
Formalization and Correctness of Predictive
Shift-Reduce Parsers for Graph Grammars based on

Hyperedge Replacement✩

Frank Drewesa, Berthold Hoffmannb, Mark Minasc

aInstitutionen för datavetenskap, Ume̊a universitet, SE-901 87 Ume̊a, Sweden
bFachbereich 3—Informatik, Universität Bremen, D-28334 Bremen, Germany

cInstitut für Softwaretechnologie, Fakultät für Informatik,
Universität der Bundeswehr München D-85577 Neubiberg, Germany

Abstract

Hyperedge replacement (HR) grammars can generate NP-complete graph lan-
guages, which makes parsing is hard even for fixed HR languages. Therefore,
we study predictive shift-reduce (PSR) parsing that yields efficient parsing for a
subclass of HR grammars, by generalizing the concepts of SLR(1) string parsing
to graphs. We formalize the construction of PSR parsers and show that it is
correct. PSR parsers run in linear space and time, and are more efficient than
predictive top-down (PTD) parsers recently developed by the authors.

Keywords: hyperedge replacement grammar, graph parsing, grammar analysis

1. Introduction

Everywhere in science and beyond, diagrams occur as a means of illustra-
tion and explanation. In computer science and engineering, they are also used
as primary source of information: they form visual specification languages with
a precise syntax and semantics. For instance, the diagrams of the Uniform5

Modeling Language uml specify software artifacts. (See www.uml.org/.) When
diagram languages shall be processed by computers, techniques of compiler con-
struction have to be transferred to the domain of diagrams. A processor of a
textual language parses its syntax, which is specified by a context-free Chomsky
grammar, in order to construct an abstract hierarchical representation that can10

then be further interpreted or translated. The syntax of a diagram language is
its structure. To analyze the structure of diagrams, one thus needs grammars
to specify their syntax, and parsers for these grammars that perform the anal-
ysis. A successfully parsed diagram can eventually be processed further. Since

✩This paper formalizes the concepts described in [14] and provides detailed correctness
proofs for them.

Email addresses: drewes@cs.umu.se (Frank Drewes), hof@informatik.uni-bremen.se
(Berthold Hoffmann), mark.minas@unibw.de (Mark Minas)

Preprint submitted to Journal of Logical and Algebraic Methods in ProgrammingAugust 13, 2018

diagrams can be represented as graphs, their syntax can be captured by graph15

grammars.
Here we consider hyperedge replacement (HR) graph grammars.1 Hyper-

edges are a generalization of edges that may connect any number of nodes, not
just two. In a host graph G, the replacement of a hyperedge e by a graph R glues
the nodes connected to e to distinguished nodes of R. The context-free case,20

where the replacement depends just on the label of e (a nonterminal symbol) is
well-studied [22]. Unfortunately, it is well known that hyperedge replacement
can generate NP-complete graph languages [1]. In other words, even for fixed
HR languages parsing is hard. Moreover, even if restrictions are employed that
guarantee L to be in P, the degree of the polynomial depends on L; see [27].225

Only under rather strong restrictions the problem is known to become solvable
in cubic time [34, 9].

Since even a cubic algorithm would not scale to diagrams occurring in real-
istic applications, the authors have recently transferred results of context-free
string parsing to graphs: Simple LL-parsing (SLL(k) for short, [28]), a top-down30

parsing method that applies to a subclass of unambiguous context-free string
grammars (using k symbols of lookahead), has been lifted to predictive top-down
parsing of graphs (PTD parsing for short, [12]); the program generating PTD
parsers approximates Parikh images of auxiliary grammars in order to deter-
mine whether a grammar is PTD-parsable [13], and generates parsers that run35

in quadratic time, and in many cases in linear time.
In this paper, we devise—somewhat complementary—efficient bottom-up

parsers for HR grammars, called predictive shift-reduce (PSR) parsers, which ex-
tend SLR(1) parsers [8], a member of the LR(k) family of deterministic bottom-
up parsers for context-free string grammars [26]. We formalize the construction40

and modus operandi of PSR parsers, show their correctness, and relate them
briefly to PTD parsers and to SLL(1) and SLR(1) string parsers.

In Sect. 2 we recall basic notions of HR grammars. To support intuition, we
briefly recall SLR(1) string parsing in Sect. 3. In Sections 4–9, we work out in
detail how it can be lifted to PSR parsing:45

Section 4 develops a näıve shift-reduce parser for HR grammars and shows
its correctness. This parser is a stack automaton that, one by one, consumes the
edges of the input graph and simply “guesses” nondeterministically a backwards
application of rules that take the input graph to the start symbol. While this
parser is correct, its nondeterminism renders it impractical. One of its disad-50

vantages is that it can run into “dead ends”, situations which can never lead to
acceptance, regardless of the remaining input.

Section 5 defines a notion of viable prefixes and shows that the näıve shift-
reduce parser would avoid running into a dead end if and only if one could make

1Other graph grammars and parsing algorithms are discussed in Sect. 11.
2The polynomial algorithm for a restricted class of (fixed) HR grammars presented in [27]

was refined in [4] and implemented in the system Bolinas for semantic parsing in natural
language processing.

2

sure that its stack does always contain a viable prefix.55

Section 6 thus develops a notion of nondeterministic characteristic finite
automaton (nCFA) and shows that it recognizes (we say approves) exactly the
viable prefixes. However, since the nCFA is itself nondeterministic, it cannot
reasonably be used in order to improve the näıve shift-reduce parser.

Section 7, therefore, shows how the nCFA can be converted into a determin-60

istic characteristic finite automaton (dCFA) that is equivalent to the nCFA.
Section 8 incorporates the dCFA into an improved version of the näıve shift-

reduce parser. This dCFA-assisted shift-reduce parser will thus avoid to run
into a dead end. However, it is still nondeterministic as the dCFA may allow
for alternative parser actions in a given situation, i.e., there may be conflicts.65

Finally, Sect. 9 formalizes conflicts, shows how they can be detected, and
ends in the definition of predictive shift-reduce parsers (PSR parsers) that, for
all practical purposes, run in linear time and space.

In Sect. 10, we compare PSR parsing to SLR(1) and PTD parsing wrt.
generative power. Related and future work is discussed in Sect. 11.70

This paper formalizes the concepts developed in [14] and provides detailed
correctness proofs for them. We would also like to mention that the proof of
Theorem 1 of [14] turned out to be wrong; see the discussion at the end of
Sect. 10.

Acknowledgment. We thank the reviewers for their comments and criticism; we75

hope to have made good use of them.

2. Hyperedge Replacement Grammars

We let N denote the non-negative integers. For set A and B, let 2A denote
the powerset of A and (A � B) the set of all partial functions A � B. The
domain of a partial function f : A � B is denoted by dom(f), i.e., dom(f) =80

{a ∈ A | f(a) is defined}. For S ⊆ A, we let f(S) = {f(a) | a ∈ S ∩ dom(f)}.
Given two partial functions f and g, we write f � g if f ⊆ g as binary relations.
The composition g ◦ f of (possibly partial) functions f : A � B and g : B � C
is defined as usual, i.e., (g ◦ f)(a) equals g(f(a)) if both f(a) and g(f(a)) are
defined, and is undefined otherwise.85

A∗ denotes the set of all finite sequences (or strings) over a set A; the empty
sequence is denoted by ε and the length of a sequence α by |α|. A stack S of
elements in A is a nonempty string in A∗. Its top is the rightmost element of
the string, which is denoted by top(S).

For a (total) function f : A → B, its extension f∗ : A∗ → B∗ to sequences is90

defined by f∗(a1 · · · an) = f(a1) · · · f(an), for all a1, . . . , an ∈ A, n ≥ 0. Given a
relation � ⊆ A×A, we denote its n-fold composition with itself by �n (where
�0 is the identity on A), its transitive closure by �+ and its reflexive and
transitive closure by �∗, as usual.

Throughout the paper, we let X denote a global, countably infinite supply95

of nodes or vertices.

3

Definition 2.1 (Graph). An alphabet is a set Σ of symbols together with an
arity function arity : Σ → N. Given such an alphabet, a literal e = a(x1, . . . , xk)
over Σ consists of a symbol a ∈ Σ and k = arity(a) pairwise distinct nodes
x1, . . . , xk ∈ X. We write �(e) = a and denote the set of all literals over Σ by100

LitΣ.
A graph γ = �V,ϕ� over Σ consists of a finite set V ⊆ X of nodes and a

sequence ϕ = e1 · · · en ∈ Lit∗Σ such that all nodes in these literals are in V . GΣ

denotes the set of all graphs over Σ.
We say that two graphs γ = �V,ϕ� and γ� = �V �,ϕ�� are equivalent, written105

γ �� γ�, if V = V � and ϕ is a permutation of ϕ�.

Note that the set of literals of a graph is ordered, i.e., two graphs �V,ϕ� and
�V �,ϕ�� with the same set of nodes, but with different sequences of literals are
considered to differ, even if V = V � and ϕ� is just a permutation of ϕ. However,
such graphs are equivalent, denoted by the equivalence relation ��. In contrast,110

“ordinary” graphs would rather be represented using multisets of literals instead
of (ordered) sequences. The equivalence classes of graphs, therefore, correspond
to conventional graphs. The ordering of literals is technically convenient for the
constructions in this paper. However, input graphs to be parsed should of course
be considered up to equivalence. Thus, we will make sure that the developed115

parsers yield identical results on graphs g, g� with g �� g�.
For a graph γ = �V,ϕ�, we use the notations X(γ) = V and lit(γ) = ϕ.

By Σ(γ) we denote the set of symbols a ∈ Σ such that γ contains a literal
a(· · ·). An injective function σ : X → X is called a renaming, and γσ denotes
the graph obtained by replacing all nodes in γ according to σ. We define the120

“concatenation” of two graphs α,β ∈ GΣ as αβ = (X(α) ∪X(β), lit(α) lit(β)).
A graph γ is a prefix of graph α if there is a graph δ such that α = γδ. Thus,
a prefix is a particular kind of subgraph. If a graph γ is completely determined
by its sequence lit(γ) of literals, i.e., if each node in X(γ) also occurs in some
literal in lit(γ), we simply use lit(γ) as a shorthand for γ. In particular, a literal125

e ∈ LitΣ is identified with the graph consisting of just this literal and its nodes.

Definition 2.2 (HR Grammar). Let Σ = N ∪ T be an alphabet which is
partitioned into disjoint subsets N and T of nonterminals and terminals, re-
spectively. A hyperedge replacement rule r = (A → �) (a rule for short) has a
literal A ∈ LitN as its left-hand side, and a graph � ∈ GΣ with X(A) ⊆ X(�)130

as its right-hand side.
Consider a graph γ = αA�β ∈ GΣ and a rule r as above. A renaming

µ : X → X is a match (of r to γ) if Aµ = A�, and if X(γ) ∩X(�µ) ⊆ X(Aµ).
A match µ of r derives γ to the graph γ� = α�µβ. This is denoted as γ⇒r,µ γ

�,
or just as γ⇒r γ

�. We write γ⇒R γ� if γ⇒r γ
� for some rule r taken from a set135

R of rules.
A hyperedge replacement grammar Γ = (Σ, T ,R, Z) (HR grammar for short)

consists of finite alphabets Σ, T as above (where N = Σ \ T), a finite set R of
rules over Σ, and a start symbol Z ∈ N of arity 0. Γ generates the language

L(Γ) = {g ∈ GT | Z()⇒∗
R g}

4

of terminal graphs. We call a graph g valid with respect to Γ if L(Γ) contains
a graph g� with g �� g�.

In the following, Z shall denote the literal Z() of the start symbol of Γ.
Moreover, we shall generally omit the subscript in ⇒R and ⇒∗

R, thus writing140

simply ⇒ and ⇒∗ instead because the HR grammar in question will always be
clear from the context.

We call literals in LitT terminal literals and denote them as a, b, c, . . . ,
whereas nonterminals literals are literals in LitN denoted as A,B,C, Ter-
minal graphs, those in GT , are denoted as a, b, c, . . . , whereas graphs in GΣ, i.e.,145

graphs that may contain nonterminal literals, are denoted as α,β, γ,
The following lemma follows more or less immediately from the definition of

derivation steps. Its proof is straightforward by induction over the length of the
derivation.

Lemma 2.3. Z =⇒
rm

∗ γ implies Z =⇒
rm

∗ γµ for every renaming µ : X → X.150

Throughout the paper, we shall generally restrict our attention to rightmost
derivations:

Definition 2.4 (Rightmost Derivation). A derivation step γ⇒ γ� with γ =
αAβ and γ� = αδβ is rightmost if β ∈ GT . We write γ =⇒

rm
γ�. A rightmost

derivation is a derivation each step of which is rightmost.155

Due to context-freeness, the restriction to rightmost derivations does not
affect the generated language. The following fact can be shown analoguously to
the string case.

Fact 2.5. For graphs g ∈ GT , Z⇒∗ g iff Z =⇒
rm

∗ g.

An immediate consequence of the definition of the derivation relation is the160

following:

Fact 2.6. For all graphs α,β, γ ∈ GΣ and δ ∈ GT , α =⇒
rm

∗ β implies γαδ =⇒
rm

∗

γβδ if and only if X(β) ∩X(γαδ) ⊆ X(α).

It is a well-known result [22, Theorem IV.4.1.2] that every HR grammar can
be transformed into an equivalent reduced HR grammar where every nontermi-165

nal contributes to its language:

Definition 2.7 (Reduced HR Grammar). A hyperedge replacement gram-
mar Γ = (Σ, T ,R, Z) is called reduced if R = ∅ or, for every literal A ∈ LitN ,

(i) there is a terminal graph g ∈ GT such that A⇒∗ g, and
(ii) there are graphs δ, δ� ∈ GΣ such that Z⇒∗ δAδ�.170

5

Example 2.8 (Semantic Representation). A HR grammar can derive se-
mantic representations of sentences of natural language. The semantic graphs
in this example are much simplified Abstract Meaning Representations [3].
As in [15] (where the more powerful concept of contextual hyperedge replace-
ment [10] was used), we represent the semantics of sentences using the predicates175

(i.e., verbs) ‘persuade’, ‘try’, and ‘believe’. These yield interesting semantic
graphs (to the extent such a small example reasonably can), because ‘persuade’
is an object control predicate (the patient of the persuasion is the agent of what-
ever she is persuaded to do) and ‘try’ is a subject control predicate (the agent
of the trying is also the agent of whatever is being tried).180

The represented patterns are

• “x persuades y to do z”

• “x tries to do z”

• “x believes y”

• “x believes y about z”185

• “x believes y about himself”

The nodes of the graphs represent (anonymous) persons when they are leaves,
and statements otherwise. Predicates are represented by terminal edges with
the corresponding label and arity (with a further, first tentacle to the root of
the statement governed by the predicate). The rules are as follows:

Z() → T (r, x) [s]
T (r, x) → per(r, x, y, z) T (z, y) | try(r, x, z) T (z, x) [p, t]

| bel(r, x, y) | bel(r, x, y) T (y, z) [be, bo]
| bel(r, x, y) T (y, x) [bt]

(1)

A derivation of the AMR graph g representing the phrase “f persuades b to try
to believe m” reads as follows:

Z ⇒
s

T (r, f)

⇒
p

per(r, f, b, d) T (d, b)

⇒
t

per(r, f, b, d) try(d, b, s) T (s, b)

⇒
be

per(r, f, b, d) try(d, b, s) bel(s, b,m) .

(2)

Since g can be derived, so can the graph g� = per(r,m, f, d)try(d, f, s)bel(s, f, b),
i.e., the node names in derivations are irrelevant. Furthermore, while the
graph h = try(d, b, s) per(r, f, b, d) bel(s, b,m) cannot be derived, it is valid for
this grammar since g �� h. Fig. 1 shows how the rules for T and the graph g190

are drawn as diagrams, a visually convenient notation that specifies them up to
equivalence.

6

r

T

x

→

r

per

x

z

T

y

�������������

r

try

x

z

T

y

�������������

r

bel

x

y

�������������

r

bel

x

y

T

z

�������������

r

bel

x

y

T

g =

r

per

d

try

s

bel

f

b

m

Figure 1: Diagrams of the rules in (1) and of the abstract meaning representation derived
in (2). (Circles represent nodes, and boxes represent edges. The box of an edge contains its
label, and is connected to the circles of its attached nodes by lines; these lines are ordered
counter-clockwise around the edge, starting to its top. Names attached to nodes in rules
define the correspondence between left-hand side and right-hand side. Vertical bars separate
the right-hand sides of the rules for the nonterminal T .)

3. Shift-Reduce Parsing of Strings

The predictive shift-reduce parser for HR grammars borrows and extends
concepts known from the family of context-free LR(k) parsers for context-free195

string grammars [26], which is why we recall these concepts first. As context-free
grammars, shift-reduce parsing, and LR(k) parsing in particular can be found
in every textbook on compiler construction, we discuss these matters only by
means of a small example.

A Context-Free String Grammar for the Dyck Language. The Dyck language of
matching nested square brackets “[” and “]” is generated by the context-free
string grammar with the nonterminals Z, T , and B, and set of rules

D = {Z → T, T → [B], B → TB, B → ε},

where Z is the start symbol. An example deriving a string of the Dyck language
is

Z⇒
0
T ⇒

1
[B]⇒

2
[TB]⇒

3
[T]⇒

1
[[B]]⇒

3
[[]] . (3)

The derivation is rightmost : every derivation step replaces the rightmost non-200

terminal of the current string.

A Näıve Shift-Reduce Parser for the Dyck Grammar. A parser checks whether
a string like “[[]]” belongs to the language of a grammar, and constructs a
derivation such as the one in (3) if this is the case. A shift-reduce parser can
be formalized as a stack automaton. It reads an input string from left to right205

and uses its stack for remembering its moves. In a näıve shift-reduce parser,
a configuration can be represented as α �w, where α is the stack, consisting of
the nonterminal and terminal symbols that have been parsed so far, and w is

7

the consumed part3 of the input, a terminal string. (As defined in the previous
section, the rightmost symbol of α is the top of the stack.) The parser is named210

after the kind of moves it performs (where α and w are as explained above):

• Shift consumes the next input symbol, and pushes it onto the stack. The
parser for the Dyck language shifts square brackets:

α �w � α[�w[α �w � α] �w]

• Reduce pops symbols from the stack if they form the right-hand side of a
rule, and pushes its left-hand side onto it. Thus, in effect, it applies the
rule in reverse. The parser for the Dyck language performs the following
reductions:

T �w �
0
Z �w α[B] �w �

1
αT �w αTB �w �

2
αB �w α �w �

3
αB �w

The parser accepts the string w if it reduces the start rule, and its con-
sumed input is w, as in the first reduction.

A successful parse of a string w is a sequence of shifts and reductions starting
from the initial configuration ε � ε to the accepting configuration Z �w, as below:

ε � ε � [� [� [[� [[�
3

[[B � [[� [[B] � [[] �
1

[T � [[]
�
3

[TB � [[] �
2

[B � [[] � [B] � [[] �
1

T � [[]] �
0

Z � [[]]

(The places where reductions apply are underlined.) The reductions of a suc-
cessful parse, read in reverse, yield a rightmost derivation, in this case the215

derivation (3) above.
The näıve shift-reduce parser is correct, i.e., a string has a successful parse

if and only if it has a rightmost derivation.

