needs to
be further developed to meet the standard of scientific publication.

3.3 Generation

The algorithm to generate conditions is straightforward. It has only been imple-
mented for Coq but we believe that it could be easily adapted to other systems.
It consists in a traversal of the XML structure from top to bottom and from left
to right. Each time a proof tag is encountered, its subproofs are first recursively
processed, then a condition is generated for it. Each condition is represented by
a lemma and a piece of script is added to do the necessary book-keeping and
get the appropriate assumptions. To give a more concrete example, consider the
following proof script

<proof>

<hyp>

<var><name>A</name></var>

<name>h1</name>
</hyp>

<proof>

<name>p1</name>
<concl>

<var><name>B</name></var>
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</concl>

</proof>

<proof>

<name>p2</name>
<hyp>

<var><name>C</name></var>

<name>h2</name>
</hyp>

<concl>

<var><name>D</name></var>

</concl>

</proof>

....

</proof>

The first condition that is generated is relative to p1 and is represented by a
lemma c_p1. It has the following form:

Lemma c_p1: A -> B.

Intros h1.

Apply ok.

Qed.

The subproof p1 has been declared in a context where the assumption A is
visible. Its conclusion is B. So the statement of the conclusion is A ⇒ B. The
first task of the script is to introduce assumptions. In Coq, assumptions can
be named. So we can faithfully reflect the name given in the document. In our
example, the tactic Intros h1 introduces the first assumption A with the name
h1. The final tactic Apply ok is generated so that the proof is always accepted by
the prover. This tactic represents the application of a predefined axiom ok that
simply states that everything is true. This simple trick gives us typechecking for
free. Any error in the initial document is automatically detected by the prover
when processing the generated file. As each lemma represents a single step in the
proof, tracking the origin of the error in the initial document is easy. Finally the
task of actually checking the proof is performed by replacing all the applications
of the axiom ok with appropriate tactics in the generated file.

For the second subproof p2, the condition has the following form:

Lemma c_p2: A -> C -> D.

Intros h1.

Generalize (c_p1 h1); Intros p1.

Intros h2.

Apply ok.

Qed.

There are two assumptions in the statement of the lemma: A comes from the
context and C is a local assumption of p2. For the proof script, the tactic Intros
h1 introduces the first assumption A of the lemma with the name h1. The second
tactic is more elaborate. In order to introduce p1, it needs to instantiate c_p1
with the context that is common between p1 and p2. Here the common context



154 Laurent Théry

Fig. 1. A snapshot of the prototype interface

is the assumption A whose name is h1. The expression (c_p1 h1) corresponds
to a proof of B. The tactic Generalize (c_p1 h1) generalizes the goal with
B. Before this tactic, the goal is C ⇒ D, after it is B ⇒ C ⇒ D. The tactic
Intros p1 introduces B with the name p1 in the assumption. The result of the
two tactics is the expected one: the fact that B is true can be used in the proof
of p2 with the assumption p1. The third tactic simply introduces C with the
name h2 in the assumption list. Note that we take a special care in introducing
assumptions in the proper order. The assumptions introduced last are the ones
displayed next to the conclusion. In the generation we ensure that this proximity
is faithful to what is present in the initial proof document. In our example, the
closest assumption is h2, then p1 and then h1.

Finally, when all introductions are done, we possibly reorganize the order of
the assumptions by taking into account the references given in the justifications.
This improves the performance of automatic tactics that usually privilege the
last introduced assumptions.

4 Prototype interface

To experiment with our proof format, we have been developing a prototype
interface. An early evaluation of the editing tools for XML such as Xerlin [24]
shows that these generic tools are often difficult to customize. As we wanted to
be able to quickly test different ideas, we built our application on top of the
Äıoli toolkit [1]. A snapshot of the current state of our prototype is given in
Figure 1. The application is composed of a window with 4 components:
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- At the top of the application, a menu bar proposes the basic operations.
The File pulldown contains buttons for reading and writing files and for
generating the output. The Edit pulldown contains buttons for the usual
editing operations: copy, paste, cut, insert.

- In the center, a text region displays the current state of the document.
- On the left, a dynamic list of buttons is proposed to guide editing. Which

button is proposed depends on which part of the document is selected.
- At the bottom, a text buffer lets the user enter the text to be inserted in the

document.

For displaying the current state of the document, the direct XML format is
clearly inadequate, as it is too verbose. To get a more concise presentation, we
follow some basic principles:

- Indentation is used to show the proof structure. The presentation of sub-
proofs is shifted of two characters to the right with respect to the presenta-
tion of the proof.

- The tags var, hyp and concl are represented using different colours: two
different kinds of green for the first two, blue for the last one. It makes
the distinction between what is assumed (green) and what is proved (blue)
immediately accessible.

- Formulae are displayed with their usual pretty-printing form.
- Names of proofs, assumptions, and references have a special font (italic) and

a special colour (red).

This default configuration can be modified but the basic principles (indentation,
colour differences) need to be preserved.

Even though the document is represented as a text, the application keeps
track of the relation between what is displayed on the screen and the XML
document. This connection is mainly used to guide the mouse selection. The
selection is structured: only tags can be selected. For example, when dragging
the mouse to perform a selection, the region that is selected corresponds to the
smaller tag that contains the initial point of the drag action and the current
point.

