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Abstract. We introduce metric temporal description logics
(mTDLs) as combinations of the classical description logic ALC
with (a) LTLbin, an extension of the temporal logic LTL with suc-
cinctly represented intervals, and (b) metric temporal logic MTL, ex-
tending LTLbin with capabilities to quantitatively reason about time
delays. Our main contributions are algorithms and tight complexity
bounds for the satisfiability problem in these mTDLs: For mTDLs
based on (fragments of) LTLbin, we establish complexity bounds
ranging from EXPTIME to 2EXPSPACE. For mTDLs based on (frag-
ments of) MTL interpreted over the naturals, we establish complexity
bounds ranging from EXPSPACE to 2EXPSPACE.

1 Introduction
Classical Description logics (DLs) are fragments of first-order logic
aiming at the representation of and reasoning about knowledge. The
importance of DLs lies in the fact that they are, arguably, the prime
formalism to encode ontologies, e.g., they underpin the web ontology
language OWL 2, the medical ontology SNOMED CT and the the-
saurus of the US national cancer institute. It has been observed that
in many domains where ontologies are used an implicit or explicit
notion of time plays a central role [25]. As an instance, many terms
in the medical domain are described making reference to temporal
patterns; for example, the description of the autoimmune disease di-
abetes must specify that it might lead to glaucoma in the future. On
the other hand, DLs were initially developed with the aim of captur-
ing static knowledge. To address this shortcoming, over the last 20
years a plethora of temporal DLs (TDLs), extensions of DLs with an
explicit temporal component, have been proposed [5, 25].

The most popular approach to constructing TDLs is to combine
classical DLs with temporal logics such as LTL and CTL, and to
provide a two-dimensional product-like semantics [29, 15, 25]–one
dimension for time and the other for DL quantification. Temporal
DLs of this kind support the definition of terms using, e.g., the
temporal operators ‘at the next/previous point’ or ‘somewhere in
the future/past’. As an example, in TDLs based on CTL we can
use ∃has.Diabetes v E3∃develops.Glaucoma to say that ‘a patient
with diabetes may develop glaucoma in the future’. The importance
of TDLs based on LTL and CTL is witnessed by the vast amount
of research conducted on the topic in the last decade; in particu-
lar, TDLs using expressive as well as lightweight DLs, with differ-
ent levels of interaction between the components, have been investi-
gated [31, 7, 25, 13, 17, 8, 18, 19]. Moreover, this sort of TDLs have
been already successfully used in applications, e.g., to describe con-
ceptual models capturing the evolution of databases over time [8].
However, their temporal constructs does not seem to always ade-
quately carter for the needs of ontology designers and users. Indeed,
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temporal primitives such as ‘eventually in the future’ might not be
sufficiently precise for temporal conceptual modeling in an ontol-
ogy. As an instance, in the medical domain ontological modelling
often requires reference to concrete durations. Consider, for exam-
ple, lyme disease: Affected patients develop a rash within 3-32 days
after the infection. Since the infection can only occur after exposure
to ticks, the concrete temporal interval of 3-32 days can be used to
rule out lyme disease as a cause of rash.

Observe that, although it is possible to express eventuality within
an interval by ‘unfolding’ all the timepoints represented in an in-
terval, allowing intervals in the language with end-points in bi-
nary would result in an exponentially more succinct statement.
For instance, for expressing that a patient “develops a rash even-
tually within 3-32 days”, in TDLs based on plain LTL, the ontol-
ogy designer has to write #3(∃has.Rash) t . . . t#32(∃has.Rash),
whereas the same can be expressed elegantly, and more succinctly
by 3[3,32]∃has.Rash in the logics studied in this paper. Despite the
need of this feature, TDLs based on temporal logics succinctly cap-
turing time intervals (to the best of our knowledge) have not yet been
considered in the literature. It is important to note that TDLs based
on Halpern and Shoham’s (HS) interval logic of Allen’s relations
have been recently investigated [3, 9]. However, these TDLs are or-
thogonal to the ones investigated here because they are interval-based
logics, i.e., intervals (instead of time points) are the basic time units.

The purpose of this paper is to initiate the study of metric TDLs
(mTDLs) allowing for quantitative temporal reasoning. In particu-
lar, we are interested in TDLs merging qualitative temporal asser-
tions together with quantitative constraints so as to get the benefits
of the qualitative and quantitative abstraction levels. To this end, we
consider TDLs based on (a) LTLbin, the extension of LTL with suc-
cinctly represented intervals, and (b) the real-time metric temporal
logic MTL, extending LTLbin with capabilities to quantitatively rea-
son about time delays. We look at TDLs that might prove useful for
applications: we consider the traditional DL ALC, make the (most-
general) constant domain assumption, and apply temporal operators
to concepts and, in the second part of the paper, to TBox statements.
We do not apply temporal operators to roles since this typically leads
to undecidability [25]. Our main contributions are algorithms for the
satisfiability problem and complexity bounds.