Nondeterminism. The näıve parser is nondeterministic: E.g., in the configura-
tion “[TB � [[]” above, the following moves are possible:220

(i) a reduction by the rule B → T B, leading to the configuration [B � [[];
(ii) a reduction by the rule B → ε, leading to the configuration [TBB � [[]; and
(iii) a shift of the symbol “]”, leading to the configuration [TB] � [[]].
Only move (i) will lead to a successful parse, namely the one above. After move
(ii) or (iii), further reduction is impossible. In such situations, the parser would225

3The configurations of a shift-reduce parser can also be defined as α �u, where α is the stack,
and u is the unread part of the input. Then successful parses have the form ε �w �∗ Z � ε (where
the definition of shift and reduce moves is adapted in the obvious way). It is easy to show
that both definitions are equivalent, i.e., that ε �w �∗ Z � ε if and only if ε � ε �∗ Z �w. Here we
have chosen configurations that contain the consumed input as this can more easily be lifted
to configurations of graph parsers.

8

have to backtrack, i.e., undo shifts and reductions and try alternative moves,
until it finds a successful parse, or fails altogether.

Backtracking makes parsing inefficient. To avoid this, the näıve shift-reduce
parser can be refined by gathering information from the grammar that helps to
predict which moves lead to successful parses:230

• The rules of a grammar allow to predict viable prefixes : these are pre-
fixes of sequences of nonterminal and terminal symbols that occur during
rightmost derivations of terminal strings. In a successful parse, the stack
of the parser does always contain a viable prefix. In cases (i) to (iii) dis-
cussed above, the sequences “[TB” and “[B” are viable prefixes, whereas235

the sequences “[TBB” and “[TB]” are not.

• A lookahead of the k > 0 next input symbols may help to decide which
move must be taken to make a parse successful. In the situation sketched
above (where a lookahead of k = 1 suffices), the reductions (i) and (ii)
should only be made if the next input symbol is “]”, which is the only240

terminal symbol that may follow B in derivations with the grammar. Such
a symbol is called a follower symbol (of the nonterminal B).

Several ways to determine viable prefixes, and different lengths of lookahead can
be used to construct predictive shift-reduce parsers. The most general one is
Knuth’s LR(k) method [26]; here we just consider the simplest case of DeRemer’s245

SLR(k) parser [8], namely for a single symbol of lookahead, i.e., k = 1.

Nondeterministic Characteristic Finite-State Automata. The viable prefixes of
a context-free grammar form a regular language of nonterminal and terminal
symbols that is generated by an automaton, known as characteristic finite-state
automaton (CFA, for short), which can be derived from the grammar as follows:250

• The states of the CFA are so-called items, rules with an additional dot
occurring in the right-hand side. The dot indicates how far parsing has
proceeded. For instance, the rule T → [B] of the Dyck grammar leads to
items T → � [B], T → [�B], T → [B �], and T → [B] � .

• A state like T → � [B], where the dot is before some symbol (terminal255

or nonterminal), has a transition under this symbol to the state where
the dot is behind that symbol, here a transition under the terminal “[” to
T → [�B].

A state like T → [�B], with the dot before a nonterminal, does further-
more have spontaneous transitions under the empty string ε to all items260

for that nonterminal in which the dot is before the first symbol of the
right-hand side, e.g. to states B → �TB and B → � ε.

Fig. 2 shows the CFA for the Dyck grammar; it is nondeterministic, due to
its transitions under the empty string ε. Its start state q0 (distinguished by
the ingoing edge without source node and label) represents the situation Z →265

�T where nothing has been recognized yet. A path from q0 to some state q

9

Z→ �T
q0

Z→T �
q1

T → � [B]

q2

T → [�B]

q3
T → [B �]

q4
T → [B] �

q5

B→ �
q6

B→ �TB
q7

B→T �B
q8

T →TB �
q9

T

ε [B

ε

]

ε

ε

T B
ε

ε

Figure 2: Nondeterministic characteristic finite-state automaton for the Dyck grammar

in the CFA is an alternating sequence of states and labels of the transitions
connecting them; the concatenations of the labels along such a path defines a
string generated by the CFA. (Note that a path may contain states and labels
repeatedly.)270

Now a well-known result for shift-reduce parsing reads as follows: a string
is generateed by the CFA of a context-free grammar if and only if it is a viable
prefix of a successful parse for that grammar. E.g., the viable prefixes “[TB”
and “[B” are generated by the CFA, whereas the sequences “[TBB” and “[TB]”
are not.275

Deterministic Characteristic Finite-State Automata. The nondeterministic
CFA of a context-free grammar is easy to define, but less practical for pars-
ing. Fortunately, it can be turned into a deterministic CFA defining the same
language (of viable prefixes). The well-known powerset construction works as
follows: a state set Q joins some state q with all states q� reachable from q280

by ε-transitions; q is called a kernel item of Q, whereas the q� are called its
closure items. Then the non-ε-transitions of the items in Q have corresponding
transitions to successor state sets Q� that again contain core and closure items.
Thus state q0 of the nondeterministic CFA is joined with state q2 to form a

Z→ �T
T → � [B]

Q0

Z→T �
Q1

T → [�B]

B→ � ε
B→ �TB
T → � [B]

Q2
T → [B �]

Q3

B→T �B
B→ � ε
B→ �TB
T → � [B]

Q5

T → [B] �
Q4

T →TB �
Q6

T

[B

T

[

[

B

]

T

Figure 3: Deterministic characteristic finite-state automaton for the Dyck grammar

10

state set Q0, and states q3 and q8 are both joined with states q6, q7, and q2285

to form state sets Q2 and Q5, respectively, while the states q1, q4, q5, and q9
form singleton state sets Q1, Q3, Q4, and Q6 of the deterministic CFA. The
transition diagram of the deterministic characteristic finite-state automaton for
the Dyck grammar is shown in Fig. 3.

The powerset construction may let the number of states explode (2n state290

sets for n states of the nondetermistic CFA). However, this rarely occurs in
practice; in our example, the number of states does even decrease.

SLR(1) Parsing. The stack of the SLR(1) parser is modified to contain a se-

quence like “Q0[Q2[Q2TQ5BQ6”, recording a path Q0
[→ Q2

[→ Q2
T→ Q5

B→ Q6

in its deterministic CFA, starting in its initial state. The moves of the parser295

are determined by its current (topmost) state, and are modified in comparison
to those of the nondeterministic parser as follows:

• Shift consumes the next input symbol a if the current state is Q and if
the deterministic CFA contains a transition Q

a→ Q�. The move pushes
a onto the stack, together with the successor state Q�. For our grammar,
and i ∈ {0, 2, 4}:

αQi �w � αqi [Q2 �w [αQ3 �w � αQ3]Q4 �w]

• Reduce pops the right-hand side of a rule A → β (and the intermediate
states) off the stack, leaving a state Q on top, which has a transition

Q
A→ Q�. Then A and Q� are pushed onto the stack. The SLR(1) parser

performs a reduction only if the lookahead—the nect input symbol—is
a follower symbol of A. We write “if � = a” if this is subject to the
lookahead symbol a. If A = Z, the parser accepts the string. Then a
successful parse is as follows:

Q0TQ1 � ε �
0

Z

αQ0[Q2BQ3]Q4 �w �
1

αQ0TQ1 �w
αQ2[Q2BQ3]Q4 �w �

1
αQ2TQ5 �w

αQ5[Q2BQ3]Q4 �w �
1

αQ5TQ5 �w
αQ2TQ5BQ6 �w �

2
αQ2BQ3 �w if � =]

αQ5TQ5BQ6 �w �
2

αQ5BQ6 �w if � =]

αQ2 �w �
3

αQ2BQ3 �w if � =]

αQ5 �w �
3

αQ5BQ6 �w if � =]

The SLR(1) parser is correct as well: it recognizes the same language as the
näıve shift-reduce parser.

11

Conflicts. The CFA may reveal conflicts for SLR(1) parsing:300

• If a state allows to shift some terminal a, and to reduce some rule under
the same lookahead symbol a, this is a shift-reduce conflict.

• If a state allows reductions of different rules under the same lookahead
symbol, this is a reduce-reduce conflict.

Whenever the automaton is conflict-free, the SLR(1) parser exists, and can305

choose its moves in a deterministic way.
The deterministic CFA for the Dyck grammar is indeed conflict-free: In

states Q2 and Q5, rule B → ε can be reduced if the input begins with the only
follower symbol ”]” of B, which is not in conflict with the shift transitions from
these states under the terminal “[”.310

A deterministic parse with the SLR(1) parser is as follows:

Q0 � ε � Q0 [Q2 � [� Q0 [Q2 [Q2 � [[
�
3

Q0 [Q2 [Q2BQ3 � [[� Q0 [Q2 [Q2BQ3]Q4 � [[]
�
1

Q0 [Q2T Q5 � [[] �
3

Q0 [Q2T Q5BQ6 � [[]
�
2

Q0 [Q2BQ3 � [[] � Q0 [Q2BQ3]Q4 � [[]]
�
1

Q0T Q1 � [[]] �
0

Z.[[]]

Each run of the deterministic parser corresponds to a run of the corresponding
näıve shift-reduce parser when we ignore states and just consider the symbols
on the stack. Thus the deterministic parser is correct, but it does only apply to
grammars that are free of SLR(1) conflicts.

4. A Näıve Shift-Reduce Parser for HR Grammars315

We now start to transfer the ideas of shift-reduce string parsing to HR gram-
mars. In this section, we describe a näıve nondeterministic shift-reduce parser,
which will be made more practical in the sections to follow. We prove the
correctness of the näıve parser, i.e., that it can (nondeterministically) find a
derivation for an input graph if and only if there is one.320

Assumption 4.1. Throughout the rest of the paper, let Γ = (Σ, T ,R, Z) be
the HR grammar for which we want to construct a parser. Without loss of
generality, we assume that Γ is reduced.

In the remainder of this paper, we will use a HR grammar generating trees as
a running example.325

Example 4.2 (HR Grammar for Trees). The HR grammar with start
symbol Z and the following rules derives n-ary trees.

Z → root(x)T (x) T (y) → T (y) e(y, z)T (z) T (y) → ε

12

We shall refer to these rules by the number 1, 2, 3. Note that the unique edge
label root designates the unique node where parsing has to start. The empty
sequence ε in the last rule is actually a short-hand for the graph �{y}, ε� con-
sisting of a single node rather than for the empty graph. Fig. 6 shows a deriva-
tion of the tree t = root(1) e(1, 3) e(1, 2) e(2, 4), which is rightmost. The tree330

t� = e(2, 4) root(1) e(1, 3) e(1, 2) is valid wrt. the grammar since t� �� t.
The diagrams of the rules are shown in Fig. 4, and a diagram of the tree t

is shown in Fig. 5.

Z →
x

T

root

y T →
y

z

T

T

y T → y

Figure 4: HR rules deriving trees. The binary terminal edge e(y, z)
is drawn as an arrow from node x to node y.

root

Figure 5: A tree

Z =⇒
rm

1
root(1)T (1)

=⇒
rm

2
root(1)T (1) e(1, 2)T (2)

=⇒
rm

2
root(1)T (1) e(1, 2)T (2) e(2, 4)T (4)

=⇒
rm

3
root(1)T (1) e(1, 2)T (2) e(2, 4)

=⇒
rm

3
root(1)T (1) e(1, 2) e(2, 4)

=⇒
rm

2
root(1)T (1) e(1, 3)T (3) e(1, 2) e(2, 4)

=⇒
rm

3
root(1)T (1) e(1, 3) e(1, 2) e(2, 4)

=⇒
rm

3
root(1) e(1, 3) e(1, 2) e(2, 4)

Figure 6: A rightmost derivation of a tree

Similarly to the string case, a shift-reduce parser of graphs is modeled by
a stack automaton that reads the literals of the input graph in an appropriate335

order and uses a stack for remembering its actions. A configuration consists of
the current stack γ, which is a graph that may contain nonterminals, and the
subgraph g of the (terminal) input graph that has been processed already:

Definition 4.3 (Parser Configuration). A (shift-reduce parser) configura-
tion γ � g consists of graphs γ ∈ GΣ and g ∈ GT . The former is the stack340

whereas the latter is the already consumed subgraph of the input graph.

The parser begins with both the stack prefix already consumed literals being
empty, i.e., the initial configuration is ε � ε. The parser then tries to turn it into
an accepting configuration using shift and reduce moves similar to the string
case. Shift moves in fact process literals of the input graph, which are then345

13

stored in the parser configuration. The parser accepts the input graph if it
is able to terminate with a stack consisting of just the start graph Z and g
having been processed completely. This situation is represented by an accepting
configuration Z � g�. We will show in the following that reaching Z � g� in fact
means Z⇒∗ g� �� g, i.e., the parser has identified a permutation of the input350

graph literals which shows that g is valid with respect to the grammar.

Definition 4.4 (Shift and Reduce Steps). A reduce move turns a configu-
ration γ � g into γ� � g if there is a graph α ∈ GΣ, a rule A → � and a renaming
µ : X → X such that γ = α�µ, γ� = αAµ, and X(α) ∩ X(�µ) ⊆ X(Aµ). We
write α�µ � g ✤

Aµ ⇒ �µ
αAµ � g.355

A shift move turns a configuration γ � g into γa � ga for a literal a ∈ LitT if
X(a) ∩X(g) ⊆ X(γ). We write γ � g ✤

sh
γa � ga.

We write γ � g ✤ γ� � g� if γ � g ✤
sh

γ� � g� or γ � g ✤
B⇒ β

γ� � g� and call γ � g ✤ γ� � g�

a move of the parser.

Let us briefly discuss the difference between these shift and reduce moves on360

the one hand and their counterparts in string parsing on the other hand.
A shift move in string parsing always reads the first symbol of the remaining

input; the string parser cannot choose the symbol to be shifted. The graph
parser, in contrast, can pick any of the remaining (terminal) literals for a shift
move, as long as the application condition is satisfied. This adds another di-365

mension of nondeterminism to the parsing of graphs.
A reduce move in string parsing replaces the right-hand side of a rule on the

stack by its left hand side without further consideration. The graph parser, in
contrast, must rename the nodes in the rule first (cf. Def. 2.2). The condition
X(α) ∩ X(�µ) ⊆ X(Aµ) makes sure that γ� = αAµ ⇒α�µ = γ, i.e., γ� is370

derived to γ using rule A → �. A reduce move indeed removes all nodes from
the stack that are generated by the derivation step γ� ⇒ γ (when the literals
of �µ are removed.) The application condition X(a) ∩ X(g) ⊆ X(γ) of shift
moves eventually checks that these nodes do not occur in the rest graph when
its literals are processed. Note that if a literal of the rest graph violates the375

condition for a shift move once, it will never satisfy this condition, and will
thus never be shifted. Once a condition for a shift move fails, the parse fails
altogether.

Example 4.5 (Nondeterministic Shift-Reduce Parser for Trees). The
nontederministic shift-reduce parser for the tree grammar of Example 4.2 has380

the following operations:

• Shift operations, for the edges labeled with root and e, and

• Reductions for the tree-generating rules.

Fig. 7 show the moves of a nondeterministic shift-reduce parser when recognizing
the tree t with t �� root(1) e(1, 2) e(1, 3) e(2, 4). In many steps of this parse, the385

parser has a choice where a “wrong” decision could lead it into a dead end:

14

1. In the third step, the parser shifts the edge e(1, 2); it could have chose
e(1, 3) instead, which is another match of the edge pattern e(y, z). It is
easy to see that the parser could succeed in this case, accepting the graph
g� = root(1)e(1, 3)e(1, 2)e(2, 4). However, g �� g�. Shifting e(2, 4) is also390

possible, but leads to a dead end.

2. In the fourth step, the parser could shift edge e(2, 4) instead of reducing
rule 3. This choice of a shift instead of a reduction would lead into a dead
end.

3. Instead of reducing T (2)e(2, 4)T (4) to T (2) in the seventh step, the parser395

could reduce rule 3. Reduction of a rule like T (y) → ε is possible in every
step. Here it would also lead to a dead end.

4. Another choice would have to be made if the grammar is extended by a
rule T (y) → nodey (which is rather ridiculous): In the third step, the
parser would then have to choose between a shift of e(1, 2) and a shift of400

node(1).

ε � ε
� root(1) � root(1)
�
3

root(1)T (1) � root(1) y/1

� root(1)T (1)e(1, 2) � root(1)e(1, 2)
�
3

root(1)T (1)e(1, 2)T (2) � root(1)e(1, 2) y/2

� root(1)T (1)e(1, 2)T (2)e(2, 4) � root(1)e(1, 2)e(2, 4)
�
3

root(1)T (1)e(1, 2)T (2)e(2, 4)T (4) � root(1)e(1, 2)e(2, 4) y/4

�
2

root(1)T (1)e(1, 2)T (2) � root(1)e(1, 2)e(2, 4) y/2, z/4

�
2

root(1)T (1) � root(1)e(1, 2)e(2, 4) y/1, z/2

� root(1)T (1)e(1, 3) � root(1)e(1, 2)e(2, 4)e(1, 3)
�
3

root(1)T (1)e(1, 3)T (3) � root(1)e(1, 2)e(2, 4)e(1, 3) y/3

�
2

root(1)T (1) � root(1)e(1, 2)e(2, 4)e(1, 3) y/1, z/3

�
1

Z � root(1)e(1, 2)e(2, 4)e(1, 3) x/1

Figure 7: Moves of the nondeterminstic shift-reduce parser when recognizing the tree in
Example 4.2. Places on the stack where reductions occur are underlined. Matches for rules
in reductions appear in the rightmost column.

We now show that a parse consisting of shift and reduce moves corresponds
to a rightmost derivation and vice versa. We first show that each parse yields
a rightmost derivation (Lemma 4.6) and then that each rightmost derivation
yields a parse (Lemma 4.8).405

15

Lemma 4.6. For every sequence γ � g ✤ ∗ γ� � g� of moves with X(γ) ⊆ X(g),
there is a graph u ∈ GT such that g� = gu and γ� =⇒

rm
∗ γu. Moreover, X(γ�) ⊆

X(g�).

Proof. Let γ � g ✤ n γ� � g� be any sequence of moves with X(γ) ⊆ X(g). We
prove that there is a graph u ∈ GT such that g� = gu and γ� =⇒

rm
∗ γu by410

induction over n. The proposition follows for n = 0 from γ = γ�, g = g� and
u = ε.

For n > 0 and the last move being a shift move, the sequence has the form

γ � g ✤ n−1 γ�� � g�� ✤
sh

γ��a � g��a = γ� � g�

for some a ∈ LitT , g�� ∈ GT , and γ�� ∈ GΣ. Let u = u�a. By the induction
hypothesis, there is a graph u� ∈ GT such that g�� = gu� and γ�� =⇒

rm
∗ γu�.

Moreover, because of X(γ) ⊆ X(g) and by the definition of shift moves, X(a)∩415

X(γu�) ⊆ X(a) ∩ X(gu�) = X(a) ∩ X(g��) ⊆ X(γ��). Therefore, by Fact 2.6,
γ� = γ��a =⇒

rm
∗ γu�a = γu and g� = g��a = gu�a = gu.

For n > 0 and the last move being a reduce move, the sequence has the form

γ � g ✤ n−1 α�µ � g� ✤
Aµ ⇒ �µ

αAµ � g� = γ� � g�

for a rule A → � and a renaming µ : X → X. By the induction hypothesis,
there is a graph u ∈ GT such that g� = gu and α�µ =⇒

rm
∗ γu. Moreover, by the

definition of reduce moves, X(α) ∩X(�µ) ⊆ X(Aµ). Therefore, γ� = αAµ =⇒
rm

420

α�µ =⇒
rm

∗ γu.

Finally, X(γ�) ⊆ X(γu) ⊆ X(gu) = X(g�) as γ� =⇒
rm

∗ γu and X(γ) ⊆ X(g).