The actual process of editing is performed in a structured way. Initially the
document is composed of a single place-holder. This single place-holder is then
progressively refined to get the whole document. To guide the editing process,
a menu proposes different items. Available items are declared in a configuration
file. During the editing process, only the items that are relevant to the selected
region are proposed to the user. An item declaration is given by a name, a pattern
and an action as follows:

name: pattern -> action

To express pattern and action, the usual XML syntax is used. A simple extension
is needed to denote place-holders, arbitrary tags in pattern, and selection. For
a place-holder, the notation is <|name|> where name is the name of the place-
holder. Most of the time <|?|> is used. In patterns, an arbitrary tag is denoted
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by <|*name|> where the name name is used to refer to this tag in the action
description. It is also possible to refer to an arbitrary list of tags using the
notation <|**name|>. An action is simply the XML expression that should
replace the expression that has been filtered. In this action, place-holders and
the variable of the pattern can be used. For example, the item

and:
<|*x|> -> <and> <|*x|> <|?|> </and>

has a pattern that filters any tag and build a conjunction with the filtered term
and a place-holder. Note that the action also imposes some restrictions on the
applicability of the pattern. So this item is only proposed when the selected tag
corresponds to a formula.

While editing it is also convenient to move automatically the selection. This
is expressed syntactically in the declaration by putting double brackets around
the tag that has to be selected in the action. For example, refining the previous
item

and:
<|*x|> -> <and> <|*x|> <<|?|>> </and>

indicates that the selection should be on the new place-holder. Selection can also
be used in the pattern to give contextual filtering. For example, the item

and:
<and> <|**x|> <<|*y|>> <**z> </and>
->
<and> <|**x|> <|*y|> <<|?|>> <|**z|> </and>

makes it possible to capture the special case where the tag was already in a
conjunction. Note that these two item declarations have purposely the same
name. In the menu, items are represented by their names and a given name
occurs at most once. When the user selects a name, it is the action with the
most specific filters that is triggered. This generic mechanism based on rewriting
rules provides a powerful yet simple way to customize the editing menu. For
formulae, an adequate menu coupled with the capability of easily copying and
pasting formulae, thanks to the structured selection, has proved to be a very
effective way for building formulae quickly.

For building proofs, item declarations are mostly used to create short cuts
for the most useful proof steps: proof by induction, proof by cases, proof by
contradiction. More elaborate guided editing could be developed. Ultimately
we could think of integrating powerful external components, such as theorem
provers or computer algebra systems, to guide editing. Connecting a theorem
prover would make it possible to get the usual interactive proof editing mode,
where the prover fills in the formulae of the subgoals. Connecting a computer
algebra system would give access to computation and simplification of formulae.
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5 Related Works

We are aware that most of our problems came from the simple fact that the tactic
language in Coq has been thought as a little programming language whose goal
is to build proofs. As in programming, conciseness and genericity in proof scripts
are then privileged. This is not particular to Coq but common to all provers
based on tactics. Scripts in such provers usually contain very few formulae. As
coined in [15], adding formulae in script increases the viscosity of the script. It
reduces the reusability of scripts and make them less robust to modifications.
This simple fact that formulae do not usually appear in proof scripts shows how
inadequate scripts are to reflect the usual proofs.

There have been attempts to get a more natural language to interact with
provers. The first and most impressive one by far is the Mizar project [17]. Other
interesting attempts include [20, 22, 25]. Following the terminology used in [11],
these systems propose a declarative style of proving, while systems like Coq offer
a procedural approach. Declarative scripts usually contain lots of formulae and
are then closer to proofs on paper. Unfortunately these systems impose some
strong restrictions on the way proofs should be written. In Mizar for example,
the proof has to be given with the level of detail imposed by the system. As
the system has very little automation, proofs script are often too detailed for a
human reader. In Isar, some basic constructs are hard-wired. An example is the
proof by cases, where the presentation of the different cases in the document has
to follow the exact order in which the object was declared.

Other interesting approaches include attempts to accommodate both proce-
dural and declarative styles [8, 23], extract proof texts from tactics [5], extract
proof texts from proof objects [2, 6]. Note that when provers have proof objects,
it would be possible to convert automatically proof objects into our format in a
very similar way as in [2, 6]. The result would most probably be far too detailed.
However, with some support for improving the presentation while keeping the
proof script consistent, this reverse engineering activity could be an effective way
to get readable proofs.

6 Conclusion

In this paper we have presented a very simple and flexible format for writing
formal proofs. This format is independent of any theorem prover. Writing proofs
is meant to be as natural as possible. With respect to the usual way of writing
proofs, the writer is only asked to explicitly indicate the proof structure. At each
step it is then clear what the assumptions are and what the conclusion is. We
have also presented some ideas on how a user interface could help writing proofs
in this format.

The separation of the activity of proof writing from the activity of proof
checking has been motivated by our own experiment. We do not claim that this
separation should always be the rule. In our case, it makes it possible to conciliate
the necessity of publishing the proof in a human-readable form with the tedious
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task of mechanically checking the proof in all the very details. In that respect
we consider the mechanic checking of the proof just as a way to increase the
confidence in the proof and not in any case as a way to substitute the refereeing
process.