Our study starts with mTDLs based on LTLbin and temporal op-
erators applied only to concepts. For example, in LTLbin

ALC we can
use

∃exposedTo.Tick v 2[3,32](∃has.Rash→ ♦[0,3]∃gets.LymeDTest)

to say that ‘persons exposed to ticks whom develop a rash within 3-
32 days after that must be tested for Lyme disease within three days.’

We have argued above that LTLbin
ALC is not more expressive than

LTLALC ; however, the (exponential!) translation does not give tight
complexity bounds. More specifically, the translation yields a 2EX-



propositional combined with ALC combined with ALC
temporal operators on concepts temporal operators on concepts and TBoxes

LTL PSPACE [30] EXPTIME [25] EXPSPACE [15]
LTLbin EXPSPACE [1] EXPSPACE [Thm. 1] 2EXPSPACE [Thm. 5]
LTL0,∞ PSPACE [24] EXPTIME [Thm. 2] EXPSPACE [Thm. 7]
MTL EXPSPACE [1] 2EXPSPACE [Thm. 3] 2EXPSPACE [Thm. 6]
MTL0,∞ PSPACE [24] EXPSPACE [Thm. 4] EXPSPACE [Thm. 8]

Table 1: Overview of previous and new complexity results.

PTIME upper bound because satisfiability in LTLALC can be done
in EXPTIME [25]. In contrast, in our first main result, we develop
an algorithm based on quasimodels in order to obtain EXPSPACE-
completeness for satisfiability in LTLbin

ALC . Recall that satisfiability in
LTLbin is also EXPSPACE-complete [1], thus, the combination with
ALC is “for free.”

As the next step, we consider as temporal component metric tem-
poral logic MTL [23], which extends LTLbin by explicitly associating
to each state a timestamp, allowing then for quantitative reasoning of
time-delays. MTL has been intensively studied in the last 20 years;
in particular, different semantics, syntactic restrictions and underly-
ing time domains have been considered, for an overview see [27]. We
will consider here MTL over the naturals with so-called pointwise se-
mantics. Under this semantics we can see states as observations, say
of a real-time system, that have an explicit discrete timestamp and
consequently think of the time difference between two consecutive
observations as a time-delay. For example, in MTLALC we use

PhDStudent u ¬∃pays.Fees v #[1,3](∃gets.Reminder u
(♦[0,7]∃pays.Fees t (¬∃access.Lab U[7,∞)∃pays.Fees))

to express that, if the system observes that a PhD student has not paid
the fees, then it should issue a reminder in the next system cycle (that
is, observation) which is necessarily occurring within the next three
time units; moreover, the student then should pay the fees within
seven time units (for example days) or she does not have access to
the lab until she pays.

Based on the aforementioned result for LTLbin
ALC and the limited

interaction of the dimensions, one could conjecture that the com-
plexity of MTLALC is not higher than that of the components, and
therefore EXPSPACE-complete. Surprisingly, we show that this is not
the case by establishing a 2EXPSPACE lower bound, which is later
shown to be tight.

We then turn our attention to the case where temporal opera-
tors are additionally applied to TBoxes. As for the basic case, we
start by looking at LTLbin

ALC . Most interestingly, it can be shown
that the aforementioned 2EXPSPACE-hardness result can be lifted
to LTLbin

ALC temporal TBox satisfiabilty. Matching upper bounds for
LTLbin

ALC and MTLALC follow from the translation to the qualitative
case LTLALC , where TBox satisifiability is known to be EXPSPACE-
complete [25].

Based on similar observations for the propositional case [24], we
finally looked at the restrictions LTL0,∞

ALC and MTL0,∞
ALC where in-

tervals are only of the form [0, c] or [c,∞]. This is still expressive
enough to succinctly model, for instance, time limits. We show that,
indeed, the quasimodel technique can be leveraged to show that this
leads to better complexity in many cases.

An overview of existing and new results is given in Table 1.

Missing proofs are provided in an extended version, available
at www.informatik.uni-bremen.de/tdki/research/papers/GJO16.pdf.

2 Preliminaries

Intervals. We use standard notation for (open and closed) intervals,
e.g., [c1, c2) is the set of all n ∈ N with c1 ≤ n < c2. It is thus clear
what is meant with n ∈ I and I ⊆ I ′ for intervals I, I ′.

LTLbin
ALC syntax. LTLbin

ALC is a TDL based on LTL and the classical
DL ALC. Let NC and NR be countably infinite sets of concept and
role names, respectively. LTLbin

ALC-conceptsC,D are formed accord-
ing to the rule:

C,D ::= A | ¬C | C uD | ∃r.C | #C | CUID

where A ∈ NC, r ∈ NR, and I is an interval of the form [c1, c2] or
[c1,∞) with c1, c2 ∈ N given in binary. We use standard Boolean
and temporal abbreviations: C t D, ∀r.C, >, ♦IC, and 2IC for
¬(¬C u¬D), ¬∃r.¬C, At¬A,>UIC, and ¬♦I¬C, respectively.
We omit intervals of the form [0,∞) and write CUD instead of
CU[0,∞)D, and use the subscript ·c to refer to intervals of the form
[c, c].