�

The following lemma is needed in the proof of Lemma 4.8; it generalizes the
condition for applying one shift move to sequences of shift moves:425

Lemma 4.7. X(g)∩X(u) ⊆ X(γ) implies γ � g ✤
sh

∗ γu � gu for all graphs γ ∈ GΣ

and g, u ∈ GT .

Proof. We prove the proposition by induction over n = |u|. The proposition
follows for n = 0 from u = ε. For n > 0, let g, u, γ as in the lemma, u = au� for
some a ∈ LitT and u� ∈ GT . Then, X(g) ∩X(a) ⊆ X(g) ∩X(u) ⊆ X(γ), and430

therefore γ � g ✤
sh

γa � ga. Further, X(ga) ∩X(u�) = (X(g) ∩X(u�)) ∪ (X(a) ∩
X(u�)) ⊆ X(γ) ∪ X(a) = X(γa), which satisfies the condition of the lemma,
hence γa � ga ✤

sh

∗ γau� � gau� = γu � gu by the induction hypothesis. �

Lemma 4.8. γ =⇒
rm

∗ g implies ε � ε ✤ ∗ γ � g for all graphs γ ∈ GΣ and g ∈ GT .

16

Proof. Let γ =⇒
rm

n g be any derivation as in the lemma. We prove the propo-435

sition by induction over n.
For n = 0, we have γ = g and, by Lemma 4.7, ε � ε ✤

sh

∗ g � g = γ � g.
For n > 0, the derivation must be of the form

γ = αAµv =⇒
rm

α�µv =⇒
rm

n−1 uv = g (4)

for some u, v ∈ GT , α ∈ GΣ, rule A → �, and renaming µ : X → X. By
α�µ =⇒

rm
n−1 u and the induction hypothesis,

ε � ε ✤ ∗ α�µ �u.

Moreover, by the definition of derivation moves, X(α)∩X(�µ) ⊆ X(Aµ), which
satisfies the condition for the following reduce move:

α�µ �u ✤
Aµ ⇒ �µ

αAµ �u.

X(u) ∩X(v) ⊆ X(αAµ) follows from (4) and Fact 2.6, and therefore,

αAµ �u ∗✤
sh

αAµv �uv = γ � g.

by Lemma 4.7. �

Lemma 4.6 and Lemma 4.8 prove the correctness of the näıve shift-reduce
parser:440

Theorem 4.9. For each graph h ∈ GT , ε � ε ✤ ∗ Z �h if and only if Z =⇒
rm

∗ h.

Proof. For the only-if direction, set γ = g = ε, γ� = Z, and g� = h in
Lemma 4.6, and for the if direction, set γ = Z in Lemma 4.8. �

5. Viable Prefixes of Graphs

The näıve shift-reduce parser may always find a successful parse for a valid445

graph (and only for those), but it must always choose the right move to avoid
backtracking. Bear in mind that the parser can always perform a shift move as
long as the input graph has not yet been consumed in its entirety. In particular,
all literals can be shifted right away. Also, a rule like T y → ε in Example 4.2
can always be reduced. This will typically lead into a dead end. We shall now450

distinguish stacks that may occur in successful parses from those that do not.
This will eventually result in the characteristic finite automaton that “assists”
the parser. We follow a similar line of argument as for string parsing and define
so-called viable prefixes first [2, Sect. 5.3.2].

17

Assumption 5.1. For the remainder of the paper, we add to Γ a new nontermi-455

nal Start of arity zero, and the rule (Start → Z) with Start = Start(). Thus,
the derivations starting with Start are just those in the original grammar, but
with an additional first step Start =⇒

rm
Z. Clearly, the generated language is

independent of whether Z or Start is considered to be the initial nonterminal.

A viable prefix is a prefix of a graph derivable from Start by a nonempty460

rightmost derivation, provided that this prefix does not extend past the right-
hand side of the most recently applied rule. More formally:

Definition 5.2 (Viable Prefix). A graph γ ∈ GΣ is called a viable prefix if
there are graphs α,β ∈ GΣ as well as z ∈ GT and a literal A ∈ LitN such that
Start =⇒

rm
∗ αAz =⇒

rm
αβz and γ is a prefix of αβ.465

Example 5.3. We illustrate Def. 5.2 using an initial segment of the rightmost
derivation in Fig. 6 (though now beginning with Start()):

Start() =⇒
rm

∗
α� �� �

root(1)

A����
T (1)

z� �� �
e(1, 2) e(2, 4)

=⇒
rm

2

α� �� �
root(1)

β� �� �
T (1) e(1, 3)T (3)� �� �

γ

z� �� �
e(1, 2) e(2, 4) .

The graph γ = root(1)T (1) e(1, 2)T (3) is the longest viable prefix of the derived
graph; all prefixes of γ are viable as well.

Before we show that the set of viable prefixes is just the set of all stacks
occurring in successful parses, we need the following two technical lemmata.
Lemma 5.4 states that the set of viable prefixes does not change if we add to470

Def. 5.2 the additional requirement that the suffix v with γv = αβ is a terminal
graph.

Lemma 5.4. A graph γ ∈ GΣ is a viable prefix if and only if there are graphs
α,β ∈ GΣ as well as v, z ∈ GT and a literal A ∈ LitN such that Start =⇒

rm
∗

αAz =⇒
rm

αβz = γvz.475

Proof. The if direction follows immediately from the definition of viable pre-
fixes. For the only-if direction, let γ be any viable prefix. Hence, there is a
rightmost derivation

Start =⇒
rm

n αAz =⇒
rm

αβz (5)

and αβ = γδ (because we assume that Γ is reduced). Without loss of generality,
assume that this derivation is maximal in the sense that there is no longer
rightmost derivation Start =⇒

rm
m α�A�z� =⇒

rm
α�β�z� such that γ is a prefix of

α�β� and m > n. Further assume that δ /∈ GT , that is, there is a nonterminal
literal B and graphs δ = δ�Bu =⇒

rm
δ�β�u. Then β�, δ� ∈ GΣ and u ∈ GT such480

18

that Start =⇒
rm

n αAz =⇒
rm

αβz = γδz = γδ�Buz =⇒
rm

γδ�βuz is a rightmost

derivation, and γ is a prefix of γδ�β. But this rightmost derivation is longer
than (5), contradicting the assumption. Hence, δ ∈ GT . �

We now show that the set of viable prefixes is just the set of all stacks
occurring in successful parses. In Sect. 6, we shall then define nondeterministic485

CFAs and show that they just approve viable prefixes. Such a CFA will therefore
allow to identify the stacks of successful parses.

Lemma 5.5. For every sequence ε � ε ✤ ∗ γ � g of moves such that γ is a viable
prefix, there is a graph g� ∈ GT with γ � g ✤ ∗ Z � gg�.

Proof. Let ε � ε ✤ ∗ γ � g be a sequence of moves as in the lemma. By
Lemma 4.6, γ =⇒

rm
∗ g. We first show that there is a rightmost derivation

Start =⇒
rm

n αAz =⇒
rm

αβz = γvz =⇒
rm

∗ gvz (6)

where v ∈ GT . Since γ is a viable prefix and according to Lemma 5.4, there
is a rightmost derivation Start =⇒

rm
n α̂Âẑ =⇒

rm
α̂β̂ẑ for some n ∈ N such

that γv̂ = α̂β̂ for a terminal graph v̂ ∈ GT . However, one cannot conclude
γv̂ẑ =⇒

rm
∗ gv̂ẑ because of possible naming conflicts. To circumvent this problem,

we rename all nodes that may cause such conflicts. For this purpose, choose any
renaming µ : X → X with µ(x) = x if x ∈ X(γ) and µ(x) /∈ X(g) otherwise,

and let α = α̂µ, β = β̂µ, v = v̂µ, z = ẑµ, and A = Â. By the choice of µ,
γ = γµ and γv = αβ, as well as

X(vz) ∩X(g) ⊆ X(γ). (7)

Hence, γvz =⇒
rm

∗ gvz by Fact 2.6. By Lemma 2.3, we thus have a derivation as

in (6). Note that
X(α) ∩X(β) ⊆ X(A) (8)

follows from αAz =⇒
rm

αβz.490

We now show that, for every sequence ε � ε ✤ ∗ γ � g of moves and every right-
most derivation (6), there is a sequence γ � g ✤ ∗ Z � gvz by induction over the
length of the derivation in (6).

For n = 0, we have α = z = ε and Start =⇒
rm

β = Z = γv, i.e., γ = Z and

v = ε. Hence, γ � g = Z � gvz ✤ 0 Z � gvz.495

For n > 0, we distinguish between two cases.

(1) The derivation (6) has the form

Start =⇒
rm

n−1 δBu =⇒
rm

δϕAwu =⇒
rm

αβz = γvz =⇒
rm

∗ gvz (9)

where α = δϕ, z = wu, and αβ = γv. By (7), (8), and Lemma 4.7,

γ � g ✤
sh

∗ γv � gv = αβ � gv ✤
A⇒ β

αA � gv = δϕA � gv. (10)

19

Note that (9) has the form of (6) where B plays the role of A, δϕA the role
of γ, w the role of v, and gv the role of g. Because of (10), we can make
use of the induction hypothesis so that δϕA � gv ✤ ∗ Z � gvz.

(2) The given derivation (6) has the form

Start =⇒
rm

n−1 αAuBw =⇒
rm

αAuv�w =⇒
rm

αβz = γvz =⇒
rm

∗ gvz (11)

with B⇒ v� ∈ GT and z = uv�w. By (7), (8), and Lemma 4.7,

γ � g ✤
sh

∗ γv � gv = αβ � gv ✤
A⇒ β

αA � gv. (12)

Note that (11) has the form of (6) where B plays the role of A, αA the500

role of γ, uv� the role of v, and gv the role of g. Because of (12), we can
make use of the induction hypothesis so that αA � gv ✤ ∗ Z � gvz. �

Lemma 5.6. For every sequence ε � ε ✤ ∗ γ �u ✤ ∗ Z �uv of moves, γ is a viable
prefix.

Proof. If γ = Z, then there is nothing to show because Z is a viable pre-
fix due to Start =⇒

rm
Z. Otherwise, the sequence of moves has the form

ε � ε ✤ ∗ γ �u ✤ + Z �uv. As the last move is a reduce move, the sequence can
be written as

ε � ε ✤ ∗ γ �u ✤
sh

∗ γv� �uv� = αβ �uv� ✤
A⇒ β

αA �uv� ✤ ∗ Z �uv�v��

for some graphs v�, v�� ∈ GT with v = v�v��. We can make use of Lemma 4.8 for505

each of these moves, yielding Start =⇒
rm

Z =⇒
rm

∗ αAv�� =⇒
rm

αβv�� = γv�v��, i.e.,

γ is a viable prefix. �

An immediate consequence of Lemma 5.5 and Lemma 5.6 is the following:

Theorem 5.7. For every sequence ε � ε ✤ ∗ γ �u of moves, there is a graph v ∈
GT with γ �u ✤ ∗ Z �uv if and only if γ is a viable prefix.510

In other words, the stack of a reachable configuration is a viable prefix if
and only if the nondeterministic parser can reach the accepting configuration
for some possible rest graph.

6. Nondeterministic Characteristic Finite-State Automata

Let us now start to develop the means to “assist” the shift-reduce parser515

to restrict its moves to promising ones. The first step towards this goal is the
construction of nondeterministic characteristic finite automata, which we define
next.

Definition 6.1 (Nondeterministic CFA). The nondeterministic character-
istic finite automaton (nCFA) for Γ is the tuple A = (Q, q0,Δ) consisting of the520

following components:

20

1. Q = {A → α �β | (A → αβ) ∈ R} is a finite set of states.

2. q0 = (Start → �Z) ist the initial state.

3. Δ ⊆ Q× (LitΣ ∪ {ε})×Q is a ternary transition relation. Writing p
x−→ q

if (p, x, q) ∈ Δ, the transitions constituting Δ are:525

(a) (A → α � lβ) l−→ (A → αl �β) for every state (A → α � lβ) ∈ Q, where
l ∈ LitΣ; such a transition is called goto transition.

(b) q
ε−→ p for all states q = (A → α �Bβ) ∈ Q and p = (C → � γ) ∈

Q such that �(B) = �(C) ∈ N ; such a transition is called closure
transition.530

Assumption 6.2. Since we assume a fixed HR grammar Γ, we assume a fixed
nCFA A = (Q, q0,Δ) obtained from Γ from now on.

Following the ideas discussed earlier, each item is a rule with a dot somewhere
between literals in its right-hand side, indicating the division between literals
that have already been processed and those which have not. Accordingly, the535

dot is moved across a literal when a corresponding literal is processed. We now
formalize how an nCFA approves graphs (which will later turn out to be viable
prefixes).

An nCFA approves a graph ϕ if the sequence lit(ϕ) of literals corresponds to
a sequence of state transitions, starting at the initial state. We define the notion540

of nCFA configurations (or just configurations if it is clear from the context) to
formalize this:

Definition 6.3 (nCFA Configuration). An nCFA configuration ϕ♦[q]µ con-
sists of

• a graph ϕ ∈ GΣ,545

• a state q = (A → α �β) ∈ Q, and

• an injective partial function µ : X � X with dom(µ) = X(α).

The function µ in an nCFA configuration ϕ♦[q]µ corresponds to the match
defined in Def. 2.2, which maps rule nodes to nodes of the graph processed so
far. In an nCFA configuration, this match has in general not completely been550

determined yet; the mapping of nodes that have not yet been processed is still
undefined. The mapping µ is extended when a literal is processed, which means
that all its attached nodes, if they have not been processed earlier, are now
processed as well. As a consequence, nodes of state q must be mapped by µ to
nodes in ϕ—unless they have not been processed yet, in which case they are not555

in dom(µ). Such nodes may only occur in literals behind the dot in q, which is
reflected by the requirement that dom(µ) = X(α).

To compare literals that have only partially been matched, let – /∈ X be a
special value denoting ‘undefined’. Given a partial injective function µ : X � X
and a literal l = a(x1, . . . , xk), we let l

µ = a(y1, . . . , yk) where, for all 1 ≤ i ≤ k,560

yi = µ(xi) if xi ∈ dom(µ) and yi = – otherwise. Note that lµ is a literal if (and

21

only if) x1, . . . , xk ∈ dom(µ). “Literals” with ‘–’ are called pseudo-literals. We
let X(lµ) denote µ(X(l)).

An nCFA works by processing and consuming literals step by step while
moving from state to state, represented by a corresponding sequence of nCFA565

configurations, starting at ε♦[q0]ι, the initial configuration. Here, ι : X � X
is the totally undefined function with dom(ι) = ∅. Intuitively, ε♦[q0]ι being
the initial configuration means that the nCFA starts with the empty graph ε in
q0 = (Start → �Z) and with no nodes mapped yet, the latter being indicated
by the empty domain of ι.570

Each step of the nCFA is modeled by a move, defined as follows:

Definition 6.4 (nCFA Move). Let ϕ♦[q]µ be a configuration. A goto transi-

tion q
l−→ q� induces a goto move

ϕ♦[q]µ ✤
go

ϕlν♦[q�]ν

where µ � ν, dom(ν) = dom(µ) ∪X(l), and X(lν) ∩X(ϕ) ⊆ X(lµ).

A closure transition q
ε−→ q� with q = (A → α �Bβ) and q� = (C → � δ)

induces a closure move
ϕ♦[q]µ ✤

cl
ϕ♦[q�]ν

where Bµ = Cν and dom(ν) ⊆ X(C).
We write C ✤ C � if either C ✤

go
C � or C ✤

cl
C �, and call this a move.

A goto move applies a goto transition by processing a (possibly nonterminal)575

literal l. The parser consumes the corresponding literal, which also means that
all its nodes have been consumed after this move, and all nodes of l are mapped
by the resulting node mapping ν. The processed literal is hence lν , which
is added to the end of the approved graph, resulting in ϕlν . The first two
conditions, µ � ν and dom(ν) = dom(µ) ∪ X(l), state that the mapping ν580

extends the previous mapping µ so as to map the entire literal l to the input
graph. The remaining condition X(lν)∩X(ϕ) ⊆ X(lµ) ensures that nodes that
have already been consumed (i.e., those in ϕ) are not matched another time by
extending µ to ν.

A closure move applies a closure transition and corresponds to a (rightmost)585

derivation step, i.e., the mapping µ of nodes in B is translated into a mapping ν
of the corresponding nodes in C. Note that dom(µ) and dom(ν) are unrelated
because the nodes in B and C may differ. Only nodes appearing in C—but
not necessarily all of them—are mapped by ν; other nodes of state q� are not
mapped because their corresponding nodes have not yet been consumed.590

Example 6.5 (The nCFA for the Tree-Generating Grammar). Fig. 8
shows the transition diagram of the nondeterministic CFA for the tree-
generating grammar in Example 4.2. In Fig. 9 we show moves of the non-
deterministic CFA.

22

Start()→ �Z()

Start()→Z() �

Z()→ � root(x)T (x)

Z()→ root(x) �T (x)

Z()→ root(x)T (x) �
T (y)→ �

T (y)→ �T (y)e(y, z)T (z)

T (y)→T (y) � e(y, z)T (z)

T (y)→T (y)e(y, z) �T (z)

T (y)→T (y)e(y, z)T (z) �

T (x)

ε

root(x)

T (x)

T (y)

e(y, z)

T (z)

ε

ε

ε

ε

Figure 8: Nondeterministic CFA for the tree-generating grammar in Example 4.2. The initial
state appears in the upper left. Closure transitions are drawn with thicker lines.

ε ♦ [Start() → �Z()]
✤
cl

ε ♦ [Z() → � root(x)T (x)]x/x
✤
go

root(1) ♦ [Z() → root(x) �T (x)]x/1
✤
cl

root(1) ♦ [T (y) → �T (y)e(y, z)T (z)]y/1
✤
go

root(1)T (1) ♦ [T (y) → T (y) � e(y, z)T (z)]y/1
✤
go

root(1)T (1) e(1, 2) ♦ [T (y) → T (y)e(y, z) �T (z)]y/1,z/2
✤
cl

root(1)T (1) e(1, 2) ♦ [T (y) → �T (y)e(y, z)T (z)]y/2
✤
go

root(1)T (1) e(1, 2)T (2) ♦ [T (y) → T (y) � e(y, z)T (z)]y/2
✤
go

root(1)T (1) e(1, 2)T (2) e(2, 4) ♦ [T (y) → T (y)e(y, z) �T (z)]y/2,z/4
✤
go

root(1)T (1) e(1, 2)T (2) e(2, 4)T (4) ♦ [T (y) → T (y)e(y, z)T (z) �]y/2,z/4

Figure 9: Approval of a graph with a nondeterministic CFA. Renamings µ of states qi with
µ(x1) = y1, . . . , µ(xk) = yk are represented by exponents x1/y1, . . . , xk/yk

Every graph approved by the automaton is a viable prefix occurring in the595

rightmost derivation in Fig. 6 of Example 4.2, and in the parse shown in Fig. 7
of Example 4.5. We will show in the sequel that this is not a coincidence. �

Definition 6.6. The nCFA approves a graph ϕ ∈ GΣ if there is a configuration
C = ϕ♦[q]µ such that ε♦[q0]ι

✤ ∗ C.

It is rather obvious that one can arbitrarily rename input graph nodes with-600

out affecting approval by the nCFA:

Fact 6.7. ε♦[q0]ι
✤ n ϕ♦[q]µ implies ε♦[q0]ι

✤ n ϕf♦[q]f◦µ for every renaming
f : X → X.