In Section 2, we have described three drawbacks of the usual loose connection
between the published proof and its machine-checked version. The first drawback
was that the computer proof usually only checks the final statement of the pub-
lished proof. In our framework we get a tighter connection. Every step of the
published proof has been checked: for each step there is a corresponding lemma
in the formal development. The second drawback was the difficulty of maintain-
ing proofs. To ease maintenance a good practice is to always split big proofs
into smaller pieces. Our generating process enforces this practice: every lemma
only covers a single step of the proof on paper. The last drawback was the diffi-
culty to experiment with slightly different versions of the final statement. In our
case, the variations can be done directly on the published proof by changing the
statement. When rerunning the proof script, the lemmas that the prover fails
to reestablish directly indicate the steps that need to be fixed in the published
proof.

Some more work is still needed in order to turn our experiment into a realistic
approach. For example, the conditions that are generated are rarely provable
automatically by Coq. More tactics need to be developed in order to get a
reasonable ratio of conditions proved automatically. Once this has been done,
we will still need to convince people to write proofs in our format. The fact that
we are using XML could be a problem. Currently very few scientific publications
are written directly using this technology. The situation may change in the future.
An interesting alternative is to adapt our ideas to the TeXmacs [21] system. This
system proposes a very effective environment to write LaTex documents. It has
a large community of users that could be interested in this light connection with
theorem provers.
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Abstract. This position paper discusses various issues concerning the
requirements and design of proof assistant user interfaces (UIs). It starts
off with an analysis of some of the difficulties faced by UI projects in
academia. Reusability is stressed as the key to provide high quality user
interfaces for more proof assistants. In order to avoid being influenced by
particular provers, a generic description of proof assistant interaction is
given. This is followed by an exposition of use cases and object identifi-
cation. The usefulness of these requirement elicitation techniques in the
theorem proving domain is demonstrated by identifying some use cases
which are lacking support in a current UI/proof assistant combination.

The second half of the paper begins with a discussion of human com-
puter interface (HCI) design issues in the theorem proving context. Af-
ter a brief review of the “GUI versus text mode” debate, suggestions are
made how the usability of future UIs could be improved by application
of the “principle of least effort”, better use of GUI facilities and better
customisation capabilities. The paper ends with a consideration of archi-
tecture and system design issues. In particular, it argues for a platform
architecture with an extensible set of components and the use of XML
protocols for communication between UIs and proof assistant backends.

1 Introduction

Theorem proving environments such as COQ [1], HOL [2], Isabelle [3], Nuprl [4],
Omega [5], PVS [6] and others [7] are becoming increasingly popular for the for-
malisation of derivations in different areas of computer science and mathematics.
Some of these systems are associated with user interfaces (UIs) that try to al-
leviate the strain of dealing with a complex proof assistant. Recent noteworthy
achievements include ProofGeneral [8], PCOQ [9], LOUI [10] the Nuprl interface
and IsaWin [11]. Nonetheless it is fair to say that progress in user interfaces has
been slow compared to advancements in the proof assistants themselves.

The aim of this paper is to aid the development of future UIs by discussing
important issues concerning requirements elicitation, human computer interface
(HCI) design, architecture and system design. A lot of emphasis will be put on
reusability and adaptability as these are seen as key design goals.
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2 Proof Assistant Interfaces: Problems and Reusability

Most leading proof assistants have been around in some form or other for a
decade or longer. Several have matured to a point where they are suitable for
mechanical proof checking of substantial derivations.

The gradual development of proof assistants is in contrast to the more hap-
hazard history of theorem prover user interfaces. A look at the literature from
the 1990s reveals several projects which seem to have had little impact. In some
cases, the projects produced systems that never advanced beyond rather small
groups of users. It is interesting to see that among the more popular survivors
are several (X)Emacs based systems, i.e. ProofGeneral and the user interfaces
for PVS and IMPS [12].

It order to increase the impact of future proof assistant UI efforts, it is useful
to be aware of some of the difficulties facing such projects.

– Designing a good user interface for any complex system is a demanding task
that requires good skills both in HCI and program design.

– Implementing a user interface can be a tedious job that is less intellectually
stimulating than developing the proof assistant itself. It is easy to underes-
timate the necessary efforts because of the apparent visual simplicity of the
product.

– Systems that are build on top of a platform such as (X)Emacs require rel-
atively less coding. However, they can be plagued by platform restrictions
and problems which are out of the developer’s control. Another drawback
is the fact that the addition of features to a platform sometimes requires
coding in an uncommon scripting language. This increases the threshold for
contributions from developers outside a core team.

– There is little reward for building and maintaining user interfaces. Because
of the lack of commercial interest, most developers are in fact academics
or students. Members of both of these groups are not rewarded directly for
perfecting and maintaining user interfaces but only rather indirectly, namely
in so far as this contributes to their research success, teaching, and in case
of students the award of qualifications.