An LTLbin
ALC TBox is a finite set of concept inclusions (CIs) C v

D with C,D LTLbin
ALC-concepts. We use C ≡ D to refer to the two

concept inclusions C v D and D v C. The size of a TBox T (a
concept C) is the number of symbols required to write T (C).

LTLbin
ALC semantics. The semantics of LTLbin

ALC is given in terms of
interpretations, that is, structures I = (∆I, (In)n∈N), where each
In is a classical DL interpretation with domain ∆I: we have AIn ⊆
∆I and rIn ⊆ ∆I×∆I. We usually write AI,n and rI,n instead of
AIn and rIn , respectively. For instance, d ∈ AI,n means that in the
interpretation I, the object d is an instance of the concept name A
at time point n. The stipulation that all time points share the same
domain ∆I is called the constant domain assumption (meaning that
objects are not created or destroyed over time), and it is the most
general choice in the sense that increasing, decreasing, and varying
domains can all be reduced to it [15].

We now define the semantics of LTLbin
ALC-concepts. To this end, we

extend the mapping ·I,n from concept names to complex LTLbin
ALC-

concepts as follows:

(¬C)I,n = ∆I \ CI,n,

(C uD)I,n = CI,n ∩DI,n,

(∃r.C)I,n = {d ∈ ∆I | ∃e ∈ CI,n with (d, e) ∈ rI,n},
(#C)I,n = {d ∈ ∆I | d ∈ CI,n+1},

(CUID)I,n = {d ∈ ∆I | ∃k > n : d ∈ DI,k ∧ k − n ∈ I
∧∀m ∈ (n, k) : d ∈ CI,m}.

An interpretation I is a model of a concept C if CI,0 6= ∅; it is a
model of a CI C v D, written I |= C v D, if CI,n ⊆ DI,n, for all
n ∈ N. We call I a model of a TBox T , written I |= T , if I |= α
for all α ∈ T . Note that TBoxes are interpreted globally in the sense
that all CIs must be satisfied at every time point.



Reasoning problem. We are interested in the reasoning problem of
satisfiability relative to global TBoxes (throughout the paper only
called satisfiability), that is, given an LTLbin

ALC-concept C and TBox
T , decide whether C and T have a common model.

Sequences. Throughout the paper we use sequences with the follow-
ing notation. For a (possibly infinite) sequence σ = σ(0)σ(1) . . .,
we write σ≤n and σ>n for the head σ(0)σ(1) . . . σ(n) and tail
σ(n + 1)σ(n + 2) . . . of σ, respectively. We also write σ>i,≤j for
the subsequence σ(i+ 1) . . . σ(j) of σ. For a finite sequence σ1 and
a sequence σ2, we denote with σ1 ∗ σ2, or just σ1σ2 if no confu-
sion is possible, the concatenation of σ1 and σ2. As usual, we define
σ1 = σ, σn+1 = σσn and σω = σσσ . . ..

3 LTLbin
ALC

We aim at devising algorithms and establishing tight complexity
bounds for the satisifiability problem. We first concentrate on de-
veloping an algorithm for satisfiability in LTLbin

ALC , yielding a tight
EXPSPACE upper bound. The lower bound is a consequence of the
following: (i) allowing the abbreviation #n (meaning n consecutive
‘next’ operators) with n encoded in binary in LTL makes satisfiabil-
ity checking EXPSPACE-hard [1, 2] and (ii) #n can be expressed in
LTLbin

ALC with ♦n.
In the second part of this section, we show that satisfiability in

the restriction LTL0,∞
ALC of LTLbin

ALC to intervals of the form [0, c] or
[c,∞) is complexity-wise better-behaved. In particular, it is EXP-
TIME-complete and thus not harder than in ALC.

The main structure underlying our decision procedure are so-
called quasimodels, which have been used for studying the satisfi-
ability in various TDLs [31, 15, 7, 17]. In a nutshell, a quasimodel
is an abstraction of an interpretation I = (∆I, (In)n∈N) in which
each (possibly infinite) In is replaced by a quasistate, that is, a finite
set of types.

We show that quasimodels exhibit a monotonic behavior and apply
regularity arguments to show membership in EXPSPACE and EXP-
TIME, respectively. We show that to check satisfiability it suffices to
consider quasimodels of the form:

S(0)S(1) . . . S(n)ω, (1)

with S(i) ⊇ S(i + 1), for all 0 ≤ i < n, and n double- and
single-exponentially bounded in the size of C and T for LTLbin

ALC
and LTL0,∞

ALC , respectively.
Note that a similar regularity condition holds for LTL in the

sense that every satisfiable LTL formula has a regular model like (1)
(with S(i) propositional valuations) [26]. The main difference is
that n is exponentially-bounded (satisfiability is thus PSPACE) and
that a larger suffix could be the regular part repeating infinitely; in
LTLbin

ALC , due to monotonicity, S(n) is the only periodic set.
Throughout the section, we assume without loss of generality that

the TBox T is of the form {> v CT } and denote with sub(C, T )
the set of all subconcepts of C and CT .