Moreover, properties of goto moves can be generalized to sequences of goto
moves:605

23

Lemma 6.8. ϕ♦[A → α �βγ]µ ✤
go

∗ ϕψ♦[A → αβ � γ]ν implies µ � ν, dom(ν) =

dom(µ) ∪X(β), and X(ϕ) ∩X(ανβνγν) ⊆ X(αµβµγµ).

Proof. Consider any sequence ϕ♦[A → α �βγ]µ ✤
go

n ϕψ♦[A → αβ � γ]ν . We

prove the proposition by induction over n. The proposition follows for n = 0
from µ = ν.610

For n > 0, we have the sequence

ϕ♦[A → α �βγ]µ ✤
go

n−1 ϕψ�♦[A → αβ� � eγ]ν� ✤
go

ϕψ♦[A → αβ � γ]ν

with β = β�e and ψ = ψ�eν . By the induction hypothesis and the definition of
goto moves,

µ � ν� � ν (13)

X(ϕ) ∩X(αν�
βν�

γν�
) ⊆ X(αµβµγµ) (14)

dom(ν) = dom(ν�) ∪X(e) = dom(µ) ∪X(β�) ∪X(e)

= dom(µ) ∪X(β) (15)

X(eν) ∩X(ϕψ�) ⊆ X(eν
�
) (16)

By Def. 6.3 and (13), X(αν) = X(αν�
) and X(β�ν) = X(β�ν�

). Moreover,
X(γν) ⊆ X(γν�

)∪X(eν) using (13) and (15), andX(eν)∩X(ϕ) ⊆ X(eν
�
)∩X(ϕ)

using (16). Therefore, X(ϕ)∩X(ανβνγν) ⊆ X(ϕ)∩X(αν�
βν�

γν�
) ⊆ X(αµβµγµ)

using (14). �

The following lemma shows that all mapped nodes of the current nCFA state615

have been consumed already, i.e., occur in consumed literals.

Lemma 6.9. ε♦[q0]ι
✤ ∗ ϕ♦[A → α �β]µ implies X(αµβµ) ⊆ X(ϕ).

Proof. We prove the proposition by induction over the length n of the sequence
of moves. The proposition follows for n = 0 from A = Start, α = ∅, β = Z,
and µ = ι.620

For n > 0 and the last move being a closure move, the sequence has the form

ε♦[q0]ι
✤ n−1 ϕ♦[B → δ �Cγ]ν ✤

cl
ϕ♦[A → α �β]µ.

with α = ε, Cν = Aµ, and dom(µ) ⊆ X(A). Therefore, X(αµβµ) = X(Aµ) =
X(Cµ) ⊆ X(δνCνγν) ⊆ X(ϕ) using the induction hypothesis.

For n > 0 and the last being a goto move, the sequence has the form

ε♦[q0]ι
✤ n−1 ϕ�♦[A → α� � eβ]ν ✤

go
ϕ♦[A → α �β]µ

24

with α = α�e, ϕ = ϕ�eν , ν � µ, dom(µ) = dom(ν)∪X(e), and X(eµ)∩X(ϕ�) ⊆
X(eν). Therefore, X(βµ) ⊆ X(βν) ∪X(eµ) and

X(αµβµ) ⊆ X(α�ν) ∪X(eµ) ∪X(βν)

⊆ X(α�νeνβν) ∪X(eµ)

⊆ X(ϕ�) ∪X(eµ)

= X(ϕ)

using the induction hypothesis. �

We now show that the graphs approved by the nCFA are viable prefixes
(Lemma 6.10) and vice versa (Lemma 6.11).625

Lemma 6.10. For every sequence

ε♦[q0]ι
✤ ∗ ϕ♦[A → α �β]µ

of moves and every injective function τ : X(αβ) → X with µ � τ and X(βτ) ∩
X(ϕ) ⊆ X(βµ), there exist ψ ∈ GΣ and z ∈ GT such that

Start =⇒
rm

∗ ψAτz =⇒
rm

ψατβτz = ϕβτz.

Proof. We prove the proposition by induction over the number n of moves. For
n = 0 the proposition follows from the definition of initial nCFA configurations
(with τ = ι, A = Start = Startτ , ϕ = α = z = ε, and β = Start).

For n > 1 and the last move being a goto move, we have

ε♦[q0]ι
✤ n−1 ϕ�♦[A → α� � eβ]ν ✤

go
ϕ♦[A → α�e �β]µ = ϕ♦[A → α �β]µ

where

ϕ = ϕ�eµ (17)

ν � µ (18)

dom(µ) = dom(ν) ∪X(e) (19)

X(eµ) ∩X(ϕ�) ⊆ X(eν), (20)

Let τ be as in the lemma. Then ν � µ � τ . In order to make use of the induction
hypothesis, we additionally need to show that X(eτβτ)∩X(ϕ�) ⊆ X(eνβν). In
fact, we have

X(eτβτ) ∩X(ϕ�) = (X(eτ) ∩X(ϕ�)) ∪ (X(βτ) ∩X(ϕ�))

= (X(eµ) ∩X(ϕ�)) ∪ (X(βτ) ∩X(ϕ) ∩X(ϕ�))

⊆ X(eν) ∪ (X(βµ) ∩X(ϕ�))

⊆ X(eν) ∪X(βν)

= X(eνβν).

25

Hence the induction hypothesis applies, yielding ψ ∈ GΣ and z ∈ GT such that
Start =⇒

rm
∗ ψAτz =⇒

rm
ψα�τeτβτz = ϕβτz, which proves the proposition.630

For n > 0 and the last move being a closure move, we have

ε♦[q0]ι
✤ n−1 ϕ♦[B → γ �Cδ]ν

✤
ϕ♦[A → �β]µ

where Cν = Aµ, dom(µ) ⊆ X(A), and α = ε. Again, let τ : X(αβ) → X
be as in the statement of the lemma. To be able to use the induction hy-
pothesis we need an injective function η : X(γCδ) → X such that ν � η and
X(Cηδη) ∩X(ϕ) ⊆ X(Cνδν). But we also need Cη = Aτ in order to conclude
a derivation Start =⇒

rm
∗ ψBηw =⇒

rm
ψγηCηδηw = ϕAτδηw. However, this may635

be impossible because of naming conflicts.
To circumvent this problem, we rename all nodes that may cause such con-

flicts and use Fact 6.7. For this purpose, we choose any renaming f : X → X
with f(x) = x for x ∈ X(ϕ) and f(x) /∈ X(βτ) for x ∈ X(βτ) \X(ϕ). We then
have X(Cν) ⊆ X(ϕ) because of Lemma 6.9, and hence Cf◦ν = (Cν)f = Cν =
Aµ as well as ϕf = ϕ, and therefore

ε♦[q0]ι
✤ n−1 ϕ♦[B → γ �Cδ]f◦ν ✤

ϕ♦[A → �β]µ.

We can now choose a renaming η : X → X with f ◦ ν � η, X(Cηδη) ∩X(ϕ) ⊆
X(Cf◦νδf◦ν), and Cη = Aτ , and by the induction hypothesis, Start =⇒

rm
∗

ψBηw =⇒
rm

ψγηCηδηw = ϕAτδηw. Although Aτ ⇒βτ , we cannot conclude

ϕAτδηw⇒ϕβτδηw because δηw may contain nodes that are created by the
derivation Aτ ⇒βτ . Again, we solve this problem by renaming the conflicting
nodes in δηw to new nodes. For this purpose, let Y = X(δηw) \X(ϕAτ) and
choose, for each y ∈ Y , a new node ny ∈ X \ X(ϕβτδηw). Let h : X → X
be a renaming with h(x) = nx if x ∈ Y and h(x) = x for x ∈ X(ϕβτ). By
Lemma 2.3, Start =⇒

rm
∗ (ϕAτδηw)h = ϕAτδh◦ηwh. By the definition of h, and

because Γ is reduced, there is a graph u ∈ GT such that

ϕAτδh◦ηwh ⇒ϕβτδh◦ηwh ⇒∗ ϕβτuwh.

Therefore, Start =⇒
rm

∗ ϕβτz for z = uwh, which proves the proposition. �

Lemma 6.11. For every rightmost derivation Start =⇒
rm

∗ αAz =⇒
rm

αβz and

each prefix ϕ of αβ, there is a sequence ε♦[q0]ι
✤ ∗ ϕ♦[p]ν of moves (for a suit-

able state [p]ν).640

Proof. We prove by induction over n that Start =⇒
rm

n αAz =⇒
rm

αβz implies

ε♦[q0]ι
✤ ∗ ϕ♦[p]ν for every prefix ϕ of αβ.

For n = 0, the derivation is of the form Start =⇒
rm

Z = β and we have ϕ = ε

or ϕ = Z. Hence, ϕ ∈ {ε,Z}, and the proposition follows by making no move
at all, or by making the goto move

ε♦[q0]ι
✤
go

Z♦[Start → Z �]ι.

26

For n > 0, the initial part of the derivation up to αAz has the form

Start =⇒
rm

n−1 ϑXw =⇒
rm

ϑ�w = αAz.

There are two cases:

(1) � ∈ GT .
Then ϑ = αAu for some u ∈ GT , Start =⇒rm n−1 αAuXw =⇒

rm
αAu�w =⇒

rm
645

αβu�w. We distinguish two sub-cases:

(1a) ϕ is a prefix of α.
Then ϕ is a prefix of αAu� and hence the proposition follows directly
from the induction hypothesis.

(1b) ϕ = ατ for a prefix τ of β.650

By the induction hypothesis, there is a sequence ε♦[q0]ι
✤ m αA♦[p]ν

of moves. W.l.o.g, let m be the minimum number of such moves. By
Def. 6.4, this sequence must be of the form

ε♦[q0]ι
✤ m−1 α♦[B → δ �Cδ�]µ ✤

go
αA♦[B → δC � δ�]ν

with A = Cν . Suppose that A⇒β uses rule D → ψψ̄ with |τ | = |ψ|.
By making a closure move instead of the goto move at the end of the
sequence above, we obtain

ε♦[q0]ι
✤ m−1 α♦[B → δ �Cδ�]µ ✤

cl
α♦[D → �ψψ̄]σ

with Cµ = Dσ. The proposition follows when applying the appropri-
ate number of goto moves:

α♦[D → �ψψ̄]σ ✤
go

∗ ατ♦[D → ψ � ψ̄]σ�
= ϕ♦[D → ψ � ψ̄]σ�

.

(2) � /∈ GT .
Then A is a literal in � and the given derivation has the form Start =⇒

rm
n−1

ϑXw =⇒
rm

ϑγAuw =⇒
rm

ϑγβuw, where ϑγ = α and thus ϕ is a prefix of ϑγβ.

We distinguish two sub-cases:

(2a) ϕ is prefix of ϑγ.655

As in case 1a, the proposition follows directly from the induction hy-
pothesis because ϕ is a prefix of ϑγAu.

(2b) ϕ = ϑγτ for a prefix τ of β.
By the induction hypothesis, there is a sequence ε♦[q0]ι

✤ ∗ ϑγA♦[p]ν ,
and with a similar argument as in case 1b, ε♦[q0]ι

✤ ∗ ϑγτ♦[p�]σ. �660

An immediate consequence of Lemma 6.10 and Lemma 6.11 is the following:

Theorem 6.12. A graph ϕ ∈ GΣ is a viable prefix if and only if the nCFA
approves ϕ.

27

On the one hand, we have shown at the end of Sect. 4 that the näıve nonde-
terministic parser can reach the accepting configuration (with some rest graph)665

if and only if the current stack content is a viable prefix (Thm. 5.7). On the
other hand, Thm. 6.12 shows that the nCFA approves precisely the viable pre-
fixes. In other words, the nondeterministic parser can avoid running into a
situation in which no rest graph could ever make it accept the input by making
sure that its moves only produce stacks that are approved by the nCFA.670

7. Deterministic Characteristic Finite-State Automata

Because of its spontaneously acting closure transitions, the nCFA cannot
efficiently be used to improve the näıve shift-reduce parser by making sure that
the stack of the parser is always a viable prefix. This is so because the nCFA,
whenever it reaches a configuration, may also be in any configuration reachable675

by closure moves. In a deterministic implementation, all these configurations
must be maintained simultaneously when the next goto move shall be made. To
avoid this, we preprocess the nCFA and create the deterministic CFA (dCFA)
by combining such simultaneously reachable states into new states, using a
procedure similar to the classic powerset construction.680

Literals of prefixes approved by an nCFA are images of literals of transitions
and nCFA states under node mappings. The idea behind our adaptation of the
traditional powerset construction to CFAs is to split such a node mapping into
a composition of two mappings; the so-called parameter mapping is applied first
and the so-called input graph mapping second: The parameter mapping maps685

each node of an nCFA state to a parameter, intuitively providing the node with
a formal parameter name under which it can be addressed for instantiation.
The input graph mapping performs this instantiation by mapping parameters
to nodes of the actual input graph. The input graph mapping will be chosen
when “approving” a graph with the dCFA, whereas the parameter mapping is690

chosen when constructing the dCFA. Different nodes that are always mapped
to the same input graph nodes and that belong to nCFA states combined in a
common dCFA state, are mapped to the same parameter by the algorithm. Let
us use nodes to model parameters. An item is then an nCFA state with such a
parameter mapping:695

Definition 7.1 (Item). An item �q,σ� consists of an nCFA state q = (A →
α �β) and an injective partial parameter mapping σ : X � X with dom(σ) =
X(α). I denotes the set of all items.

Note that the parameter mapping maps only those nodes of the item which
occur in literals preceding the dot.700

If an nCFA processes a graph and reaches a state q, it can also reach those
states reachable from q by closure transitions. Of course, nodes must be renamed
appropriately, as we are dealing with items instead of pure states. An item that
is reachable from another item by a closure transition is called closure item of
the latter. The formal definition reads as follows:705

28

Definition 7.2 (Closure of Items). We call �q, τ� a closure item of �p,σ�,
written �p,σ� � �q, τ�, if p = (A → α �Bβ) and q = (C → � δ), Cτ = Bσ, and
dom(τ) ⊆ X(C).

The closure of a set I of items is the smallest set J that contains all members
of I and, for each item in J , all its closure items.710

The closure for a given set of items can be computed in the usual way by
adding all closure items to the set and repeating this procedure as long as new
items are added to the set:

Fact 7.3. Let J be the closure of a set I of items. Then, for every item �q�,σ�� ∈
J , there is a item �q,σ� ∈ I such that �q,σ� �∗ �q�,σ��.715

Before we give the formal definition of dCFAs, we define the notion of states
used in it.

Definition 7.4 (dCFA state). A dCFA state Q is a finite set of items. It
is closed if it is its own closure. We let params(Q) denote the set

�{σ(X) |
�q,σ� ∈ Q�} of all parameters of Q.720

A concrete state Qτ of C is a state Q ∈ Q under an input node mapping
τ : params(Q) → X. The (infinite) set of all concrete states is denoted by QM.

For a renaming µ : X → X, let

Qµ = {�q, µ ◦ ν� | �q, ν� ∈ Q} 4

be the state obtained by mapping each parameter by µ. Two states Q,Q� are
equivalent, written Q ≈ Q�, if there is a µ such that Qµ = Q�.

We are now ready to give the formal definition of dCFAs. Each dCFA state725

is a closed set of items. In particular, the initial state Q0 is the closure of the
initial state of the nCFA. Transitions in the dCFA are labeled with pairs that
consist of a literal and a node mapping. The literal is the one that triggers the
state transition; its nodes are parameters of the source state of the transition and
new parameters whose “values” are the corresponding nodes of the consumed730

edge. The node mapping of the transition will later be used to set the “values”
of the target state parameters.

Definition 7.5. A deterministic characteristic finite automaton (dCFA) C =
(Q, Q0,Δ, QA) consists of a finite set Q ⊆ 2I of dCFA states, initial and final
states Q0, QA ∈ Q, and a transition relation Δ ⊆ Q × LitT × (X � X) × Q735

with the following properties:

1. For all states Q,Q� ∈ Q, Q ≈ Q� implies Q = Q�.
2. Q0 is the closure of {�q0, ι�}, where q0 = (Start → �)Z is the initial state

of the nCFA.

4Here, µ is a total function, but clearly we need only be concerned with defining µ for
those parameters actually used.

29

Algorithm 1: Converting the nCFA A into a deterministic CFA.

Input : Nondeterministic CFA A
Output: Equivalent deterministic CFA C

1 let q0 = (Z → � ζ) be the initial state of A
2 compute Q0 as the closure of {�q0, ι�} and let C be the automaton with

initial state Q0 and no further states yet
3 W ← {Q0}
4 while W �= ∅ do
5 select and remove any set S from W
6 foreach l ∈ leave(S) do
7 obtain literal e from l by replacing each occurrence of ‘–’ in l by

a new node not used anywhere else
8 I ← ∅
9 foreach �q,σ� ∈ S with l ∈ leave(q,σ) do
10 let q = (A → α �fβ)
11 let ν : X � X be injective with σ � ν, fν = e, and

dom(ν) = dom(σ) ∪X(f)
12 add �A → αf �β, ν� to I

13 compute the closure I � of I
14 if C has a state Q ≈ I � then

15 add a transition S
(e,µ)−−−→Q to C where I � = Qµ

16 else
17 add I � as a new state to C and W

18 add a transition S
(e,id)−−−→ I � to C

3. QA = {�Start → Z � , ι�}.740

We write Q
(e,µ)−−−→ Q� if (Q, e, µ,Q�) ∈ Δ where µ is an injective function

µ : params(Q�) → X.

Alg. 1 converts an nCFA into a corresponding dCFA. To determine the set
of all transitions leaving a dCFA state S, it considers each element l of the set

leave(S) =
�

�q,σ�∈S

leave(q,σ)

where leave(A → α � ,σ) = ∅ and leave(A → α � eβ,σ) = {eσ}, i.e., leave(S)
contains mapped images of those literals that are labels of goto transitions leav-
ing the corresponding nCFA states. These literals are mapped by the parameter745

mapping, i.e., they are in general pseudo-literals whose “nodes” are either pa-
rameters of S, or ‘–’ if they are not (yet) mapped in Q.

Parameter names can be chosen arbitrarily as long as the parameter map-
pings are injective. That way, Alg. 1 frequently creates new sets of items which

30

Start()→ �Z() []
Z() → � root(x)T (x) [] Start()→Z() � []

Z() → root(x) �T (x) [x/x]
T (y)→ � [y/x]
T (y)→ �T (y) e(y, z)T (z) [y/x]

Z() → root(x)T (x) � [x/x]
T (y)→T (y) � e(y, z)T (z) [y/x]

T (y)→T (y) e(y, z) �T (z) [y/x, z/a]
T (y)→ � [y/a]
T (y)→ �T (y) e(y, z)T (z) [y/a]

T (y)→T (y) e(y, z)T (z) � [y/x, z/a]
T (y)→T (y) � e(y, z)T (z) [y/a]

Q0

Q1

Q2

Q3

Q4

QA

root(x) [x/x]

Z()

[]

T (x) [x/x]

e(x, a) [x/x, a/a]

T (a) [x/x, a/a] e(a, b) [x/a, a/b]

Figure 10: Deterministic CFA created by Alg. 1 from the nCFA in Fig. 8

should become states of the dCFA C, but are equivalent to sets that have al-750

ready been added as states to C and should thus not be added again. Alg. 1
avoids equivalent states (line 14) and “reuses” existing states instead (line 15).
The node mapping being part of transition labels is the parameter renaming
that must be applied to reuse an already existing state.