– Most theorem provers have been developed in functional programming lan-
guages from the ML and Lisp families. Compared to other languages such
as C++, Java or Basic, these functional languages are lacking in graphical
user interface (GUI) toolkits and in some cases provide only poor support
for light-weight concurrent processes. These problems have lead to several
projects that connect functional languages with frameworks that have better
GUI facilities, see for example sml tk [13] and recent O’Caml [14] bindings
for TK and GTK+. Still, the resulting development environments are more
cumbersome than the direct use of a modern commercial GUI building tool.

– Theorem provers are still rapidly evolving and so are user interface technolo-
gies. This increases the required maintenance effort.

For the reasons mentioned above, only a few academic institutions have the
necessary resources to build and maintain completely custom UIs. Even these
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institutions would benefit from more reuse by freeing up developer time. This
suggests that it is in the interest of the academic theorem proving community
to devise reusable UI components and UIs.

3 Proof Assistant Interaction

In the past, with the notable exception of ProofGeneral, most UIs have been tar-
geted at a particular proof assistant. Unless great care is taken, this leads to a
design with a tighter than necessary coupling between the UI and the proof assis-
tant. This makes reuse difficult. Although doubtlessly influenced by the author’s
experience with Higher-Order Logic (HOL) theorem proving environments, this
paper tries to approach UI requirements from a more general perspective.

The primary role of the UI is to provide support for the development of
theories with a proof assistant. Here is an outline of the interaction from a user
point of view:

– Development usually takes place within some project such as building a
library, finding a proof for a mathematical theorem or the formal verification
of a program.

– Development is sectioned in a number of theories (or “sections”). Theories
form a hierarchy with each child theory extending one or more parent theo-
ries.

– Theory developments can be made persistent, for example in form of proof
script files. The system provides commands to store and load theories.

– All theory development activities take place in a logical context consisting of
1. a logical basis that comprises declared constants, axioms, and for typed

logics the declared types and possibly sorts.
2. the set of theorems that have already been proven for this logical basis.

– Apart from the logical context, there is also an extra-logical context that
influences the user’s interaction with a system. This includes the setup of
parsers and pretty printers, proof tools, documentation generators and the
state of display options and the setup of proof tools and documentation
generators.

– An interactive proof is started by posing a logical formula (the main goal)
that is to be proven. This is followed by a number of proof steps. In each
step, the user issues some proof command. This is carried out by the prover
and leads to a new proof state.

– A proof state contains a list of open goals that are left to prove. It might also
contain other information such as local declarations and assumptions within
a proof.

– A proof ends when a state is reached that has no open goals.
– Proof attempts can be aborted.
– On some systems, proof activities can be nested, i.e. it is possible to tem-

porarily abandon a proof attempt and return to it later after proving other
theorems in the meantime.
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– Proof commands can refer to proof tools, theorems, subgoals and their sub-
term, types, terms and other entities.

The term “theory development” does not just denote the expansion of theories
with new constants, theorems and other elements. It also refers to activities
that concern the modification, inspection and deletion of theory elements, i.e.
the inspection of the current proof state, the editing of an existing proof or the
deletion of a theorem.

4 The Case for Requirements Elicitation

In the author’s experience, academic projects often do not carry out a detailed re-
quirements elicitation. Writing requirements documentation might be perceived
as a job which ultimately takes more time than it is worth. This section ar-
gues for the usefulness of use cases and object identification as two relatively
lightweight means of requirements elicitation.

A Use Case Example

Use case analysis [15] is one of the more successful software engineering technique
for collecting requirements. Each use case abstracts over a set of user-system
interactions (“scenarios”) that are performed by users in pursuit of some aim.

Below is a sample use case for a hypothetical proof assistant system. It is
based on a use-case template from [16].

Title of Use Case: Adding a constant to a theory
Actors: Specifier
Preconditions: System is either in top-level or theory mode.
Postconditions (Successful Outcome): Constant has been added to the
theory
Main Success Scenario:
1. The specifier requests “Add constant” operation.
2. The system responds with a list of theories for the current project.
3. The specifier selects a theory.
4. The system responds with a display of the constants already declared in

the theory and a form for entering the details of the new constant.
5. The specifier enters the constant details and submits the form.
6. The system adds the constant to the theory.
7. The success of the operation is indicated by a status message in the UI.

Alternative Flows
1-3 a. If the system is in theory mode, then the specifier can also request
“Add constant to current theory”. In this case steps 2 and 3 are omitted.
2b/4 a. The specifier can cancel the process by choosing a “cancel” op-
tion.
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4 b. If the specifier indicates the theory by string input, then the system
checks that the current project contains such a theory. If this check fails,
then the system responds with a suitable error message and redisplays
the list of theories.
4 c. The system checks that the specifier is authorised to change the
logical basis of the theory. If this check fails, then the system responds
with a suitable error message and redisplays the list of theories.
6 a. The system checks that the form details specify a valid new constant
for the theory. If this check fails, then the system responds with a suitable
error message and redisplays the constant details form.
7 a Cancellations and errors are also indicated by status messages.

Special Requirements
• All text input forms should allow copy-and-paste.

Open Issues
• Should there be a syntax-directed editor for input of the constant defi-

nition?