3.1 Full LTLbin
ALC

We start with introducing some required notation. Denote with
cl(C, T ) the closure under single negations of the set:

sub(C, T ) ∪ {DUE | DU[c,∞)E ∈ sub(C, T )}. (‡)

As usual, a type for C and T is a subset t ⊆ cl(C, T ) such that:

• D ∈ t iff ¬D 6∈ t, for all ¬D ∈ cl(C, T );
• D u E ∈ t iff {D,E} ⊆ t, for all D u E ∈ cl(C, T );
• CT ∈ t.

We will use tp(C, T ) to denote the set of all types for C and T and
]C,T to denote the number of types, |tp(C, T )|.

We now describe a set of types that appropriately abstracts a clas-
sical description logic interpretation In. A quasistate for C and T is
a set Q ⊆ tp(C, T ) of types such that:

• if t ∈ Q and ∃r.D ∈ t, then there is t′ ∈ Q such that {D}∪{¬E |
¬∃r.E ∈ t} ⊆ t′.

We next show how to temporally relate types in different quasistates;
most importantly, regarding how temporal formulas of the form #D
and DUIE are captured. Let t = t(0)t(1) . . . ∈ tp(C, T ) be a (pos-
sibly infinite) sequence of types. We say that t realizes DUIE if
there is m ∈ I such that E ∈ t(m) and, for all 0 < l < m, we have
D ∈ t(l). From here on, we use S = S(0)S(1) . . . to denote an
infinite sequence of quasistates for C and T . A run r = r(0)r(1) . . .
through S is a sequence of types forC and T such that for all n ≥ 0:

(R1) r(n) ∈ S(n);
(R2) #D ∈ r(n) iff D ∈ r(n+ 1), for all #D ∈ cl(C, T );
(R3) DUIE ∈ r(n) iff r≥n realizes DUIE, for all DUIE ∈

cl(C, T ).

Intuitively, a run is a sequence of types which characterizes the tem-
poral evolution of a domain element.

We now have the ingredients to formally define a quasimodel. A
quasimodel forC and T is a pair (S,R) with R a set of runs through
S such that:

(Q1) C ∈ t for some t ∈ S(0); and
(Q2) for all t ∈ S(n), n ≥ 0 there is a run r ∈ R such that r(n) = t.

Intuitively, (Q1) ensures thatC is witnessed at time point 0, and (Q2)
ensures that each type has an appropriate temporal evolution through
the quasimodel. We show in the appendix that concept satisfiability
is characterized by the existence of a quasimodel for C and T :

Lemma 1. There is a model of C and T iff there is a quasimodel for
C and T .

This characterization, however, does not serve yet as the basis of an
algorithm as both S and R are infinite. In the next step, we show
that quasimodels can be assumed to have a certain regular shape.
Henceforth, let K denote the largest constant occurring in C and T
(or 1 if none exist), and let `1 = (]C,T )K+K. We then have the
following normal form of quasimodels.

Lemma 2. There is a quasimodel for C and T iff there is a quasi-
model (S,R) for C and T where S is of the form

S = Sn0
0 . . . S

nm−1
m−1 Sωm

for quasistates S0, . . . , Sm with Si ) Si+1, 0 ≤ i < m, and num-
bers n0, . . . , nm−1 < `1.

The proof of Lemma 2 (cf. appendix) proceeds in two steps. (i) We
first show that we can extend any quasimodel such that a quasistate at
time i+ 1 is contained in the quasistate at time i, that is, Si+1 ⊆ Si,
i ≥ 0. (ii) We then show that if `1 consecutive quasistates coincide,
that is, S(i) = S(i + 1) = . . . = S(i + `1) for some i ≥ 0, then



we can assume that all subsequent quasistates coincide as well, that
is, S(j) = S(i) for all j ≥ i.

Obviously, the (strict!) containment condition on the Si in
Lemma 2 implies that m is at most ]C,T since the S(i) are non-
empty sets of types. Moreover, note that, due to `1, the length of the
initial irregular part of S is double-exponentially bounded in the size
of C and T . Lemmas 1 and 2 give thus rise to the following non-
deterministic procedure for checking concept satisfiability.

1. Non-deterministically choose m < ]C,T non-empty sets of types
S0 ) . . . ) Sm and a sequence n0, . . . , nm−1 of binary numbers
such that ni < `1 for all 0 ≤ i < m.

2. Verify that the sequence S defined as

S = Sn0
0 . . . S

nm−1
m−1 Sωm

can be extended to a quasimodel for C and T , that is, check that:

(a) each Si, 0 ≤ i ≤ m, is a quasistate;

(b) there is a t ∈ S0 with C ∈ t;
(c) for each i ≥ 0 and t ∈ S(i), there is a run r through S such

that r(i) = t.