Example 7.6 (The dCFA for the Tree-Generating Grammar). Fig. 10755

shows the dCFA obtained by Alg. 1 from the nondeterministic CFA (Fig. 8) for
the tree grammar in Example 4.2. It consists of the states Q0, . . . , Q4, QA, which
are sets of items. Each item �q,σ� is written in a single line that shows its nCFA
state q on the left and its parameter mapping σ on the right (in brackets). Each
pair u/v denotes that node u of the item is mapped to the parameter v, i.e.,760

σ(u) = v; σ is undefined for all other nodes. Transitions are labelled by pairs of
literals and node mappings. The latter are represented analogously.

Note that the transitions leading from Q0 via Q1 and Q2 to Q3 have identity
node mappings because the target states of these transitions were new states
when Alg. 1 created the transition (line 18). When it created the transition

31

ε�Q0
✤✤ root(1)�Qx/1

1
✤✤ root(1)T (1)�Qx/1

2
✤✤ root(1)T (1) e(1, 2)�Qx/1,a/2

3
✤✤ root(1)T (1) e(1, 2)T (2)�Qx/1,a/2

4
✤✤ root(1)T (1) e(1, 2)T (2) e(2, 4)�Qx/1,a/2

3
✤✤ root(1)T (1) e(1, 2)T (2) e(2, 4)T (4)�Qx/2,a/4

4

Figure 11: Moves of the dCFA in Fig. 10. Renamings τ (or ν ◦ µ, resp.) of states Qi with
τ(x1) = y1, . . . , τ(xk) = yk are represented by exponents x1/y/1, . . . , xk/yk .

leaving Q4, however, it constructed the set

I � = { �T (y) → T (y) e(y, z) �T (z), [y/a, z/b]�,
�T (y) → � , [y/b]�,
�T (y) → �T (y) e(y, z)T (z), [y/b]� }

of items, for some new parameter node b. But this set is equal to Qµ
3 where

µ = [x/a, a/b] is the corresponding node mapping, and Alg. 1 has reused state
Q3 when adding the transition in line 15. �765

Assumption 7.7. Since Alg. 1 constructs the dCFA from an nCFA, and as we
have assumed a fixed HR grammar Γ and a fixed nCFA, we also assume a fixed
dCFA C in the following.

The dCFA approves graphs in a similar way as the nCFA does. We define
dCFA configurations, dCFA moves, and approval by a dCFA analogously to770

their nCFA counterparts (Definitions 6.3, 6.4, and 6.6). The primary difference
is that dCFA moves do not have to take closure moves into account:

Definition 7.8. A dCFA configuration ϕ�Qτ consists of a graph ϕ ∈ GΣ and
a dCFA state Q mapped under an injective partial function τ : X � X.

A dCFA transition t = (Q
(e,µ)−−−→Q�) turns ϕ�Qτ into ϕeν�Q�ν◦µ with τ � ν,775

dom(ν) = dom(τ) ∪X(e), and X(eν) ∩X(ϕ) ⊆ X(eτ). We write such a dCFA
move as ϕ�Qτ ✤✤

t
ϕeν�Q�ν◦µ or simply ϕ�Qτ ✤✤ ϕeν�Q�ν◦µ.

The dCFA approves a graph ϕ ∈ GΣ if there is a dCFA configuration C =
ϕ�Qτ such that ε�Qι

0
✤✤ ∗ C.

Note that the final state of the dCFA plays no role in the proceedings so far.780

This will continue to be so for the rest of this section, but change in the next.

Example 7.9 (Moves of the dCFA for the Tree-Generating Grammar).
Fig. 11 shows moves of the deterministic CFA in Fig. 10. They approve the
same graph as the moves (shown in Fig. 9) of the nondeterministic CFA of
Fig. 8. �785

32

To prove that the dCFA approves the same graphs as the nCFA, we need
the following lemma. It shows that constructing closure items is tightly related
to performing closure moves.

Lemma 7.10. �p,σ� �∗ �q, τ� implies ϕ♦[p]µ◦σ ✤
cl

∗ ϕ♦[q]µ◦τ for all items �p,σ�
and �q, τ�, every injective partial function µ : X � X with dom(µ◦σ) = dom(σ),790

and every graph ϕ ∈ GΣ such that ϕ♦[p]µ◦σ is a valid nCFA configuration.

Proof. Consider any items �p,σ� and �q, τ� such that �p,σ� �n �q, τ�,
and µ as well as ϕ as in the lemma. We prove dom(µ ◦ τ) = dom(τ) and
ϕ♦[p]µ◦σ ✤

cl

n ϕ♦[q]µ◦τ by induction over n.

For n = 0, �p,σ� = �q, τ�, and therefore, ϕ♦[p]µ◦σ = ϕ♦[q]µ◦τ as well as795

dom(µ ◦ τ) = dom(τ), which proves the proposition.
For n > 0, we have �p,σ� �n−1 �p�,σ�� � �q, τ�, and by the induction

hypothesis, ϕ♦[p]µ◦σ ✤
cl

n−1 ϕ♦[p�]µ◦σ
�
and dom(µ◦σ�) = dom(σ�). Then p� and q

are of the form p� = (A → α �Bβ), q = (C → � δ), Cτ = Bσ�
, dom(τ) ⊆ X(C).

We first show that dom(µ◦τ) = dom(τ). The inclusion dom(µ◦τ) ⊆ dom(τ)800

follows immediately from the definition of the composition of partial functions.
In order to show the opposite inclusion, consider any node x ∈ dom(τ) ⊆ X(C).
There must be a node y ∈ X(B) such that τ(x) = σ�(y) because Cτ = Bσ�

, and
therefore y ∈ dom(σ�) = dom(µ ◦ σ�). In other words, τ(x) = σ�(y) ∈ dom(µ),
i.e., x ∈ dom(µ ◦ τ), which proves dom(τ) ⊆ dom(µ ◦ τ).805

As a consequence, the equalities Cµ◦τ = (Cτ)µ = (Bσ�
)µ = Bµ◦σ�

and
dom(µ◦τ) = dom(τ) ⊆ X(C) hold. As ϕ♦[p�]µ◦σ

�
is a valid nCFA configuration,

and by Def. 6.4, ϕ♦[p�]µ◦σ
� ✤

cl
ϕ♦[q]µ◦τ . �

Lemma 7.11 shows that each graph approved by the nCFA is also approved
by the dCFA, and Lemma 7.12 shows the opposite direction. But these lemmata810

are even more specific: Each dCFA state is a set of items, i.e., nCFA states with
parameter mappings, and one can find an approving sequence of nCFA states
“within” the corresponding approving sequence of nCFA states. In other words,
the relation between the two automata is similar to that between an ordinary
nondeterministic finite automaton and its powerset automaton.815

Lemma 7.11. For each sequence

ε♦[q0]ι
✤ ∗ ϕ♦[q]�

of nCFA moves, there is a dCFA state Q and an injective partial function
τ : X � X such that �q, �� ∈ Qτ and

ε�Qι
0
✤✤ ∗ ϕ�Qτ .

Proof. We prove the proposition by induction over the number n of moves
in ε♦[q0]ι

✤ n ϕ♦[q]�. For n = 0, the proposition follows immediately from the
definition of initial nCFA configurations and Q0.

33

For n > 0 and the last move being a closure move, the considered sequence
of moves is of the form

ε♦[q0]ι
✤ n−1 ϕ♦[A → α �Bβ]κ

✤
cl

ϕ♦[C → � δ]�

with Bκ = C� and dom(�) ⊆ X(C). By the induction hypothesis, there
is a dCFA state Q and an injective partial function τ : X � X such that820

ε�Qι
0
✤✤ ∗ ϕ�Qτ and �A → α �Bβ,κ� ∈ Qτ . Therefore, there is an injective

η : X � X with κ = τ ◦ η and �A → α �Bβ, η� ∈ Q. Since each dCFA state
is closed under closure (line 2 and 13), we also have �C → � δ, ξ� ∈ Q with
Bη = Cξ and dom(ξ) ⊆ X(C). Therefore, C� = Bκ = (Bη)τ = (Cξ)τ . And
because of injectivity, � = τ ◦ ξ, and therefore �C → � δ, �� ∈ Qτ .825

For n > 0 and the last move being a goto move, the considered sequence of
moves is of the form

ε♦[q0]ι
✤ n−1 ϕ♦[A → α �fβ]κ ✤

go
ϕf�♦[A → αf �β]�

with

κ � �, dom(�) = dom(κ) ∪X(f), and X(f�) ∩X(ϕ) ⊆ X(fκ). (21)

By the induction hypothesis, there is a dCFA state S and an injective χ : X � X
such that ε�Qι

0
✤✤ ∗ ϕ�Sχ and �A → α �fβ,κ� ∈ Sχ. Therefore, there is an

injective σ : X � X with κ = χ ◦ σ, �A → α �fβ,σ� ∈ S, and fσ ∈ leave(S).
(Note that the identifiers used here match those in Alg. 1.) Alg. 1, therefore,
obtained a literal e from fσ by replacing each occurrence of ‘–’ by a new node
not used anywhere else (line 11). It also obtained an injective partial function
ν with

σ � ν, fν = e, and dom(ν) = dom(σ) ∪X(f). (22)

And Alg. 1 has added a transition S
(e,µ)−−−→Q to C (line 15 or 18) by constructing

a set I � of items such that �A → αf �β, ν� ∈ I � (line 12 and 13) and Qµ = I �. By
the construction of e, by (21) as well as (22), and because µ is injective, there
is an injective ξ : X � X such that χ � ξ and � = ξ ◦ ν, and therefore �A →
αf �β, �� ∈ I �ξ = Qξ◦µ. Since f� = eξ, we can conclude ϕ�Sχ ✤✤ ϕf��Qξ◦µ.830

Thus, the lemma holds with τ = ξ ◦ µ. �

Lemma 7.12. For each sequence

ε�Qι
0
✤✤ ∗ ϕ�Qτ

and each item �q,ϑ� ∈ Qτ , there exists a sequence

ε♦[q0]ι
✤ ∗ ϕ♦[q]ϑ

of nCFA moves.

34

Proof. Let ε�Qι
0
✤✤ n ϕ�Qτ be any sequence of dCFA moves and �q,ϑ� any

item with �q,ϑ� ∈ Qτ . We prove ε♦[q0]ι
✤ ∗ ϕ♦[q]ϑ by induction over n.

For n = 0, the proposition follows from Q = Q0, ϕ = ε, τ = ι, and therefore835

Qτ = {�q0, ι�}, i.e., q = q0 and ϑ = ι.
For n > 0, there is a sequence of moves

ε�Qι
0
✤✤ n−1 ϕ�Sχ ✤✤ ϕeξ�Qξ◦µ

with τ = ξ ◦ µ, χ � ξ, dom(ξ) = dom(χ) ∪ X(e) and the last move using

transition S
(e,µ)−−−→ Q. Alg. 1 added this transition to C after computing a set

Qµ. (Note that the identifiers used here match those in Alg. 1.) As �q,ϑ� ∈ Qξ◦µ,
there is a π with ϑ = ξ ◦ π and �q,π� ∈ Qµ = I �. Since I � was computed as the
closure of I (line 13), and by Fact 7.3, there is a item �A → αf �β, ν� ∈ I that
was added to I in line 12, and

�A → αf �β, ν� �∗ �q,π�. (23)

In fact, �A → αf �β, ν� was added to I after selecting a item �A → α �fβ,σ� ∈
S, which was been turned into �A → αf �β, ν�. Literal e was obtained from fσ

by replacing each occurrence of ‘–’ by a new node not used anywhere else, and the
injective partial function ν : X � X was chosen such that σ � ν, fν = e, and
dom(ν) = dom(σ) ∪X(f). By the induction hypothesis, ε♦[q0]ι

✤ ∗ ϕ♦[q]κ for
each item �q,κ� ∈ Sχ, and in particular for �A → α �fβ,κ� ∈ Sχ with κ = χ◦σ.
Let us define � = ξ ◦ ν, and therefore �A → αf �β, �� ∈ Iξ ⊆ I �ξ = Qξ◦µ

and f� = eξ. By this construction, κ � �, dom(�) = dom(κ) ∪ X(f), and
X(f�) ∩X(ϕ) ⊆ X(fκ), and therefore

ϕ♦[A → α �fβ]κ ✤
go

ϕf�♦[A → αf �β]� = ϕeξ♦[A → αf �β]ξ◦ν .

By the construction of ξ and ν, we have dom(ξ ◦ ν) = dom(ν). And, by (23)
and Lemma 7.10,

ϕeξ♦[A → αf �β]ξ◦ν ✤
cl

∗ ϕeξ♦[q]ξ◦π = ϕeξ♦[q]ϑ.

which completes the proof of the lemma. �

An immediate consequence of these lemmata is the following:

Theorem 7.13. A graph is approved by the dCFA if and only if it is approved
by the nCFA if and only if it is a viable prefix.840

Thm. 7.13 implies that the nondeterministic parser can reach the accepting
configuration with some rest graph if and only if the dCFA approves its current
stack.

Before we describe assisted shift-reduce parsers using deterministic CFA
(Sect. 8), let us observe that Alg. 1 does not terminate for all HR grammars. A845

HR grammar for the visual language of structured flowcharts is used to demon-
strate this.

35

begin

read n

n �= 0?
yes no

end
n even?

yes no

n ← n/2 n ← 3n+ 1

Figure 12: A structured flowchart.

begin

a

act

b

predc d

endprede

act

f

act

Figure 13: Graph representation of
the structured flowchart in Fig. 12.

Example 7.14 (Structured Flowcharts). Structured flowcharts consist of
rectangles containing actions, diamonds that indicate conditions, and ovals indi-
cating begin and end of the program. Arrows indicate control flow; see Fig. 12
for an example. They can be represented by graphs using terminal symbols
begin, end , act , and pred where binary act edges represent actions (rectangles)
and ternary pred edges conditions (diamonds). Nodes correspond to arrows
where edges are attached to the same node if the corresponding components
(rectangle, diamond, or oval) are connected by an arrow. The example flowchart
in Fig. 12 can be represented by the graph shown in Fig. 13 and by the (ordered)
graph

begin(a) act(a, b) pred(b, c, d) pred(c, e, f)act(e, b) act(f, b) end(d) .

For instance, literal act(a, b) represents the rectangle “read n”, act(f, b) the
rectangle “n ← 3n + 1”, and pred(c, e, f) the diamond “n even?”. An HR
grammar for the graph representation of structured flowcharts has nonterminal
symbols Z, Seq (for “sequence”), as well as Stmt (for “statement”) and the
following rules:

Z() → begin(x) Seq(x, y) end(y)
Seq(x, y) → Stmt(x, y) (end of sequence)
Seq(x, y) → Stmt(x, z)Seq(z, y) (sequence)

Stmt(x, y) → act(x, y) (single action)
Stmt(x, y) → pred(x, z, y)Seq(z, x) (while loop)
Stmt(x, y) → pred(x, u, v)Seq(u, y)Seq(v, y) (selection)

The dCFA of this grammar is infinite, i.e., Alg. 1 does not terminate. To
see this, consider the excerpt of the dCFA in Fig. 14. In order to save space, we
use a compact notation. If a dCFA state contains items �q,σ1�, . . . , �q,σn� that850

share the nCFA state q, we write q{σ1, . . . ,σn} where the parameter mappings
σ1, . . . ,σn are denoted as introduced earlier. And, if a dCFA state contains

36

Start() → �Z()
�
[]
�

Z() → � begin(x) Seq(x, y) end(y)
�
[]
�Q0





Z() → begin(x) �Seq(x, y) end(y)
Seq(x, y) → �Stmt(x, y)
Seq(x, y) → �Stmt(x, z)Seq(z, y)
Stmt(x, y) → � act(x, y)
Stmt(x, y) → � pred(x, z, y)Seq(z, x)
Stmt(x, y) → � pred(x, u, v)Seq(u, y)Seq(v, y)





×
�
[x/a0]

�

Stmt(x, y) → pred(x, z, y) �Seq(z, x)
�
[x/a0, y/b1, z/a1]

�

Stmt(x, y) → pred(x, u, v) �Seq(u, y)Seq(v, y)
�
[u/a1, v/b1, x/a0]

�




Seq(x, y) → �Stmt(x, y)
Seq(x, y) → �Stmt(x, z)Seq(z, y)
Stmt(x, y) → � act(x, y)
Stmt(x, y) → � pred(x, z, y)Seq(z, x)
Stmt(x, y) → � pred(x, u, v)Seq(u, y)Seq(v, y)




×
�
[x/a1],
[x/a1, y/a0]

�

Stmt(x, y) → pred(x, z, y) �Seq(z, x)
�
[x/a1, y/b2, z/a2]

�

Stmt(x, y) → pred(x, u, v) �Seq(u, y)Seq(v, y)
�
[u/a2, v/b2, x/a1],
[u/a2, v/b2, x/a1, y/a0]

�





Seq(x, y) → �Stmt(x, y)
Seq(x, y) → �Stmt(x, z)Seq(z, y)
Stmt(x, y) → � act(x, y)
Stmt(x, y) → � pred(x, z, y)Seq(z, x)
Stmt(x, y) → � pred(x, u, v)Seq(u, y)Seq(v, y)




×




[x/a2],
[x/a2, y/a0],
[x/a2, y/a1]





Stmt(x, y) → pred(x, z, y) �Seq(z, x)
�
[x/a2, y/b3, z/a3]

�

Stmt(x, y) → pred(x, u, v) �Seq(u, y)Seq(v, y)




[u/a3, v/b3, x/a2],
[u/a3, v/b3, x/a2, y/a0],
[u/a3, v/b3, x/a2, y/a1]









Seq(x, y) → �Stmt(x, y)
Seq(x, y) → �Stmt(x, z)Seq(z, y)
Stmt(x, y) → � act(x, y)
Stmt(x, y) → � pred(x, z, y)Seq(z, x)
Stmt(x, y) → � pred(x, u, v)Seq(u, y)Seq(v, y)




×





[x/a3],
[x/a3, y/a0],
[x/a3, y/a1],
[x/a3, y/a2]





Q1

Q2

Q3

Q4

begin(a0) [a0/a0]

pred(a0, a1, b1) [a0/a0, a1/a1, b1/b1]

pred(a1, a2, b2) [a0/a0, a1/a1, a2/a2, b2/b2]

pred(a2, a3, b3) [a0/a0, a1/a1, a2/a2, a3/a3, b3/b3]

pred(a3, a4, b4) [a0/a0, a1/a1, a2/a2, a3/a3, a4/a4, b4/b4]

. . .

Figure 14: Excerpt of the infinite dCFA of the flowchart grammar.

37

the full Cartesian product of a set Q of nCFA states and a set P of parameter
mappings, we write Q× P . This notation even allows to represent Q4 with its
24 items.855

Fig. 14 shows the states Q0, . . . , Q4 of the dCFA and only the transitions
between them. One can see that Q2, Q3, and Q4 are identical when ignoring
the parameter mappings. Moreover, when renaming parameters, Q2 is properly
contained in Q3, which in turn is properly contained in Q4. These three states
are the first states of an infinite sequence Q2, Q3, Q4, . . ., which makes the entire860

dCFA infinite.

As a consequence, Alg. 1 cannot be applied to all HR grammars and their
nCFAs. However, a modified algorithm not described here can recognize and
handle this situation. For this, it represents the infinite dCFA in a finite way
by equipping states with variables that may contain sets of arbitrarily many865

parameters and using these variables in transitions. This algorithm has been
implemented in the Grappa tool. In this paper, we have described the simpler
algorithm in Alg. 1 instead of the more general one, because the latter is rather
technical. In fact, the HR grammar for structured flowcharts is the only HR
grammar with an infinite dCFA known to the authors—and it is not even PSR870

parsable because the finitely represented infinite dCFA has shift-reduce conflicts
(see Table 1). We describe the concept of conflicts in Sect. 9.