Actors

In a use case, the term“actor” refers to a particular role in which users in-
teract with a system. The actor “specifier” above stems from an article by
J. Goguen [17] who distinguishes for theorem proving applications between the
three actors “specifier”, “prover” and “reader”. These three can all be seen
as sub-roles of a more general “theory developer” role. Other roles in which
users might interact with a proof assistant are a “proof tool developer” actor
who performs activities such as programming, adaptation and testing of proof
procedures as well as the standard “system administrator” actor who performs
activities such as installation, monitoring and updating of the system.

Identification of Domain Objects

An important step in requirements engineering is the identification of (classes of)
domain objects that are relevant from the user’s point of view. A simple starting
point to finding such objects are the nouns in use cases and other descriptions
of user-system interactions. In our case, object classes can be found by going
through the description in Section 3 and by looking at proof assistant manuals.
Below is an initial, incomplete list of domain objects that are relevant in the
interaction of users with a proof assistant:

– project, theory, theory hierarchy, child theory, parent theory
– logical context, logical basis, extra-logical context;
– axiom, theorem;
– formula, term, constant, type, sort;
– proof, goal, main goal, proof step, proof command, proof state, open goal,

proof attempt;
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– tools such as parsers, pretty printers, proof editors, natural language proces-
sors, etc

For user interface design, the identification of domain objects is helpful because
it raises the question how to represent the state of objects from a class in general,
independent of a concrete use case.

Finding Use Cases

Domain objects help to structure the search for use cases. For each class of
objects, one considers in how far there is a need to support operations from the
following generic categories:

– creation of objects,
– modification of objects
– inspection of the state of objects
– making objects persistent
– deletion of objects

Application of this technique quickly leads to a long list of generic use cases for
theorem proving environments. As an example, here are some of the use cases
that can be identified in this way for the domain class “theorem”:

– Creation of a theorem via an interactive “backwards” proof. Some of the
steps of this primary use case were already sketched in Section 3.

– Creation of a theorem directly – without stating a goal – by applying oper-
ations to existing theorems.

– Renaming a theorem
– Editing the proof of a theorem
– Modification of the statement that is proven in a theorem. This also requires

an adaption of the proof.
– Inspection of a theorem and its associated proof.
– Saving a theorem with its associated proof.
– Deletion of a theorem from a theory.

Here are three more use cases which were identified using these generic consider-
ations and which lack support in the current ProofGeneral/Isabelle combination:

– While Isabelle provides a number of operations to inspect and modify its
standard proof tools, there is no support for such actions in ProofGeneral.

– From a user point of view, renaming a constant is a use case that occurs
sometimes during the initial phases of the development of a new theory.
Neither ProofGeneral nor Isabelle supports this directly. Instead, the user
has to edit all occurrences and rerun proof script files manually.

– There is no support for use cases involving projects in ProofGeneral such as
creating a new project, moving theories from one project to another one, or
“making” a project (running all proofs and associated document generation).
In fact, there is no explicit notion of projects in Isabelle - they are identified
with directories.
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These three use cases illustrate different problem situations. In the first case,
the UI support is simply lagging behind the facilities offered by the proof assis-
tant. This could be mended easily by adding custom UI elements that invoke
these operations. In the second example, a particular use case is not supported
directly by the proof assistant. Hence support in the UI would also require an
extension of the proof assistant resp. its infrastructure. In the third case, a whole
software engineering concept (“project”) is missing from the UI/ proof assistant
combination.

The Role of Use Case Analysis

Use cases are a relatively simple and lightweight requirements elicitation tech-
nique. Their main purpose is to aid in the clarification of functional requirements
from a user point of view. Typically, they are written during the early phases
of software projects, be it the development of new systems or the extension of
systems with new functionality. Use cases also provide a good starting point for
user interface design, testing and – in case of theorem provers much needed –
user documentation.

A use case analysis of proof assistants and their UIs should produce the
following deliverables:

– A list of domain classes that play a role in user interaction.
– A catalogue of all use cases structured according to the domain classes.

This list should be annotated with priorities, for example by distinguishing
primary, secondary and optional use cases.

– A detailled description of key use cases based on a template such as used in
the “Add a Constant” example above. These descriptions can be structured
using “generalisation”, “includes” and “extends” constructs [18].

– If desired, a graphical overview of use cases in form of UML use case diagrams
can be added.

Use case analysis is of course no panacea that magically solves all problems
of requirements engineering. For example, the identified domain classes are not
necessarily appropriate as design and implementation classes. This point was
made by B. Meyer [19] who also criticised use case for their specification of
sequentiality. Another problem can be that use cases might invite a too-low
level, concrete view of the system that is too much influenced by similar, already
existing system.

Despite these drawbacks, experience with use cases over the last decade has
shown that they are a valuable technique for collecting requirements. For the
development of theorem proving environments, a special benefit arises from the
fact that they take a very user-centric view. This should act as a counterbalance
in what otherwise tends to be a prover-functionality driven development. An-
other strength of use cases is that they identify typical sequences of interactions
which need to be supported efficiently as a unit. In the author’s experience of
proof assistants, supporting whole use cases rather than isolated interactions is
a point that does not always seem to be taken into account.
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5 Human Computer Interface (HCI) Issues

HCI Design: Principle of Least Effort

The interaction of a user with a proof assistant is an instance of human-computer
interaction (HCI) [20]. As such, the usual guidelines of good HCI design apply.
One of the most important of them is the “principle of least effort”. Here are
some steps that can be taken in order to minimise the user effort:

– Auto completion helps to minimise the amount of typing. This is important
as theorem prover interaction can require a lot of typing and mouse/pointer
operations. This increases the risk of developing repetitive strain injuries
(RSI). Auto completion could be used whenever it is necessary to name
objects such as theories, theorems, proof commands, etc. Completion should
be intelligent in the sense that it takes object types and context into account.
An advanced implementation could perhaps even consider the likelihood of
different possible completions.