The procedure is obviously correct (given Lemmas 1 and 2), but in-
volves a non-effective step: in 2(c), infinitely many tests have to be
performed. It thus remains to show how to effectively execute 2(c).
To this end, we show, in Lemma 3, that it suffices to check 2(c) for
all i ≤ ]C,T ·`1, a double exponential number; then, in Lemma 4, we
identify a certain regular form of runs, lending itself to implementa-
tion. For both Lemmas, let S be as in Lemma 2.

Lemma 3. If the condition in 2(c) is satisfied for all i ≤ ]C,T · `1,
then it is satisfied for all i ≥ 0.

Proof. Similar to the proof of (ii) in Lemma 2. o

Lemma 4. If there is a r run through S with r(i) = t, for some
i ≥ 0, then there is a run r′ through S which satisfies r′(i) = t and
is of the shape

r′ = s(0) · · · s(k1) ∗ (s′(0) · · · s′(k2))ω

for types s(0), . . . , s(k1), s′(0), . . . , s′(k2) and k1 ≤ i+ (]C,T )K ,
and k2 ≤ |cl(C, T )| · (]C,T )K .

Proof. We are going to use the following Claim.

Claim. If r is a run through S and r≥p−K,≤p = r≥q−K,≤q for some
p < q, then r′ = r≤p ∗ r>q is a run through S.

Proof of the Claim. We need to show that Conditions (R1) to (R3)
hold for r′. Condition (R1) is an immediate consequence of the
construction of r′ and S. For (R2), we only need to check that
for every #D ∈ cl(C, T ), #D ∈ r′(n) iff D ∈ r′(n + 1), for all
n ≥ 0. This follows from the fact that r(p) = r(q) and r ∈ R.

For (R3), we check concepts of the formDUIE ∈ cl(C, T ). Note
that since r≥p−K,≤p = r≥q−K,≤q , we have r′≥p−K = r≥q−K .
Then, for n ≥ p−K,

DUIE ∈ r′(n) iff r′≥n realizes DUIE.

From now on assume n < p−K. If I = [c1, c2] then, since c1, c2 ∈
[0,K], we cannot exceed p. Then, (R3) holds.

Now, consider I = [c1,∞), where c1 ∈ [0,K]. As r′≥p−K =
r≥q−K , if already r′≥n,≤p realizes DUIE, then DUIE ∈ r′(n).
Otherwise, assume that r′≥n,≤p does not realize DUIE. Then, for
n < p−K, we have thatDUIE ∈ r(n) iffD ∈ r(n), . . . , r(p) and
DUE ∈ r(p) = r′(p).

As r′≤p = r≤p and r′(p) = r(q), we have DUIE ∈ r′(n) iff
D ∈ r′(n), . . . , r′(p) and r′≥p realizesDUE. Then, for n < p−K,
DUIE ∈ r′(n) iff r′≥n realizes DUIE. That is, (R3) holds.

This finishes the proof of the Claim.

An n-sequence of types is just a finite sequence of types
s(0) · · · s(n − 1). For k ∈ N ∪ {∞}, we say that an n-sequence
s(0) · · · s(n − 1) appears k times in r if there are k distinct j ≥ 0
such that r(j + l) = s(l), for all 0 ≤ l < n.

Let r be a run through S with r(i) = t and choose k1 ≥ iminimal
such that every K-sequence appearing in r≥k1 appears infinitely of-
ten. We argue that it is without loss of generality that, between i and
k1, everyK-sequence appears at most once: by the Claim, we can cut
sequences that appear more than once. As there are at most (]C,T )K

such K-sequences, we can assume that k1 ≤ i+ (]C,T )K .
Now, let U be the set of CUID ∈ r(k1) that are not realized in

r≥k1,≤k1+K , and choose n ≥ k1 minimal such that r≥k1,≤k1+K =
r≥n,≤n+K and each CUID ∈ U is realized in r≥k1,<n. Let m1 be
minimal such that r≥k1,≤m1 realizes some DUIE ∈ U . Reasoning
as above using the Claim yields that we can assume without loss of
generality that m1 ≤ k1 + (]C,T )K . Let now m2 > m1 be mini-
mal such that r≥k1,≤m2 realizes two CUID ∈ U . As before, we can
show that without loss of generality m2 ≤ k1 + 2(]C,T )K . Contin-
uing this reasoning, we can conclude that, without loss of generality,
n ≤ k1 + |cl(C, T )| · (]C,T )K .

It is now routine to verify that r′ = r<k1 ∗ (r≥k1,<k2)ω , with
k2 = n− k1, is a run through S. o

We are now in a position to show that the above procedure can be
implemented using only (non-deterministic) exponential space. Ob-
viously, the sets S0, . . . , Sm and the numbers n0, . . . , nm−1 can
be stored in exponential space. Moreover, steps 2(a) and 2(b) can
clearly be checked in exponential space. For 2(c), Lemma 3 implies
that at most ]C,T · ]C,T · `1, that is, double-exponentially many,
pairs (t, i) have to be considered, but only one at a time. Finally,
(the proof of) Lemma 4 enables the following algorithm for check-
ing the existence of a run. First, guess binary numbers k1, k2 as in
Lemma 4; then, guess a run in the form of the lemma. For the latter,
proceed in a “sliding window” fashion: keep K consecutive types
and verify (R1)-(R3) for the first type in the sequence, then drop
that type, guess the next type, and continue. For detecting the loop,
store the sequence r(k1), . . . , r(k1 + K) and verify that it appears
again at r(k1 + k2), . . . , r(k1 + k2 + K) and, moreover, that each
DUIE ∈ r(k1) is realized before k2. We conclude the desired result.