8. CFA-Assisted Shift-Reduce Parsing

Let us now discuss how the näıve shift-reduce parser discussed in Sect. 4 can
read off all permissible moves from the current dCFA state in order to reach the875

accepting configuration with some rest graph. Recall that the näıve parser just
maintains a stack of literals. The extended parser, instead, maintains a stack
as an alternating sequence of states and literals and makes sure that its stack
(when ignoring the states on the stack) is always approved by the dCFA. The
top stack element is always the current state, which is the uniquely determined880

dCFA state reached when approving the stack—when ignoring the states on the
stack. The stack prior to a move is called current stack, and the next one is the
successor stack, thus defining a successor state. The successor stack together
with the successor state will then be the current stack and the current state,
respectively, at the next move.885

When performing a shift move, the parser selects a literal from the remaining
input that matches the label of a transition leaving the current state (on top
of the stack). This literal is then pushed onto the stack, together with the
successor state reachable by this transition. The successor stack thus consist of
the current stack, followed by the shifted literal and the successor state.890

A reduce move removes the right-hand side (under an appropriate mapping)
of a rule from the stack, together with the corresponding states, yielding some
intermediate stacks with a state on top. The parser then selects a transition
leaving this state and with a label matching the reduced nonterminal literal,
which is the left-hand side of the rule, under the same mapping as above. Next,895

38

the reduced literal is pushed onto the stack, together with the successor state
reachable by this transition. The successor stack thus consist of the intermediate
stack, followed by the reduced literal and the successor state.

The parser accepts the input graph processed so far when the state on top of
the stack is the final state QA of the dCFA. Note that the entire input graph is900

accepted that way if there are no unprocessed input literals left when reaching
this state.

Let us now define the extension of the näıve shift-reduce parser more pre-
cisely. We call this parser dCFA-assisted shift-reduce parser or simply assisted
shift-reduce parser, abbreviated as ASR parser.905

Definition 8.1 (ASR Parser). An (ASR parser) configuration S � g consists
of a parse stack S ⊆ QM · (LitΣ · QM)∗ and a graph g ∈ GT . Thus, top(S) is
always a concrete state.5 The graph obtained by removing all concrete states
from S is denoted by graph(S). A configuration S � g is accepting if top(S) is
the final state QA of the dCFA.910

An ASR move turns S � g into S � � g� and is either an ASR shift move or an
ASR reduce move, defined as follows.

Let Qτ = top(S) for a state Q ∈ Q and an input node mapping τ .

• Suppose that there is a literal e ∈ LitT and a concrete state T ∈ QM

such that graph(S)�Qτ ✤✤
tr

graph(S)e�T and X(e)∩X(g) ⊆ X(graph(S)).915

Then there is an ASR shift move S � g ✤✤
tr

SeT � ge.

• Suppose that Q contains an item it = �A → � � ,σ� and one can re-
move 2 · |�| elements from the top of S to obtain a parse stack S ��

with R = top(S ��) such that there exists a concrete state T ∈ QM with
graph(S ��)�R

✤ ✤ graph(S ��)Aτ◦σ�T . Then there is an ASR reduce move920

S � g ✤ ✤
it

S ��Aτ◦σT � g.

We may write S � g |= S � � g� if S � g ✤✤
tr

S � � g� for a transition tr or S � g ✤ ✤
it

S � � g�

for an item it .
A configuration S � g is reachable if Qι

0 � ε |=∗ S � g. An ASR parser accepts a
graph g ∈ GT if there is a reachable accepting configuration S � g.925

Note that shift and reduce moves of the ASR parser always push (concrete)
states onto the stack that are reachable from their immediate predecessor states
on the stack. This is expressed in the following fact:

Fact 8.2. Qι
0 � ε |=∗ S � g implies ε�Qι

0
✤ ✤ ∗ graph(S �)�top(S �) for every ASR

parser configuration S � g and every parse stack S � being a prefix of S.930

5Recall from Section 2 that top(S) denotes the top of the stack, i.e., its rightmost element.

39

stack � consumed input match

Q0 � ε
|= Q0root

1Q1
1 � root1

|=
3

Q0root
1Q1

1T
1Q1

2 � root1 y/1

|= Q0root
1Q1

1T
1Q1

2e
12Q12

3 � root1e12
|=
3

Q0root
1Q1

1T
1Q1

2e
12Q12

3 T 2Q12
4 � root1e12 y/2

|= Q0root
1Q1

1T
1Q1

2e
12Q12

3 T 2Q12
4 e24Q24

3 � root1e12e24 x/2, y/4

|=
3

Q0root
1Q1

1T
1Q1

2e
12Q12

3 T 2Q12
4 e24Q24

3 T 4Q24
4 � root1e12e24 y/4

|=
2

Q0root
1Q1

1T
1Q1

2e
12Q12

3 T 2Q12
4 � root1e12e24 x/2, y/4

|=
2

Q0root
1Q1

1T
1Q1

2 � root1e12e24 x/1, y/2

|= Q0root
1Q1

1T
1Q1

2e
13Q13

3 � root1e12e24e13
|=
3

Q0root
1Q1

1T
1Q1

2e
13Q13

3 T 3Q13
4 � root1e12e24e13 y/3

|=
2

Q0root
1Q1

1T
1Q1

2 � root1e12e24e13 x/1, y/3

|=
1

Q0 Start QA � root1e12e24e13

Figure 15: Moves of the ASR parser recognizing the tree in Example 4.2. Places on the stack
where reductions occur are underlined. Rules used in reduce moves are indicated as subscripts
in the leftmost column, and their corresponding matches appear in the rightmost column.

Example 8.3 (An ASR Parse of a Tree). Fig. 15 shows the moves of the
ASR parser when recognizing the tree in Example 4.2.6

Moves no. 1 to 6 in Fig. 15 correspond to the moves of the dCFA shown in
Fig. 11 of Example 7.9 in the way stated in Fact 8.2:

• The initial configuration of the ASR parser agrees with the initial state of935

the dCFA.

• The symbol and state pushed in move i agrees with the symbol approved,
and the state reached, by move i of the dCFA. In three steps, terminal
symbols are pushed by a shift move; the other moves push the nonterminal
T in the course of reducing rule 2, which has no literals on its right-hand940

side so that nothing has to be popped off the stack.

• After move i, the symbols on the stack of the parser (ignoring the states)
agree with the viable prefix approved in move i of the dCFA. �

Note also that a reduce move of the näıve shift-reduce parser must check a
rather complex condition in order to select a reduce move (Def. 4.4); it must945

6In this example and in Fig. 15, we use following abbreviated notation: literals �(x1, . . . , xk)

are denoted as �x1...xk , and states of the dCFA that were written asQ
[x1/y1,...,xk/yk]
i in Fig. 11

are abbreviated as Q
y1...yk
i .

40

examine whether the stack contains the right hand side of the rule (under an
appropriate match), and it must additionally check condition X(α) ∩X(�µ) ⊆
X(Aµ) of Def. 4.4 to make sure that the corresponding derivation step is valid.
The ASR parser, instead, just inspects the top state on the stack and checks
whether this state contains an item with the dot at the end of the rule; it can950

thus read off from the dCFA whether it can select a reduce move. The following
lemma states this formally. It will be used for proving the correctness of the
ASR parser later.

Lemma 8.4. For every rule A → � with A �= Start and every sequence
ε�Qι

0
✤✤ ∗ ϕ�Qτ , Q contains an item �A → � � ,σ� if and only if there is a955

graph α ∈ GΣ such that ϕ = α�τ◦σ, αAτ◦σ is also approved by the dCFA, and
X(α) ∩X(�τ◦σ) ⊆ X(Aτ◦σ).

Proof. For the only-if direction, consider a sequence ε�Qι
0
✤✤ ∗ ϕ�Qτ and an

item �A → � � ,σ� ∈ Q. We have �A → � � , µ� ∈ Qτ with µ = τ ◦ σ, and by
Lemma 7.12, there is a sequence

ε♦[q0]ι
✤ ∗ ϕ♦[A → � �]µ. (24)

The dot in A → � � must have been moved there by goto moves, starting at
A → � �, a state that was reached by a closure move. Therefore, (24) has the
form

ε♦[q0]ι
✤ ∗ α♦[B → γ �Cδ]ν

✤
cl

α♦[A → � �]µ� ✤
go

∗ α�µ♦[A → � �]µ

with ϕ = α�µ = α�τ◦σ, Cν = Aµ�
, µ� � µ, X(A) ⊆ X(�) = dom(µ). Thus

Aµ is a literal, and there is an injective ν� : X � X with ν � ν�, dom(ν�) =
dom(ν) ∪X(C), and Cν�

= Aµ. As a consequence, there is also a sequence

ε♦[q0]ι
✤ ∗ α♦[B → γ �Cδ]ν ✤

go
αAµ♦[B → γC � δ]ν�

showing that αAµ is approved by the nCFA and consequently, using Lemma 7.11,
by the dCFA. Moreover, X(α) ∩ X(�µ) ⊆ X(�µ

�
) = X(Aµ�

) ⊆ X(Aµ) using
Lemma 6.8.960

For the if direction, let A → � be a rule with A �= Start, and consider a se-
quence ε�Qι

0
✤✤ ∗ α�µ�Qτ with an injective µ : X � X, and ε�Qι

0
✤✤ ∗ αAµ� �Qξ

for some dCFA state �Q and injective ξ : X � X. By Lemma 7.12, there is a
sequence

ε♦[q0]ι
✤ ∗ α♦[B → γ �Cδ]ν

� ✤
go

αAµ♦[B → γC � δ]ν

with Aµ = Cν , ν� � ν, and dom(ν) = dom(ν�)∪X(C). Therefore, there is also
a sequence

ε♦[q0]ι
✤ ∗ α♦[B → γ �Cδ]ν

� ✤
cl

α♦[A → � �]µ� ✤
go

∗ α�µ♦[A → � �]µ

with Cν�
= Aµ�

and, by Lemma 7.11, a sequence ε�Qι
0
✤✤ ∗ α�µ�Q�τ �

with

a dCFA state Q�, injective τ � : X � X, and �A → � � , µ� ∈ Q�τ �
. In fact,

41

Q = Q� and τ = τ � since the dCFA is deterministic. Hence, Q contains an item
�A → � � ,σ� with µ = τ ◦ σ. �

We are now ready to prove that the ASR parser is in fact an improved version965

of the näıve shift-reduce parser (Def. 4.4) that always makes sure that its stack
is a viable prefix:

Lemma 8.5. For every ASR parser configuration S � g with graph(S) �= Start
and every n ∈ N, Qι

0 � ε |=n S � g if and only if ε�Qι
0
✤✤ ∗ ϕ�R and ε � ε ✤ n ϕ � g

where R = top(S) and ϕ = graph(S).970

Proof. We prove the proposition by induction on n. For n = 0, it immediately
follows from the fact that S = top(S) = Qι

0 and graph(S) = g = ε.
For the inductive step, let n ≥ 0. We have to show that the proposition

holds for n+ 1 under the assumption that it holds for all shorter configuration
sequences of length up to n. We show the only-if and the if direction separately.975

(1) To show the only-if direction, we assume any sequence

Qι
0 � ε |=n S � � g� |= S � g.

Let R = top(S �) and ϕ = graph(S �). The last move is either a shift move
or a reduce move.

(1a) If it is a shift move, there exist a literal e ∈ LitT and a concrete state
T ∈ QM with

ϕ�R
✤ ✤ ϕe�T (25)

X(e) ∩X(g) ⊆ X(ϕ) (26)

S = S �eT (27)

g = g�e. (28)

Now, ε�Qι
0
✤ ✤ ∗ ϕ�R

✤✤ ϕe�T follows from (25) and the induction hy-
pothesis, and ε � ε ✤ n ϕ � g� ✤

sh
ϕe � g from the induction hypothesis,

(26), (28), and Def. 4.4. This proves the proposition because top(S �) =980

T and graph(S �) = ϕe.
(1b) If the last move is a reduce move, there is a rule A → �, and one

can obtain a parse stack S �� by removing 2 · |�| elements from the end
of S �. Let ψ = graph(S ��) and Q = top(S ��). By Def. 8.1, there is a
dCFA state Qi ∈ Q such that Qi contains a p-item �A → � � ,σ� and
a concrete state T ∈ QM with

ψ�Q
✤✤ ψAτ◦σ�T (29)

S = S ��Aτ◦σT (30)

g = g�. (31)

42

Moreover, by Lemma 8.4, there is a graph α ∈ GΣ and a concrete state
T � ∈ QM such that

ϕ = α�τ◦σ (32)

ε�Qι
0
✤✤ ∗ αAτ◦σ�T � (33)

X(α) ∩X(�τ◦σ) ⊆ X(Aτ◦σ). (34)

Now, α = ψ follows from the construction of S �� and

ε�Qι
0
✤✤ ∗ αAτ◦σ�T � = ψAτ◦σ�T

from (29), (33), and the fact that the dCFA is deterministic. Finally,

ε � ε ✤ n ϕ � g� = ψ�τ◦σ � g ✤
Aτ◦σ ⇒ �τ◦σ ψAτ◦σ � g

using the induction hypothesis, (31), (32), (34) and Def. 4.4. This
proves the proposition because top(S) = T and graph(S) = ψAτ◦σ.

(2) To show the if direction, we now assume any sequence

ε � ε ✤ n ϕ� � g� ✤ ϕ � g. (35)

of moves and
ε�Qι

0
✤ ✤ ∗ ϕ�R (36)

for some concrete state R ∈ QM. The last move in (35) is either a shift
move or a reduce move.985

(2a) If it is a shift move, there exists a literal e ∈ LitT such that

ϕ = ϕ�e (37)

g = g�e (38)

X(e) ∩X(g�) ⊆ X(ϕ�) (39)

Because of (37), we can write (36) as

ε�Qι
0
✤✤ ∗ ϕ��Q

✤✤ ϕ�e�R (40)

for some concrete state Q ∈ QM. Therefore, the induction hypothesis
applies and yields Qι

0 � ε |=n S � � g� with top(S �) = Q and graph(S �) =
ϕ�. Finally, because of (38), (39) and (40), there is a shift move

S � � g� |= S �eR � g�e = S � g

with S = S �eR and, therefore, top(S) = R and graph(S) = ϕ�e = ϕ
because of (37), which proves the proposition.

(2b) If the last move is a reduce move, there is a rule A → �, a match
µ : X → X, and a graph α ∈ GΣ such that

ϕ� = α�µ (41)

ϕ = αAµ (42)

g = g� (43)

X(α) ∩X(�µ) ⊆ X(Aµ) (44)

43

and (36) can be written as

ε�Qι
0
✤✤ ∗ αAµ�R. (45)

The graph ϕ = αAµ is a viable prefix because of (36), Thm. 6.12,
and Thm. 7.13. Therefore, ϕ� = α�µ is also a viable prefix because of
ϕ = αAµ =⇒

rm
α�µ = ϕ�. Since the grammar is reduced, there must be

concrete states Q,Q� ∈ QM such that

ε�Qι
0
✤✤ ∗ α�Q� ✤✤ ∗ α�µ�Q = ϕ��Q. (46)

Because of (35), there is also a sequence ε � ε ✤ k α � g�� for some prefix
g�� of g = g� and k ≤ n. Therefore, the induction hypothesis applies,
and we can conclude

Qι
0 � ε |=k S �� � g��

for a parse stack S �� with top(S ��) = Q� and graph(S ��) = α. Using the
same argument, we can also conclude

Qι
0 � ε |=n S � � g�

for a parse stack S � with top(S �) = Q and graph(S �) = α�µ = ϕ�.
Let us assume that S �� is not a prefix of S �. There must be a parse
stack Ŝ, literal l and concrete states P �, P �� ∈ QM, P � �= P ��, such that990

ŜlP � is a prefix of S � and ŜlP �� a prefix of S ��. Let ψ = graph(ŜlP �) =
graph(ŜlP ��). We can conclude ε�Qι

0
✤ ✤ ∗ ψ�P � and ε�Qι

0
✤✤ ∗ ψ�P ��

using Fact 8.2, and P � = P �� using the fact that the dCFA is deter-
ministic, contradicting our assumption. S �� is thus a prefix of S �, and
S �� can be obtained from S � by removing 2 · |�| elements from its end.995

Because of (44), (45), (46), and Lemma 8.4, there is a state Qi ∈ Q,
a node mapping τ : params(Qi) → X and an item �A → � � ,σ� ∈ Qi

such that

Q = Qτ
i (47)

µ = τ ◦ σ. (48)

Moreover, we know that

α�Q� ✤✤ αAµ�R

by (45) and (46), using the fact that the dCFA is deterministic. There-
fore, using Def. 8.1,

Qι
0 � ε |=n S � � g� |= S ��AµR � g�.

This proves the proposition because of (43) and (48), choosing S =
S ��Aτ◦σR. �

We are now ready to prove the correctness of the ASR parser.

44

Theorem 8.6. Let g ∈ GT . The ASR parser accepts g if and only if Z =⇒
rm

∗ g.

Moreover, for every reachable configuration S � g, there is a graph g� ∈ GT and1000

an accepting configuration S � � gg� such that S � g |=∗ S � � gg�.

Proof. Consider any graph g ∈ GT .
For the first part of the theorem, by Thm. 4.9 it holds that Z =⇒

rm
∗ g

if and only if ε � ε ✤ ∗ Z � g. By Lemma 8.5, the latter is the case if an only
if Qι

0 � ε |=∗ Qι
0ZQA � g, because the dCFA approves the viable prefix Z via1005

ε�Q0
✤✤ ∗ Z�QA.

To prove the second part of the theorem, consider any configuration S � g
with Qι

0 � ε |=∗ S � g. By Lemma 8.5, Thm. 6.12, and Thm. 7.13, graph(S) is a
viable prefix. Moreover, ε � ε ✤ ∗ graph(S) � g. By Lemma 5.5, there is a graph
g� ∈ GT such that graph(S) � g ✤ ∗ Z � gg�. Thus, the same argument as above1010

yields S � g |=∗ Qι
0ZQA � gg�, i.e., the ASR parser accepts gg�. �

It is worthwhile pointing out that the ASR parser is still nondeterministic,
despite the fact that it is “assisted” by a dCFA. In fact, there are two sources
of nondeterminism. First, the state on top of the stack may contain several
items that fulfill the conditions of shift or reduce moves and thus enable several1015

possible moves. There may be items leading to shifts of different literals, items
that result in reductions according to different rules, and items of which one
triggers a shift move whereas the other triggers a reduce move. For example,
in state Q1 of the dCFA in Fig. 14, the parser may choose among three shift
moves.1020

The second source of nondeterminism lies in the choice of the edge to be
consumed by a shift move, as there may be several literals e in the input graph
that fulfill the conditions.

Naturally, the “right” choice must be made in order to ensure that the
parser accepts a given input graph. Note that this does not contradict Thm. 8.61025

which states that, regardless of the choice made, there exists a possible rest
graph with which the parser can reach an accepting configuration. Clearly, that
rest graph can differ from the actual rest graph in the input. Looking at the
ASR parser, this observation should not come as a surprise, because the parser
does not inspect the rest graph in any way (except for selecting a literal to1030

be shifted whenever a shift move is made). The extension of the ASR parser
by an appropriate inspection of the rest graph to predict the necessary move
will be discussed next. It leads to the main notion proposed in this paper, the
predictive shift-reduce parser.