– Menus should offer only possible choices.
– Menu items could be grouped into a recently used/frequently used section

and a rarely-used section. The latter section would be visible on demand
only.

– Use of suitable default values whenever a choice is offered.
– Allow reuse of previous inputs, i.e. base a new constant definition on editing

a similar previous definition or allow editing of a previous proof command.

K. Eastaughffe [21] has identified further HCI design principles for theorem
prover support. In particular she suggests complimentary views of proof con-
structions, ease of undo operations, flexibility in the way users can articulate
commands to a prover, and support for concurrent proof constructions.

Graphical Interaction versus Text Mode

Graphical User Interfaces (GUIs) have transformed the use of computers and
contribute significantly to their popularity. They are kind to novices and non-
experts as they make it unnecessary to learn command languages. GUIs are
based on the direct manipulation metaphor: objects are represented by graphical
elements such that a manipulation of the graphical representation induces a
corresponding operation on the represented object. These days, even most text
editors are GUI applications - they usually support graphical operations such as
positioning with a pointer device, selecting of items in pull down menus, etc.

Despite all the arguments for GUIs, the case for graphics based interaction
rather than text is not always clear cut. Text based interfaces can be more
efficient - selecting an item from a large scrolling list takes longer than simply
typing its name, especially when auto-completion is provided. In the case of
theorem prover UIs, there are conflicting reports. Some users like proof trees [22]
such as provided by PVS or Jape while others have commented that – while
useful for pedagogical purposes – such trees can be difficult to use for all but the
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smallest proofs [17]. One study has even cast general doubt on the usefulness
of GUIs for proof assistants [23]. In particular, it mentions the danger of brittle
proofs arising from the identification of subterms by pointing and comments that
“There is even strong evidence to suggest that ease of interaction tends to reduce
planning and lead to poorer user performance in problem solving domains...”.

In our view, this controversy suggests that the UI should offer a choice be-
tween text based and graphical interaction whenever there is no clear-cut advan-
tage to use either. This applies for example to selections which are often faster
by keyboard, at least for expert users. Providing such a choice also caters for
individual preferences.

Better Use of GUI Facilities

Because of the large potential benefits, there is a strong case for continuing
research into better use of GUI facilities during proof assistant interaction. Es-
pecially promising it the use of hyper-linked text (HTML/ XML) as it offers an
efficient and relatively easily implementable way of browsing information. Here
are some potential applications:

– Theorem search results: link to proofs
– Links from one theorem to other theorems that are closely related
– Browsing proofs at various levels of detail
– Constant in a goal: link to its definition
– Unknown in a goal: link to a box which allows its instantiation

Drag-and-drop operations are useful for manipulating “container” objects and
aggregations. In the context of proof assistants, possible applications include:

– Moving a theorem from one theory to another theory
– Assembling theorem sets that parameterise a proof procedure

Proof-by-pointing [24] is an advanced method for graphically constructing proofs.
It includes the generation of proof scripts from user interactions, called “proof
script management” in [24]. It would be good to see this feature supported in
more proof assistant UIs.

Using the same underlying idea, one could also use “clicking” to perform
forward or backward reasoning from goal premises or a goal conclusion via a
pre-selected theorem. Even simpler would be support for a “proof by clicking”
of a subgoal by assumption.

Customisation

In order to increase usability, it is vitally important that proof assistant users
can adapt the UI easily in order to accommodate for their own preferences as
well as to adapt to changes in the proof assistants. This includes:

– The adaptation of menus, menu items, tool bars, key board short cuts etc. A
simple example would be the addition of a tool bar button which generates
a particularly frequently used proof command.
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– The adaptation of formatting, both of proof assistant outputs as well as
UI elements: fonts, font sizes, resizing of windows, pretty-printer settings,
colouring, etc.

Note that such adaptations should be context sensitive in the sense that they
depend on different UI modes such as top level mode, theory mode or proof
mode.

Adapting the system needs to be recognised as a normal activity that de-
serves proper documentation. While some systems such as XEmacs offer cus-
tomisation dialogues, it can be easier to directly edit configuration files. The
latter is acceptable as long as the format of these configuration data is easily
understandable. Unless there are good reasons, XML appears to be the obvious
choice as configuration file format for new projects.

Customisation should be possible at different levels such as project level,
theory level, proof level with settings on a more specific level overriding those on
more general levels, i.e. setting the visibility of types to true in the context of a
theory should override a setting of the visibility of types to false on the project
level.