Theorem 1. Satisfiability in LTLbin
ALC is EXPSPACE-complete.

3.2 LTL0,∞
ALC

In this section, we consider LTL0,∞
ALC , a well-behaved, yet expressive,

fragment of LTLbin
ALC in which intervals can only be of the form [0, c]

or [c,∞). This sort of intervals is useful to set maximum (deadline)
points and minimum (initial) ones. For example, the CI

PhDStudent u ∃defends.Thesis v ♦[0,4]∃submits.RevisedThesis

says that ‘PhD students who defend their thesis must submit a revised
version within 4 weeks ’.



We show that allowing intervals of this restricted form does not in-
crease the complexity of satisfiability compared toALC or LTLALC ,
for both of which concept satisfiability is EXPTIME-complete [25].
We concentrate again on the upper bound since EXPTIME-hardness
follows from satisfiability in ALC [12].

Our algorithm relies again on quasimodels; however, we will
slightly adapt the definition of types to address the restricted inter-
vals. As a consequence, it will suffice to consider quasimodels of
the form (1) where n is only single-exponentially bounded, finally
yielding an EXPTIME decision procedure.

We first adapt the notion of a type. Instead of (‡), we define
cl(C, T ) as the closure under single negations of sub(C, T ) ex-
tended with

{DU[0,c]E,DU[c,∞)E | c ∈ [0,K], DUIE ∈ sub(C, T )}.

Based on this, it is straightforward to show that Lemma 2 remains
true for LTL0,∞

ALC .
Note that there are now double-exponentially many types which

typically prohibits an EXPTIME decision procedure based on type
elimination [28]. However, it is easy to see that a type t appearing in
some quasimodel satisfies the following property.

(P) For every DUI1E,DUI2E ∈ cl(C, T ) with I1 ⊆ I2, we have
DUI1E ∈ t implies DUI2E ∈ t.

To see (P), fix some quasimodel (S,R) for C and T and assume that
DUI1E ∈ t for some t ∈ S(n), n ≥ 0. By Condition (Q2), there is
a run r ∈ R such that r(n) = t. As DUI1E ∈ t, by Condition (R3),
r≥n realizes DUI1E. Since I1 ⊆ I2, r≥n also realizes DUI2E. By
Condition (R3) again, DUI2E ∈ r(n).

Thus, it suffices to consider only types that satisfy (P), whose num-
ber ]C,T is bounded by (2 ·K)2|sub(C,T )|, that is, exponential. From
now on assume w.l.o.g. that tp(C, T ) is the set of types in which (P)
holds. The next lemma shows that we can assume that our quasi-
models reach a periodic quasistate after at most exponentially many
quasistates.

Lemma 5. There is a quasimodel for C and T iff there is a quasi-
model (S,R) for C and T of the form

S = S0 . . . Sn−1(Sn)ω,

for quasistates S0, . . . , Sn with Si ) Si+1, 0 ≤ i < n ≤ ]C,T .

The proof proceeds in two steps, as in Lemma 2. In the first step
we modify our quasimodel so that each quasistate at time i + 1 is
contained in the quasistate at time i. But now, in the second step,
we show that if two consecutive quasistates coincide, that is, S(i) =
S(i + 1) for some i ≥ 0, then we can assume that all subsequent
quasistates coincide as well, that is, S(j) = S(i) for all j ≥ i.

Based on Lemma 5, we now present an algorithm that performs
type elimination, similar to what has been done for LTLALC [25].

Define ρ(n) = min{]C,T , n}, for all n ≥ 0, and, moreover, define
an operation “−1” on intervals as follows: [0, c]− 1 = [0, c− 1] and
[c + 1,∞) − 1 = [c,∞), for all c ≥ 0, and [0,∞) − 1 = [0,∞).
We say that types t and t′ are compatible if the following holds:

• #D ∈ t iff D ∈ t′, for all #D ∈ cl(C, T ); and
• DUIE ∈ t iff either (the sequence) t t′ realizes DUIE, or
{D,DUI−1E} ⊆ t′, for all DUIE ∈ cl(C, T ).