9. Predictive Shift-Reduce Parsing1035

Intuitively, an appropriate move of the parser is a move that keeps it on its
way towards accepting the input graph g, provided that g is valid. (Naturally, if
g is not valid, every possible move is appropriate as g will eventually be rejected
anyway.) To identify such a move, the parser needs criteria that it can check

45

by inspecting the rest graph. These criteria should preferably only require a1040

fixed number of patterns to be checked, in order to ensure that an appropriate
move can be selected in constant or nearly constant time. While the desired
patterns will obviously have to depend on Γ, they should be computable as
static information by the parser generator. Similarly to the string case, this is
only possible if Γ is conflict-free in a sense to be made precise in this section.1045

Thus, in contrast to the pure ASR parser, which works for every HR grammar,
the resulting predictive shift-reduce parser exists only for a subset of all HR
grammars, i.e., the parser generator may fail to construct a parser, reporting
the existence of a conflict instead.

For the following considerations, suppose that the ASR parser is in the1050

process of parsing a valid input graph g and has reached a configuration S � g�,
but has not yet processed the rest graph r of g where g �� g�r.7 The top of S is
top(S) = Qτ with a CFA state Q ∈ Q and a node mapping τ .

The parser must now choose between shift and reduce moves until the input
graph has been accepted or no further move is possible. Shift moves are caused1055

by transitions leaving Q, and reduce moves by items within Q with a dot at
the end of their right-hand side. Let us call such an item a reduce item. Each
transition and each reduce item is called a trigger that causes the corresponding
move. Note that acceptance is also caused by a reduce item, which is the only
item in the accepting state QA.1060

We now describe an effective decision procedure, which inspects the rest
graph r to select the trigger that causes the “right” move, i.e., a move which
turns the parser into a new configuration from which it can still reach an accept-
ing configuration by consuming the remaining rest graph. Let us call a sequence
of moves that ends in an accepting configuration a successful sequence, even if1065

it does not process the entire rest graph. Thm. 8.6 states that such a sequence
always exists when the parser has reached S � g�. The decision procedure must
thus select a trigger that causes a successful sequence (by causing the first move
of this sequence) that processes the entire rest graph.

The idea for selecting the right trigger is as follows:1070

Suppose that the rest graph r is not yet empty. The procedure now checks
for each trigger whether r contains any literal that will be processed next by any
successful sequence caused by this trigger. There must be a trigger with this
property because g is valid. If this trigger is the only possible one, this trigger
must be the one causing the right move; the parser thus selects this trigger. If,1075

however, two or more triggers have this property, our procedure fails; it cannot
predict the right move.

Let us consider more closely when a literal is processed next by a successful
sequence caused by a trigger. If the trigger is a transition, this literal is just the
one that is processed by the corresponding shift move. If the trigger, however, is1080

a reduce item, it must be the one processed by the first shift move in the move

7Note that we can represent the rest graph by any permutation of r because none of its
literals have been processed by the parser yet.

46

sequence following the reduce move. This shift move may of course not be the
first move of the sequence, as it can be preceded by further reduce moves.

Suppose now that the parser has processed the input graph entirely, i.e. the
rest graph r is empty. The procedure then checks for each reduce item whether1085

there is a successful sequence that consists of reduce moves only. The parser
then selects any reduce item that causes such a successful sequence.

We will now discuss the decision procedure more precisely. To this end, we
consider all successful sequences caused by a trigger. Recall that we suppose
that the parser has reached configuration S � g� with top(S) = Qτ .1090

Suppose the trigger is a transition tr = (Q
(e,µ)−−−→Q�) of the dCFA. Def. 8.1

implies that the shift move induced by tr is S � g� ✤✤
tr

SfQ�� � g�f for an appro-

priate literal f ∈ LitT and concrete state Q�� ∈ QM. And by Thm. 8.6, there
is a graph v ∈ GT such that SfQ�� � g�f |= SA � g�fv with top(SA) = QA. This
means that the parser accepts g�fv or, in other words, fv is the graph processed1095

by this successful sequence. Let us denote the set of all graphs processed by any
successful sequence caused by tr as Success(Qτ , g�, tr).

Suppose now that the trigger is a reduce item it = �A → � � ,σ� ∈ Q. Def. 8.1
implies that the reduced move induced by it is S � g� ✤✤

it
S �Aτ◦σQ� � g� with an

appropriate parse stack S � and concrete state Q� ∈ QM. And by Thm. 8.6, there1100

is a graph g�� ∈ GT such that S �Aτ◦σQ� � g� |= SA � g�g�� with top(SA) = QA.
This means that g�� is the graph processed by this successful sequence. Let us
denote the set of all graphs processed by any successful sequence caused by it
as Success(Qτ , g�, it).

Before utilizing the sets Success(Qτ , g�, t) for a trigger t, let us introduce1105

some terminology first. For a graph h = e1 · · · en with n > 0 literals, let
First(h) = e1 be the first literal of h. In the special case n = 0, we let First(ε) =
$ where the special symbol $ indicates that there are no literals at all. For a set
S ⊆ GΣ of graphs, let First(S) = {First(h) | h ∈ S}.

For a trigger t, now consider the set

First(Success(Qτ , g�, t)).

This set contains all literals that can be processed next by any successful se-1110

quence caused by t, and it contains $ if there is a successful sequence caused
by t without any shift move. The decision procedure, whose idea has been out-
lined above, thus has to select the trigger t such that First(Success(Qτ , g�, t))
contains any literal of the rest graph, or $ if r = ε. However, this does not
make a practical decision procedure because these sets are in general infinite.1115

We turn these sets into finite sets by mapping their members to pseudo-literals
as described next.

Note first that every node visited by any literal in any of these sets falls into
one of three categories: It is either (1) a node assigned by τ to a parameter
of Q, (2) a node not occurring in X(g�), or (3) any node in X(g�) not assigned
to a parameter by τ . We now define the following function that maps nodes of
category (1) to their corresponding parameter, nodes of category (2) to ‘–’, and

47

all others to ‘•’.

fτ,g�

Q (x) =





y if there exists y ∈ params(Q) such that τ(y) = x
– if x /∈ X(g�)
• otherwise

We extend function fτ,g�

Q to literals and sets of literals in the obvious way.
Literals are thus turned into pseudo-literals, which are similar to literals, but
may be attached to ‘–’ and ‘•’ instead of nodes.81120

Function fτ,g�

Q applied to First(Success(Qτ , g�, t)) turns this set into a finite
set. This is so because the number of terminal labels and the number of pa-
rameters in Q are finite. But one cannot compute this set statically because it
depends on g�. Recall that the node mapping τ is uniquely determined by g� be-
cause the dCFA approves g� by ε�Qι

0
✤✤ ∗ g��Qτ and the dCFA is deterministic.

To simplify things, let us define the finite set

Follow(Q, t) :=
�

g�∈GΣ

fτ,g�

Q (First(Success(Qτ , g�, t))) (49)

by building the union over all terminal graphs g�. Clearly, only the graphs g�

approved by the dCFA as mentioned above contribute to this set. This set just
depends on the state Q and one of its triggers t, and is thus static information
independent of the input graph. While Follow(Q, t) cannot directly be computed
using (49), one can compute it by analyzing the dCFA in a very similar way as1125

one can compute the follower symbols for string grammars (Sect. 3).

Example 9.1. Consider the dCFA for the tree-generating grammar shown
in Fig. 10 and in particular state Q4, which has two triggers: Trigger tr is
the transition from Q4 to Q3, and trigger it is the reduce item �T (y) →
T (y) e(y, z)T (z) � , [y/x, z/a]�. Q4 has the parameters x and a. Function fτ,g�

Q4
,

when applied to nodes, thus maps into the set {–, •, x, a}. In fact

Follow(Q4, tr) = {e(a, –)}
Follow(Q4, it) = {e(x, –), e(•, –), $}

It is clear that any successful sequence caused by transition tr must begin with
a shift move and that the consumed literal must match edge e(a, b), which is
ascribed to the transition. However, the “new” parameter b is mapped to –.

Reduce item it can cause a successful sequence without any shift move,1130

indicated by $. To see this, consider, e.g., a parse stack S with top(S) = Qτ
4

and graph(S) = root(1)T (1) e(1, 2)T (2). The reduce move will yield a stack
root(1)T (1), which can be further reduced to Start().

Moreover, e(x, –) and e(•, –) indicate that the literal consumed next must be
an e-literal attached to node τ(x) or any node that has been processed already,1135

but that is not kept track of by a parameter in Q4, indicated by •, and a node
that has not yet been processed, indicated by –. �

8Note that these pseudo-literals are a generalized version of those introduced in Sect. 6.

48

Now let e be a literal of the rest graph r. The definition of Follow(Q, t)

implies that fτ,g�

Q (e) ∈ Follow(Q, t) is a necessary (but not always sufficient)
and easily verifiable condition for e to be a literal that can be processed next1140

by a successful sequence caused by trigger t. Similarly, $ ∈ Follow(Q, t) can be
used to check whether t can cause a successful sequence without any shift move.
A näıve procedure may thus try to identify the “right” trigger in the following
way: If r �= ε, it looks for any trigger t of Q such that r contains a literal e with

fτ,g�

Q (e) ∈ Follow(Q, t). If it can identify a unique trigger with this property,1145

this trigger is selected. However, this procedure fails if it cannot determine a
unique trigger that way.

Let us now examine a way in which such a procedure can uniquely select the
trigger causing the right move, even if the näıve procedure would identify two
or more candidates for the “right” trigger. For that, assume that there are two
different triggers t, t� such that r contains literals e, e� satisfying

fτ,g�

Q (e) ∈ Follow(Q, t) (50)

fτ,g�

Q (e�) ∈ Follow(Q, t�). (51)

Recall that function fτ,g�

Q may map many literals to the same pseudo-literal.
Moreover, Follow(Q, t) contains the pseudo-literals of any literal that may be
consumed next in some successful sequence, not necessarily only those that1150

process the rest graph r entirely. As a consequence, (50) and (51) do in fact not
imply that e or e� will be processed next when t or t�, respectively, is selected.
However, if we notice somehow—and additionally to (50)—that e can never be
processed by any successful sequence caused by t�, we can eliminate t� from the
candidates for the right trigger, even if (51) is satisfied. This observation leads1155

the way to an effective procedure for selecting the right trigger.
Let us determine which literals can be processed by a successful sequence

caused by a trigger t. We are not only interested in the literals that are processed
first, but also in those literals that are processed eventually. Instead of a function
First , we will use a function Any which is defined as follows: For a graph
h = e1 · · · en with n > 0 literals, let Any(h) = {e1, . . . , en} the set of all of its
literals. For the empty graph, let Any(ε) = {$}. For a set S ⊆ GΣ of graphs,
let Any(S) =

�
h∈S Any(h). We then define the finite set

Follow∗(Q, t) :=
�

g�∈GΣ

fτ,g�

Q (Any(Success(Qτ , g�, t))). (52)

Note the close resemblance to (49); the only difference is the use of Any instead

of First , i.e., Follow∗(Q, t) contains the fτ,g�

Q -images of all literals that occur
eventually in some graph processed by a successful sequence caused by t, and
it contains $ if there is a successful sequence caused by t that does not contain1160

any shift move.
Again, this definition cannot be used for computing Follow∗(Q, t) di-

rectly, but one can compute it by analyzing the dCFA in a similar way as
for Follow(Q, t).

49

Example 9.2. We continue Example 9.1 and consider again the dCFA for the
tree-generating grammar shown in Fig. 10 and in particular state Q4 with its
two triggers tr and it . In addition to

Follow(Q4, tr) = {e(a, –)}
Follow(Q4, it) = {e(x, –), e(•, –), $}

we have

Follow∗(Q4, tr) = {e(a, –), e(•, –), e(–, –)}
Follow∗(Q4, it) = {e(x, –), e(•, –), e(–, –), $}

We can see that any literal that matches the only pseudo-literal e(a, –) in1165

Follow(Q4, tr) can never be processed in any successful sequence caused by
it , even if the rest graph contains literals matching the pseudo-literals e(x, –) or
e(•, –), which are members of Follow(Q4, it). This can be concluded from the
fact that e(a, –) does not occur in Follow∗(Q4, it). As a consequence, it cannot
be the right trigger if we find a literal that matches e(a, –).1170

However, we can see that a literal that matches e(•, –) ∈ Follow(Q4, it) may
indeed be processed later when transition tr is chosen. The existence of a literal
matching any pseudo-literal in Follow(Q4, it) does thus not help to eliminate tr
from the candidates of right triggers.

As a consequence, a procedure can reliably predict the next move in state1175

Q4 by first checking whether there is a rest graph literal e with fτ,g�

Q4
(e) =

e(a, –). If there is such a literal, tr is guaranteed to be the right trigger because
e(a, –) /∈ Follow∗(Q4, it). If such a literal, however, does not exist, one can check
whether the rest graph contains any literal e� that matches a pseudo-literal of

Follow(Q4, it), i.e., with fτ,g�

Q4
(e�) ∈ Follow(Q4, it). If there is is such a literal,1180

one chooses the reduce move caused by it . If there is no such e�, it is guaranteed
that there is no successful sequence caused by it that processes the rest graph
entirely, and the parser can terminate with a failure. �

This example motivates that one must compare the Follow and Follow∗ sets
of the different triggers and that one must determine which trigger should be1185

considered first when looking for rest graph literals that match any pseudo-
literals in the Follow set of this trigger:

Definition 9.3. A trigger t precedes a trigger t�, written t ≺ t�, if t and t� are
triggers of the same state Q ∈ Q, t �= t�, and Follow∗(Q, t) ∩ Follow(Q, t�) �= ∅.

Note that ≺ is not an ordering because it is in general not transitive. But1190

t ≺ t� indicates that one must check t prior to t�. However, t ≺ t� does not
help to find an order if there is a ≺-chain t ≺ t� ≺ · · · ≺ t. This motivates the
definition of conflicting triggers. We will see in the following that an effective
decision procedure for identifying the right trigger requires conflict-freeness:

Definition 9.4. Let Q ∈ Q be a state and TQ the set of its triggers. A subset1195

T ⊆ TQ is in conflict if there is a sequence t1 ≺ t2 ≺ · · · ≺ tk ≺ t1 with
T = {t1, t2, . . . , tk}. Q is conflict-free if no subset of its triggers is in conflict.

50

If a state is conflict-free, one can sort the triggers such their order reflects ≺,
which will be necessary for the effective decision procedure:

Lemma 9.5. For every conflict-free state Q ∈ Q, there is an ordered sequence1200

t1, . . . , tn of its triggers such that Follow(Q, ti) ∩ Follow∗(Q, tj) = ∅ for every
pair of indices i, j with i < j.

Proof. Let TQ be the set of triggers of Q. TQ can be considered as a directed
graph with triggers acting as nodes and having an edge from t to t� iff t ≺ t�. A
cycle in TQ would indicate a conflict of the members of the cycle. Therefore, one1205

can sort the transitions topologically into an ordered sequence t1, . . . , tk such
that TQ = {t1, . . . , tk} and ti ≺ tj implies i < j for every pair of indices i, j.
As a consequence, j < i implies ti �≺ tj , which is equivalent to Follow(Q, tj) ∩
Follow∗(Q, ti) = ∅. �

Algorithm SelectTrigger shows the pseudo-code of the effective decision pro-1210

cedure that reliably identifies the unique right trigger when the ASR parser has
reached configuration S � g� with top(S) = Qτ for a state Q ∈ Q, node mapping
τ , and rest graph g��. SelectTrigger is called with the current state Q, its node
mapping τ , and the graphs g� as well as g�� as parameters. The procedure re-
turns ‘failure’ if it is guaranteed that there is no successful sequence processing1215

g�� entirely. Note that the procedure requires an ordered sequence of all trig-
gers as described in Lemma 9.5, i.e., it does not work if a state has conflicting
triggers.

The following lemma states that SelectTrigger can reliably identify the
unique right trigger:1220

Lemma 9.6. Let S � g� be any configuration reached by the ASR parser and
top(S) = Qτ where Q ∈ Q is a state and τ a node mapping.

For every graph g�� ∈ GT such that S � g� |=∗ SA � g�g�� with top(SA) = QA,
SelectTrigger, when called with parameters (Q, τ, g�, g��), returns a trigger t of
Q with the following properties:1225

Procedure SelectTrigger(Q,τ ,g�,g��)

Input : State Q ∈ Q, node mapping τ ,
processed graph g�, rest graph g��

Output: a trigger t of Q or ‘failure’
1 let t1, . . . , tn be a sequence of triggers of Q as in Lemma 9.5
2 for i ← 1 to n do
3 if g�� �= ε then

4 look for a literal e of g�� such that fτ,g�

Q (e) ∈ Follow(Q, ti)

5 if e exists then return ti

6 else if $ ∈ Follow(Q, ti) then return ti

7 return ‘failure’

51

• If t = �Start → Z � , ι� is the reduce item causing acceptance, then S = SA

and g�� = ε.

• If t �= �Start → Z � , ι� is any other reduce item, there is a stack S � with

S � g� ✤✤
t
S � � g� |=∗ SA � g�g��. (53)

• If t is a transition, then g�� contains a literal e� such that there is a graph
h and a concrete state Q� ∈ QM with g�� �� e�h and

S � g� ✤✤
t
SeQ� � g�e� |=∗ SA � g�e�h. (54)

Proof. Let S � g�, Q, τ , and g�� be as in the lemma. We distinguish three cases:

(1) g�� = ε and Q = QA. QA consists of just the reduce item it = �Start →
Z � , ι� and $ ∈ Follow(QA, it). Thus SelectTrigger returns it , and the parser1230

terminates by accepting g�.
(2) g�� = ε and Q �= QA. There must be a nonempty sequence of reduce moves

leading to SA � g�. Any reduce item it ∈ Q with $ ∈ Follow(Q, it) causes
such a successful sequence. The procedure, therefore, returns such an item
it . It cannot return a transition because no successful sequence caused by1235

a transition can process the empty graph.

(3) g�� �= ε. There is a successful sequence since

S � g� |=∗ SA � g�g��, (55)

which contains at least one shift move. Let f be the literal processed

by the first shift move in this particular sequence (55). Then fτ,g�

Q (f) ∈
Follow(Q, tj) where tj is the transition causing sequence (55). Therefore,
the procedure will return a trigger, although not necessarily tj . Let ti be
the first trigger in t1, . . . , tn such that there is a literal e in g�� with

fτ,g�

Q (e) ∈ Follow(Q, ti). (56)

We can conclude that no trigger tj with j < i can cause a successful sequence
that processes g�� because its first shift move cannot process any literal of
g��. We can also conclude that

fτ,g�

Q (e) /∈ Follow∗(Q, tj) (57)

for every j > i by the construction of sequence t1, . . . , tn. Assume that ti
does not trigger the “right” move, but any trigger tj with j > i. But (57)
yields that literal e cannot be processed by any successful sequence caused
by tj , contradicting (55). Hence, ti must cause a successful sequence s that1240

processes g�� entirely. If ti is a reduce item, s has the form (53). Otherwise,

ti is a transition. (56) has shown that any literal e� with fτ,g�

Q (e�) = fτ,g�

Q (e)
can be processed in a successful sequence caused by ti, and we know by (55)

52

and by ti being the “right” choice, that s has the form (54) for at least one
of these literals e�.9 �1245

SelectTrigger can now be used to predict the next move in every configuration
reachable by the ASR parser. This leads to the predictive shift-reduce (PSR)
parser, the main notion proposed in this paper, which is in fact the ASR parser
equipped with SelectTrigger for deterministically selecting the next move:

Definition 9.7 (PSR Parser). A (PSR parser) configuration S � g|r is an1250

ASR parser configuration S � g together with a rest graph r ∈ GT . S � g|r is
accepting if r = ε and S � g is an accepting ASR parser configuration.