6 Architectural and System Design Issues

Paradigms

When developing software systems, it helps to have paradigms and metaphors
that guide the design. From the user point of view, the overall system paradigm
that we propose for proof assistant UIs is that of a control center similar to mod-
ern UML/ programming IDEs (integrated development environments). From the
system designer point of view, our suggestion is the paradigm of a platform which
allows the plugging in of components.

Basic Architecture

The user interface is the “front end” layer of the system architecture of a theorem
proving environment. Its role is to permit the user an efficient control of the
different functionalities offered by the system.

In many software systems, the user interface is written in the same program-
ming language as the rest of the system. In this case, the lower layers provide
interfaces consisting of functions that can be called from the UI in order to carry
out user requests.

With most current proof assistants, the situation is different. Rather than
providing an Application Programmers Interface (API) in some programming
language, the proof assistants offer a text-based interface. This can be used
directly by a user and yields a basic console (“command line”) HCI. In order
to obtain a more advanced user interface, one builds a separate, standalone UI
component which communicates via the text interface with the proof assistant.
It is this architecture which will be assumed in the sequel by default. This is
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of course the architecture underlying systems such as ProofGeneral, PVS and
PCoq.

Does it make sense to go even further and divide the UI into separate stan-
dalone components? For example, what about using a standard web browser for
reading theories, a self-contained component for specifying theories and a sepa-
rate interactive proof component for deriving new theorems? Here are a couple
of considerations that need to be taken into account:

– In general, building a monolithic environment with little reuse can bring
performance improvements and does not suffer from integration problems.
However, it is usually infeasible because of a prohibitive amount of extra
work compared to the reuse of existing components.

– Splitting off a browsing component is in a way easier than splitting off one
of the other two components. This is because the browsing component does
not affect the other two - there are no mutual dependencies. Synchronisation
only requires an update of the data/documents which is affected by activities
of the editor and the proof component.

– Using a standard web browser for reading theories is attractive because of
reuse possibilities and widespread familiarity with the interface. MathML
promises to simplify the rendering of mathematical formulas. Representing
theories as XML based documents allows simple customisation of the pre-
sentation via XSLT resp. via a transformation to HTML and the use of CSS
style sheets.

– Splitting apart theory specification and proof derivation components can
lead to problems with concurrent access. In particular, a non-conservative
theory operation can invalidate concurrent proof attempts. There are also
issues relating to the architecture of the proof assistant. For example, for
the HOL family of provers, the components would need to talk to a single
theorem prover process. Thus a concurrent use of such components would
have to be interleaved.

Proof Assistants as Components

According to the architecture suggested above, the proof assistant is not used
directly via a console interface but indirectly via a user interface. This amounts to
a significant change for some proof assistants such as those from the HOL/LCF
family. Traditionally, a system such as Isabelle has been viewed as complete
in itself, rather than as being a component of a larger system. This change of
paradigm has as number of implications for the proof assistant. For example,
if proof scripts are generated automatically from a “proof by clicking”, then it
is no longer paramount for proof commands to be in a terse human-oriented
syntax. Instead, for the purposes of communicating with the UI, either (remote)
procedure calls or messages in an XML based protocol are more appropriate.

More generally, the separation of users interfaces from the rest of the system
invites a view of proof assistants as reactive components that provide a mathe-
matical service in a distributed environment. This raises many questions, ranging
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from security issues and the support for concurrent access to the question of how
to deal with a prover that does not respond due to an infinite loop in a proof
attempt.

Allocation of Responsibilities

A basic system design problem is the allocation of responsibility between differ-
ent parts. In case of a UI and a proof assistant backend, the assignment of most
tasks is not a real question - the roles of the two components are clearly defined
and quite separate. However there are a couple of points worth discussing:

– For efficiency reasons, it is advisable that the UI performs basic validation
of user inputs.

– Traditionally, parsing and pretty-printing are allocated to the proof assis-
tant. Assuming an XML based communication protocol between the two
subsystems (see below), this distribution of work will need to be reviewed.
According to the general principle that data should be transformed into a
“presentation form” as late as possible, it is advisable to do the final “pretty-
printing” transformations in the UI component. In case of parsing textual
input by the user, the case is not so clear cut as such a parser might be
needed in the proof assistant anyway in order to process proof script files.
There seem to be a number of reasonable options, including simply wrapping
up of textual inputs in XML or the sharing of a separate parser component
between UI and the proof assistant.

– For efficiency reasons, one might consider to replicate part of the proof assis-
tant state in the UI. For example, by replicating the history mechanism, one
can reduce the amount of traffic when undo-ing a proof step as the new proof
state can be determined locally in the UI. However, the simpler design is to
keep these responsibilities with the proof assistant as it is the “expert” as
far as the proof state and logical contexts are concerned. The final decision
about replication depends to a large extend on the anticipated deployment
scenario. For example, if the UI and the proof assistant are running on the
same machine, then it it doubtful that the performance gained justifies a
more complex design.

Component Frameworks and XML Protocols

Object-based component frameworks [25] such as CORBA, COM+ and Enter-
prise Java Beans (EJBs) support distributed computing based on the declaration
of interfaces and methods. They rely on quite extensive runtime environments
that hide many of the complexities of programming in a distributed and/or
heterogeneous environment. In addition these frameworks also provide a varying
amount of support for other “middleware services” such as transactions, security,
database pooling, pooling of object instances, etc. In these frameworks, compo-
nents are associated with one or more interfaces consisting of typed methods
that can be invoked from other components. The framework ensures type safety,
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i.e. the methods in a component implementation have to comply with the types
(including possibly exceptions) in the interface declaration for that component.