The algorithm starts with sets

S0, . . . , Sn−1, Sn

where n = ]C,T and each Si is initially set to tp(C, T ). We then
exhaustively eliminate types t from some Si, 0 ≤ i ≤ n if t violates
one of the following conditions:

(T1) for all ∃r.D ∈ t, there is t′ ∈ Si such that {D} ∪ {¬E |
¬∃r.E ∈ t} ⊆ t′;

(T2) there is t′ ∈ Sρ(i+1) such that t and t′ are compatible;
(T3) if i > 0, there is t′ ∈ Si−1 such that t′ and t are compatible;
(T4) for all DUIE ∈ t, there is k ≥ 0 and a sequence

t1 ∈ Sρ(i+1), . . . , tk ∈ Sρ(i+k)

such that t0 · · · tk (with t0 = t) realizes DUIE, and tl and tl+1

are compatible, for all 0 ≤ l < k.

Before giving details on how to implement the conditions, espe-
cially (T4), we finish the description of the algorithm and show cor-
rectness. The algorithm stops when no further types can be elimi-
nated. It returns ‘satisfiable’ if there is a surviving t ∈ S0 withC ∈ t,
and ‘unsatisfiable’, otherwise.

Lemma 6. The algorithm returns ‘satisfiable’ iff there is a quasi-
model for C and T .

Proof. For (⇒), let S∗0 , . . . , S∗n be the result of the type elimination
procedure. Define (S∗,R) with S∗ = S∗0 . . . S

∗
n−1(S∗n)ω and R as

the set of all sequences r of types such that, for all i ≥ 0:

1. r(i) ∈ S∗(i);
2. r(i) and r(i+ 1) are compatible; and
3. DUIE ∈ r(i) iff r≥i realizes DUIE, for all DUIE ∈ cl(C, T ).

We now argue that (S∗,R) is a quasimodel. By (T1), the sets
S∗0 , . . . , S

∗
n generated by the algorithm are quasistates, so S∗ is a

sequence of quasistates. By assumption, there is t ∈ S∗0 with C ∈ t,
which gives us (Q1). By definition of R, we have that every r ∈ R
is a run through S∗ (see (R1)-(R3)). Then, for (Q2), we only need
to see that for every t ∈ S∗(j) there is r ∈ R such that r(j) = t,
j ∈ N. Let r′ = r≤j be a sequence of types such that all consecutive
types in r′ are compatible and r′(j) = t. By (T3) such sequence ex-
ists. We now extend this run using (T2) and (T4). Assume that there
is no DUIE ∈ r′(j). Then by (T2) there is t′ ∈ S∗(j+ 1) such that
t and t′ are compatible. So we extend r′ with t′. Now assume there
is DUIE ∈ r′(j). By (T4) there is a minimal sequence t0t1 · · · tk
of types that realizes all DUIE ∈ r′(j). We extend r′ with t1. Con-
tinuing with this process one can ensure the existence of an infinite
sequence satisfying all conditions of the sequences in R.

For the other direction (⇐), assume there is a quasimodel, which
is without loss of generality of the form S′ = S′0 . . . S

′
n−1(S′n)ω ,

by Lemma 5. Let S∗0 , . . . , S∗n be the result of the type elimination.
It is routine to verify that S′i ⊆ S∗i , 0 ≤ i ≤ n by showing that
no type in S′i violates (T1)-(T4). Clearly, each type satisfies (T1),
since (S′,R) is a quasimodel. Moreover, conditions (T2)-(T4) are
consequences of the existence of runs through each type.

Observe finally that, by (Q1), there is some t ∈ S′0, thus t ∈ S∗0 ,
with C ∈ t, that is, the algorithm returns ‘satisfiable’. o

It is not hard to see that the algorithm runs in exponential time.
The maintained sets of types have initally exponential size and in ev-
ery step some type is eliminated. Conditions (T1)-(T3) can clearly
be checked in exponential time. Finally, (T4) can be cast as a reach-
ability problem, which can be solved in polynomial time, in the fol-
lowing (exponentially sized) graph: vertices (t, i) for all t ∈ Si and
edges between (t, i) and (t′, ρ(i + 1)) iff t and t′ compatible. We
thus conclude:



Theorem 2. Satisfiability in LTL0,∞
ALC is EXPTIME-complete.

4 MTLALC

In this section, we investigate a TDL that emerges from combining
the real-time logic MTL (over the naturals) and ALC. MTLALC-
concepts are formed according to the following rule

C,D ::= A | ¬C | C uD | ∃r.C | #IC | CUID,

where A ∈ NC, r ∈ NR, and I is an interval.
Note that MTLALC-concepts are formed just like LTLbin

ALC-
concepts except for the constructor #I . The main difference between
LTLbin

ALC and MTLALC lies in their semantics: MTLALC is a timed
extension of LTLbin

ALC , in other words, each interpretation in (In)n∈N
explicitly refers to its time (think of it as the reading of a‘fictitious
discrete clock’) allowing to quantitatively reason about time delays.

Formally, a timed interpretation I is a tuple (∆I, (In)n∈N, τ)
with τ : N → N a mapping with τ(n) < τ(n + 1), for all n ∈ N,
which specifies that the n-th interpretation happens to be at time
point τ(n). Note that there might be gaps between two interpreta-
tions, e.g., when τ(3) = 8 and τ(4) = 10, then there is no inter-
pretation at time point 9. Intuively, we view (In, τ(n))n≥0 as a se-
quence of observations, for instance, in a real-time system, and then
understand the difference τ(n+1)−τ(n) as the time delay between
observations n and n+ 1.