A PSR move turns S � g|r into S � � g�|r�, written S � g|r |= S � � g�|r�, if
SelectTrigger(Q, τ, g, r) returns trigger t, S � g ✤✤

t
S � � g� is an ASR move,

and gr �� g�r�.1255

A PSR parser configuration S � g�|g�� is reachable if Qι
0 � ε, g |=∗ S � g�|g��. A

PSR parser accepts a graph g ∈ GT if there is a reachable accepting configuration
S � g|ε.

Theorem 9.8. Let g ∈ GT . The PSR parser accepts g if and only if Z =⇒
rm

∗ g.

Moreover, in every step the trigger used to select the next move of the PSR1260

parser is uniquely determined by the current configuration.

Proof. The first part of the theorem is an immediate consequence of Thm. 8.6
and Lemma 9.6. SelectTrigger chooses the trigger that causes the next move
taken by the PSR parser in a deterministic way, yielding the second part of the
theorem. �1265

Note, however, that the parser is still nondeterministic, despite the fact
that it chooses the trigger causing the next parser move for every configuration
deterministically. The reason is that a transition, if it is chosen as a trigger,
does not uniquely determine the literal to be processed by the shift move to be
made. For instance, the ASR parser moves shown in Fig. 15, which are also1270

valid PSR parser moves, choose edge e12 in the third move, but could have
chosen e13 instead, keeping e12 for later. There are thus two different sequences
of parser moves that both prove the validity of the given input graph, i.e., the
PSR parser is nondeterministic. However, this nondeterminism is harmless as
it does not make a difference when it comes to acceptance.1275

The Grappa tool implemented by the author Mark Minas generates PSR
parsers based on the construction of the dCFA and the analysis of the three cri-
teria outlined above. Table 1 summarizes test results for some HR grammars.
The columns under “Grammar” indicate the size of the grammar in terms of

9When we further assume that the grammar has the free edge choice property [12], s has

the form (54) for every literal e� with fτ,g�
Q (e�) = fτ,g�

Q (e). A discussion of this property is

out of scope of the present paper, however.

53

the maximal arity of nonterminals (A), number of nonterminals (N), number of1280

terminals (T) and number of rules (R). The columns under “dCFA” indicate
the size of the generated dCFA in terms of the number of states (S), the overall
number of items (P) and the number of transitions (T). The number of conflict-
ing sets in the dCFA is shown in the column “Conflicts”. Note that the PSR
parser can successfully be generated for the grammars without any conflicts.1285

For the others, the parser generator fails with a message pointing out that the
grammar is not conflict-free. We refer the reader to [24, Sect. 6] for runtime
measurements of PSR parsers that confirm that it runs in linear time, for all
practical purposes.

Table 1: Test results of some HR grammars.

Grammar dCFA ConflictsExample

A N T R S P T

Persuade (Example 2.8) 4 1 3 5 9 36 20 –
Trees (Example 4.2) 1 2 1 3 4 10 4 –
anbncn [12] 4 3 3 5 14 22 14 –
Nassi-Shneiderman
diagrams [30]

4 3 3 6 12 78 59 –

Palindromes (Cor. 10.5) 2 2 2 7 12 32 19 –
Arithmetic expressions 2 4 5 7 12 34 22 –
Series-parallel graphs 2 2 1 4 7 63 32 3
Flowcharts (Example 7.14) 2 3 4 6 14 75 50 4

10. Comparison with String Parsing and Top-Down Graph Parsing1290

PSR parsing can be compared with SLR(1) string parsing if we represent
strings as graphs, and context-free string grammars as HR grammars.

The chain graph w• of a string w = a1 · · · an ∈ A∗ (of length n ≥ 0) consists
of n edge literals ai(xi−1, xi) over n+ 1 distinct nodes x0, . . . , xn. (The empty
string ε is represented by an isolated node.)1295

The HR rule of a context-free rule A → α (where A ∈ N and α ∈ Σ∗) is
A• → α•. For the purpose of this section, we represent an ε-rule A → ε by a
rule that maps both nodes of A• to the only node in ε•. Such rules are called
“merging” in [12].

For technical simplicity, our definition of hyperedge replacement does not1300

include merging rules. However, while context-free grammars and HR grammars
can be cleaned, i.e., transformed into equivalent grammars with neither ε-rules
nor merging rules, this process may destroy their SLL(1) and PTD property,
respectively. Thus, for the sake of generality it is useful to deal with such
grammars as they are.1305

Definition 10.1 (Chain Graph Grammar). The chain graph grammar of a
context-free grammar G with a finite set P of rules and a start symbol Z is the

54

HR grammar G• = (Σ, T ,P•, Z �) with the rules P• = {Z �() → Z•)} ∪ {A• →
α• | (A → α) ∈ P}, where Z � ∈ N does not occur in P.

It is easy to see that the HR language of G• is L(G•) = {w• | w ∈ L(G)}.1310

For the discussion of generative power, let SLR•(1) denote the chain graph
grammars of SLR(1) string grammars, and PSR• the class of PSR chain graph
grammars. The following can easily be shown by inspection of the automata of
string and HR grammars.

Proposition 10.2. For every SLR(1) grammar G without ε-rules, G• ∈ PSR•.1315

In recent work [12], the authors have lifted simple deterministic top-down
string parsing using one symbol of lookahead, known as SLL(1) parsing, to
predictive top-down parsing (PTD) for HR grammars. Let SLL•(1) denote the
chain graph HR grammars of SLL(1)-parsable string grammars, and PTD• the
class of PTD chain graph grammars. The following relation has been established1320

in that paper:

Theorem 10.3 ([12, Thm. 2]). SLL•(1) ⊆ PTD•.

A recent result of [23] concerning SLL(1) and SLR(1) string grammars allows
to establish a relation between SLL•(1) and SLR•(1) chain graph grammars.

Theorem 10.4. The cleaned version of a grammar in SLL•(1) is in PSR•.1325

Proof. By [23, Thm. 7] the cleaned version G̃ of a grammar G ∈ SLL(1) is in
SLR(1). It is easy to check that the cleaned version of G• coincides with G̃•.
Since G̃ is SLR(1), Prop. 10.2 establishes that G̃• ∈ PSR•. �

The grammar classes PTD• and PSR• are strictly more powerful than
SLR•(1).1330

Corollary 10.5. There are chain graph languages that cannot be generated by
any SLR•(1) grammar, but have grammars in both PTD• and PSR•.

Proof. The language of palindromes over V = {a, b}, i.e., all strings reading
the same backward as forward, can be generated by the unambiguous grammar
G with rules Z → P and P → a | aa | aPa | b | bb | bPb. Since the language1335

cannot be recognized by a deterministic stack automaton [33, Prop. 5.10], this
language neither has an LL(k) parser, nor an LR(k) parser. However, G ∈ PTD•

by [12, Theorem 2] and G ∈ PSR•, see Table 1. �

Fig. 16 summarizes the relations between HR chain graph grammars. We con-
jecture that Thm. 10.4 can be lifted to the general case, along the lines of the1340

proof of [23, Thm. 7], but this will be rather tedious, as it involves many details
of the construction of PTD and PSR parsers. The “proof” of this result given
in [14], where it was formulated as Theorem 1, is wrong.

55

PTD PSR

PTD• PSR•

SLL•(1) SLR•(1)

Cor. 10.5Thm. 10.3

Thm. 10.4

Cor. 10.5 Prop. 10.2

future work

Figure 16: Relation of HR chain graph grammars (solid arrows indicate proper inclusions)

11. Conclusions

We have devised a predictive shift-reduce (PSR) parsing algorithm for HR1345

grammars, along the lines of SLR(1) string parsing, thus continuing the work
begun in [14] by formalizing the construction of PSR parsers and proving its
correctness. For chain graphs, PSR has greater generative power than SLR(1)
and predictive top-down (PTD) parsing [12]. Checking PSR-parsability is com-
plicated enough, but easier than for PTD, as we do not need to consider HR1350

rules that merge nodes of their left-hand sides. PSR parsers also work more
efficiently than PTD parsers: while PTD parsers require quadratic time in the
worst case, PSR parsers run in linear time for all practical purposes. The reader
is encouraged to download the Grappa generator of PTD and PSR parsers and
to conduct own experiments.91355

Related Work

Much related work on graph parsing has been done for graph grammars
based on context-free node replacement [16]. In these grammars, a node v is
replaced by a graph R, where embedding instructions specify what happens to
the edges incident in v; in general, such an edge can just be deleted, or turned1360

around, or replicated and directed towards different nodes of R. Node replace-
ment has greater generative power, but is difficult to handle for general embed-
ding instructions. So papers on parsing for node replacement graph grammars
restrict these instructions. The earliest ones (to our knowledge), by T. Pavlides,
T.W. Pratt, and P. Della Vigna and C. Ghezzi, [31, 32, 7], appeared well before1365

visual user interfaces supported input and processing of diagrams by comput-
ers. R. Franck [20] has extended precedence string parsing to graphs, in order
to implement a “two-dimensional programming language” based on Algol-68.
W. Kaul corrected and extended this idea of parsing [25]. This parser is linear,
and can cope with ambiguous grammars, but fails to parse some languages that1370

are both PSR- and PTD-parsable languages, like the trees of Example 4.2.

9The Grappa tool is available at www.unibw.de/inf2/grappa; the examples mentioned in
Table 1 can be found there as well.

56

A parsing algorithm following the idea of the well-known Cocke-Younger-
Kasami algorithm was proposed and investigated by C. Lautemann [27] who
gave a sufficient condition under which this algorithm is polynomial. However,
even if the condition is met, the degree of the polynomial depends on the gram-1375

mar. The algorithm was recently refined by D. Chiang et al. [4], making it
more practical but without changing its general characteristics. An alternative
algorithm developed by W. Vogler in [34] and generalized by F. Drewes in [9]
guarantees a cubic running time at the expense of employing a very strong con-
nectedness requirement. Due to this requirement it seems fair to say that this al-1380

gorithm is mainly of theoretical interest. A promising approach for certain types
of applications, especially for graph languages appearing in computational lin-
guistics, has recently been proposed by S. Gilroy, A. Lopez, and S. Maneth [21].
This parsing algorithm applies to Courcelle’s “regular” graph grammars [6] and
runs in linear time.1385

Over the years, M. Flasiński and his group have developed top-down and
bottom-up parsing techniques for pattern recognition [17, 18, 19]. The graph
classes they consider are very restricted: rooted directed acyclic graphs with
ordered nodes. Their parsers are also linear, but this is achieved by forbidding
all concepts that make graph parsing essentially different from string parsing.1390

According to our knowledge, another early attempt at LR-like graph parsers by
H.J. Ludwigs [29] has never been completed.

G. Costagliola’s positional grammars [5] are used to specify visual languages,
but they can also describe certain HR languages. Although they are parsed in
an LR-like fashion, many decisions are deferred until the parser is actually exe-1395

cuted, in order to avoid complex analyzes of the grammar when the parsers are
generated. In contrast, the PSR parser generator implemented in the Grappa
tool performs an elaborate static analysis of the grammar. It includes the de-
tection of conflicts that prevent the parser from running into situations where,
despite the use of a dCFA, a nondeterministic choice must be made (i.e., back-1400

tracking must be employed). It also checks and makes use of other properties,
such as the so-called free-edge-choice property, and the existence of uniquely
determined start nodes. As mentioned before, the precise formalization and
discussion of these analysis techniques will be presented in a follow-up paper.

The CYK-style parsers for unrestricted HR grammars (plus edge-embedding1405

rules) implemented in DiaGen [30] work for practical input with hundreds of
nodes and edges, although their worst-case complexity is exponential. A closer
comparison to PTD and PSR parsers shows its limits with larger input [24,
Sect. 6].

Future Work1410

Like PTD parsing, PSR parsing can be lifted to contextual HR grammars [10,
11], a class of graph grammars that is more relevant for the practical definition
of graph languages. This is another part of future work.

A still open challenge is to find a HR (or contextual HR) language that
has a PSR parser, but no PTD parser. The corresponding example for LL(k)1415

and LR(k) string languages exploits that strings are always parsed from left to

57

right—the palindrome example shows that this is not the case for PTD and
PSR parsers. Another challenge concerning generative power has already been
mentioned in Sect. 10: we are working on a theorem relating the generative
power of PTD-parsable and PSR-parsable HR grammars, as it is indicated by1420

the dashed arrow in Fig. 16 above.

References

[1] IJ.J. Aalbersberg, Andrzej Ehrenfeucht, and Grzegorz Rozenberg. On the
membership problem for regular DNLC grammars. Discrete Applied Math-
ematics, 13:79–85, 1986.1425

[2] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation,
and Compiling, volume I: Parsing. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1972.

[3] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Grif-
fitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and1430

Nathan Schneider. Abstract meaning representation for sembanking. In
Proc. 7th Linguistic Annotation Workshop, ACL 2013 Workshop, 2013.

[4] David Chiang, Jacob Andreas, Daniel Bauer, Karl Moritz Hermann, Bevan
Jones, and Kevin Knight. Parsing graphs with hyperedge replacement
grammars. In Proc. 51st Ann. Meeting of the Assoc. for Computational1435

Linguistic (Vol. 1: Long Papers), pages 924–932, 2013.

[5] G. Costagliola, A. De Lucia, S. Orefice, and G. Tortora. A parsing method-
ology for the implementation of visual systems. IEEE Transactions on
Software Engineering, 23:777–799, 1997.

[6] Bruno Courcelle. The monadic second-order logic of graphs V: on closing1440

the gap between definability and recognizability. Theoretical Computer
Science, 80:153–202, 1991.

[7] Pierluigi Della Vigna and Carlo Ghezzi. Context-free graph grammars.
Information and Control, 37(2):207–233, 1978.

[8] Franklin L. DeRemer. Simple LR(k) grammars. Comm. ACM, 14(7):453–1445

460, 1971.

[9] Frank Drewes. Recognising k–connected hypergraphs in cubic time. The-
oretical Computer Science, 109:83–122, 1993.

[10] Frank Drewes and Berthold Hoffmann. Contextual hyperedge replacement.
Acta Informatica, 52:497–524, 2015.1450

[11] Frank Drewes, Berthold Hoffmann, and Mark Minas. Contextual hyperedge
replacement. In Proc. Applications of Graph Transformation with Industrial
Relevance (AGTIVE’11), volume 7233 of LNCS, pages 182–197, 2012.

58

[12] Frank Drewes, Berthold Hoffmann, and Mark Minas. Predictive top-down
parsing for hyperedge replacement grammars. In Proc. 8th Intl. Conf. on1455

Graph Transformation (ICGT 2015), volume 9151 of LNCS, pages 19–34,
2015.

[13] Frank Drewes, Berthold Hoffmann, and Mark Minas. Approximating
Parikh images for generating deterministic graph parsers. In Software
Technologies: Applications and Foundations - STAF 2016 Collocated Work-1460

shops: DataMod, GCM, HOFM, MELO, SEMS, VeryComp, Vienna, Aus-
tria, July 4-8, 2016, Revised Selected Papers, volume 9946 of LNCS, pages
112–128, 2016.

[14] Frank Drewes, Berthold Hoffmann, and Mark Minas. Predictive shift-
reduce parsing for hyperedge replacement grammars. In Proc. 8th Intl.1465

Conf. on Graph Transformation (ICGT 2017), volume 10373 of Lecture
Notes in Computer Science, pages 106–122, 2017.

[15] Frank Drewes and Anna Jonsson. Contextual hyperedge replacement gram-
mars for abstract meaning representations. In 13th Intl. Workshop on Tree-
Adjoining Grammar and Related Formalisms (TAG+13), pages 102–111,1470

2017.

[16] Joost Engelfriet and Grzegorz Rozenberg. Node replacement graph gram-
mars. In Grzegorz Rozenberg, editor, Handbook of Graph Grammars and
Computing by Graph Transformation. Vol. I: Foundations, chapter 1, pages
1–94. World Scientific, Singapore, 1997.1475

[17] Mariusz Flasiński. Characteristics of edNLC-graph grammar for syntactic
pattern recognition. Computer Vision, Graphics, and Image Processing,
47(1):1–21, 1989.

[18] Mariusz Flasiński. Power properties of NLC graph grammars with a poly-
nomial membership problem. Theor. Comput. Sci., 201(1-2):189–231, 1998.1480

[19] Mariusz Flasiński and Zofia Flasińska. Characteristics of bottom-up
parsable edNLC graph languages for syntactic pattern recognition. In
Leszek J. Chmielewski, Ryszard Kozera, Bok-Suk Shin, and Konrad W.
Wojciechowski, editors, Computer Vision and Graphics - International
Conference, ICCVG 2014, Warsaw, Poland, September 15-17, 2014. Pro-1485

ceedings, volume 8671 of Lecture Notes in Computer Science, pages 195–
202. Springer, 2014.

[20] Reinhold Franck. A class of linearly parsable graph grammars. Acta Infor-
matica, 10(2):175–201, 1978.

[21] S. Gilroy, A. Lopez, and S. Maneth. Parsing graphs with regular graph1490

grammars. In Proc. 6th Joint Conf. on Lexical and Computational Seman-
tics (*SEM 2017), pages 199–208, 2017.

59

[22] Annegret Habel. Hyperedge Replacement: Grammars and Languages, vol-
ume 643 of LNCS. 1992.

[23] Berthold Hoffmann. Cleaned SLL(1) grammars are SLR(1). Technical1495

Report 17-1, Studiengang Informatik, Universität Bremen, 2017. http:

//www.informatik.uni-bremen.de/~hof/papers/sllr.pdf.

[24] Berthold Hoffmann and Mark Minas. Generating efficient predictive shift-
reduce parsers for hyperedge replacement grammars. In Proc. 8th Inter-
national Workshop on Graph Computation Models (GCM 2017), Satellite1500

of ICGT 2017, 2017. Appears in vol. 10748 of Lecture Notes of Computer
Science.

[25] Manfred Kaul. Practical applications of precedence graph grammars. In
Hartmut Ehrig, Manfred Nagl, Grzegorz Rozenberg, and Azriel Rosenfeld,
editors, Graph-Grammars and Their Application to Computer Science, vol-1505

ume 291 of LNCS, pages 326–342, 1986.

[26] Donald E. Knuth. On the translation of languages from left to right. In-
formation and Control, 8(6):607 – 639, 1965.

[27] Clemens Lautemann. The complexity of graph languages generated by
hyperedge replacement. Acta Informatica, 27:399–421, 1990.1510

[28] Philip M. Lewis II and Richard Edwin Stearns. Syntax-directed transduc-
tion. J. ACM, 15(3):465–488, 1968.

[29] Helmut J. Ludwigs. A LR-like analyzer algorithm for graphs. In Reinhard
Wilhelm, editor, GI - 10. Jahrestagung, Saarbrücken, 30. September - 2.
Oktober 1980, Proceedings, volume 33 of Informatik-Fachberichte, pages1515

321–335, 1980.

[30] Mark Minas. Diagram editing with hypergraph parser support. In Proc.
1997 IEEE Symposium on Visual Languages (VL’97), Capri, Italy, pages
226–233, 1997.

[31] Theodosios Pavlidis. Linear and context-free graph grammars. J. ACM,1520

19(1):11–22, 1972.

[32] Terrence W. Pratt. Pair grammars, graph languages and string-to-graph
translations. Journal of Computer and System Sciences, 5:560–595, 1971.

[33] S. Sippu and E. Soisalon-Soininen. Parsing Theory I: Languages and Pars-
ing, volume 15 of EATCS Monographs in Theoretical Computer Science.1525

1988.

[34] Walter Vogler. Recognizing edge replacement graph languages in cubic
time. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proc. Fourth
Intl. Workshop on Graph Grammars and Their Application to Comp. Sci.,
volume 532 of LNCS, pages 676–687. 1991.1530

60