For an application, the best choice of component/distributed computing
framework depends in general on many factors including the amount of distri-
bution and concurrency as well as the implementation languages and the target
operating systems. Having said this, it would appear that because of the platform
diversity in the academic community, a single operating system solution such as
COM+ is currently hardly acceptable as a framework for building reusable UI
and theorem prover components. It is also not clear that many of the facilities
offered by CORBA, COM+ and EJBs would be useful with the current gener-
ation of proof assistants. Because of the non-neglectable overhead, the chosen
framework should be as simple as possible. In light of these arguments, it seems
that simpler approaches are needed. For platforms written in Java, the PCoq
approach of encapsulating foreign language components as Java processes seems
a natural framework. Components are accessed via Java APIs and distribution
can be supported using either sockets or Java RMI.

Recently, XML message passing has appeared as an alternative approach
to distributed computing. It has attracted a lot attention in form of SOAP or
XML-RPC based web services that run via HTTP [26]. In this approach, com-
ponents provide typically only a small number of interfaces over which data
encoded as XML documents are exchanged. The validity of XML messages with
respect to pre-defined rules is not ensured by the framework but (if at all) is
instead checked by the receiver of the message. This results in very loosely cou-
pled, easily extensible and lightweight architectures. XML processing and web
service standards are supported by implementations for different platforms and
programming languages while at the same time being completely platform and
programming language independent. These features make XML messaging an
attractive choice for the communication between generic UIs and proof assistant
backends.

D.Aspinall has written a white paper [27] that suggests an XML vocabulary
for communication between the major components in a theorem proving envi-
ronment. Here are a couple of general remarks on such an XML based protocol
between UI and proof assistant backend.

– The protocol needs to specify both the set of permissable XML messages (the
“vocabulary”) as well as rules about the permissable sequencing of messages;
in particular what are the allowed request/response pairs.

– Following the already mentioned principle of keeping data in its semantic
form as long as possible, it is suggested that the markup of proof assistant
responses should be semantic rather than presentation-oriented.

– For performance reasons, it is essential that the protocol supports coarse-
grained concurrency. This means that the proof assistant backend can pro-
cess large units in one chunk without the need for interim synchronisation.
For example, it is desirable to have XML markup for a “process theory XYZ”
request such that no other messages are exchanged until the theory either is
completely loaded or a failure occurs.
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– The XML vocabulary should only regulate aspects which are directly rele-
vant for the UI/prover communication and which are not covered by other
standards such as MathML.

– The XML vocabulary needs to be planned with future extensions in mind.
– In order to further reuse, the XML protocol should contain a common core

that is independent of proof assistants and user interfaces.

It is clear that the last point might well prove difficult in practice - getting
different proof assistant and UI implementors to agree on a standardised core
XML vocabulary and message sequencing rules will not be easy.

Adaptability

Following the platform paradigm, the suggested theorem proving environment
features an extensible set of components such as theory editors, theory browsers,
interactive proof components, MathML display engines, connectors to other
provers, etc. According to the principles of component-based software engineer-
ing, these software parts should be easily reusable and customisable. In order to
achieve this, one should aim for relatively generic interfaces during the design.
This should be followed by implementations that follow the principle of “pro-
gramming to interfaces”. The formulation of generic interfaces can benefit from
considering different application scenarios. For example one might want to make
it an explicit requirement that a proof display component supports two different
provers.

In practice, a simple “plugging in” of more advanced components such as
a tree editor can not be expected. Even if there were standardised interfaces
for such components, a specific component implementation might well provide
additional features requiring adapter code. However for such complex compo-
nents, this is justified. The situation is different for simpler parts such as XSLT
input/output filters. In this case, the platform should provide standard hooks
for plugging in such a component. For instance, a program verification project
could use a specialised filter that transforms programs from their usual syntax
into an abstract syntax tree representation processed by the proof assistant. The
addition of such a component to the platform should be possible without having
to add program code.

For theory proving applications, the dynamic extension of a running system
with new components does not seem necessary. Instead it seems sufficient to use
configuration files that are loaded at startup time. This is the approach taken
in the XUL [28] framework which underlies recent versions of the Mozilla web
browser suite. As this project shows, it is quite feasible to extensively adapt user
interfaces with the help of configuration files.

7 Concluding Remarks

Proof assistants will only realise their full potential once they are accompanied
by effective user interfaces. It is hoped that the reflections on requirements and
design in this paper will contribute to the achievement of this goal.
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Despite the aim to stay generic, the discussion has doubtlessly been influenced
by the author’s experience with Higher-Order Logic (HOL) proof assistants. This
bias should be rectified in future work by looking more closely at other automated
reasoning systems and their user interfaces.

Many issues have not been touched at all. This is particularly regrettable in
case of proof planning [29], multi-modal facilities [10], recent projects that use
the web to distribute mathematical knowledge [30], and cooperative theorem
proving [17, 4].
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