The interpretation function ·I,n is lifted to complex concepts as in
Section 2 for the constructors ¬, u, and ∃r.C. For #I and UI , it is
defined as follows:

(#IC)I,n = {d | d ∈ CI,n+1 ∧ τ(n+ 1)− τ(n) ∈ I},
(CUID)I,n = {d | ∃k > n : d ∈ DI,k∧ τ(k)− τ(n) ∈ I

∧∀m ∈ (n, k) : d ∈ CI,m}.

One could expect that, just like for LTLbin
ALC , the complexity of sat-

isfiability in MTLALC is not higher than in the components; in par-
ticular, EXPSPACE-complete as in MTL [1]. Surprisingly, we prove
that there is an exponential jump in the complexity; the main reason
for such an increase is that, due to slightly different semantics, the
independence of elements in each In is lost.

Theorem 3. Satisfiability in MTLALC is 2EXPSPACE-complete.

We prove here only the lower bound. The upper bound will follow
from a more general result, see Theorem 6 in Section 5.

Proof. We reduce the word problem of a double-exponentially
space-bounded deterministic Turing machine. Fix that TM A =
(Q,Σ,Γ, δ, q0, F ) with δ : Q×Γ→ Q×Γ×{l, r} and assume that
A is 22n

-space bounded on inputs of length n. Let Q′ = Q ∪ {q},
k = |Γ × Q′| + 1 and fix some bijection π : [1, k − 1] → Γ × Q′.
We are going to use the following symbols:

• Tape, to mark the tape cells;
• Aa,q , a ∈ Γ, q ∈ Q′, to label cells with a symbol a and a state q;
q expresses that the head is somewhere else.

Recall that we use the abbreviations 3i and #i instead of 3[i,i] and
#[i,i], and just 3 instead of 3[0,∞). For inputs of length n, we will
construct a TBox Tn, whose basic ingredients are the following con-
cept inclusions:

Tape v 3[0,k]Tape u 2[0,k−1]¬Tape (2)

Tape v #[0,k−1]> (3)

#i> ≡ Aπ(i), for all i ∈ [1, k − 1] (4)

Intuitively, using CI (2), we enforce that every k-th time point is la-
beled with Tape. By CI (3), we express that, if Tape is observed, the
next observation is due within 1 to k − 1 time points, but there is a
choice. Finally, using CI (4), we globally mark all domain elements
in a world, depending on the delay of the next observation, with some
Aa,q , that is, information about state and tape symbol.

It remains to show how to synchronize consecutive configura-
tions. Basically, the technique goes back to the following well-known
lemma [21, Lemma 3.3], which is based on [20, Lemma 4.1] itself.

Lemma 7. For each n ≥ 1, there is a satisfiable formula ϕn in
propositional temporal logic extended with #n, n in binary, of size
O(n), and someM ≥ 0 such that ϕn |= #mp2 iffm = M + j ·2n ·
22n

, for some j ≥ 0.

Using (the proof of) this well-known result, one can define a concept
Cn that satisfies an analogous property, namely

Tn |= Cn v 3mP2 iff m = j · k · 2n · 22n

, for some j.

We use this conceptCn (without giving details on the shape ofCn) to
describe the remaining relevant parts in Tn. We include the following
concept inclusions:

• For a ∈ Γ and q:

Tape uAa,q v ∃r.(Cn u ¬P2U(P2 u t
q′∈Q′

Aa,q′)) (5)

• For a ∈ Γ, q ∈ Q, and δ(q, a) = ( , b, ):

Tape uAa,q v ∃r.(Cn u ¬P2U(P2 uAb,q)) (6)

• For a ∈ Γ, q ∈ Q, and δ(q, a) = (q′, , r):

Tape uAa,q v 3k∃r.(Cn u ¬P2U(P2 ut
b∈Γ

Ab,q′)) (7)

• For a ∈ Γ, q ∈ Q, and δ(q, a) = (q′, , l):

Tape u3kAa,q v ∃r.(Cn u ¬P2U(P2 ut
b∈Γ

Ab,q′)) (8)

Let N = k · 2n · 22n

. Intuitively, CI (5) states that a world labeled
with q is labeled with the same symbol in the next configuration, that
is, N tape cells later. CI (6) ensures that, if a world is labeled with
(a, q), then the corresponding worldN tape cells later is labeled with
b when δ(q, a) = ( , b, ); the corresponding state is q as the head
moves left or right. Finally, CIs (7) and (8) make sure that the head is
moved according to the transition. It remains to ensure that the non-
head worlds are labeled with q. For this, one has to take into account
the environment of a cell, as illustrated by the following CI:

Tape uAa1,q1 u3k(¬P2 uAa2,q2 u3k(¬P2 uAa3,q3))) v

3k∃r.(Cn u ¬P2U(P2 ut
b∈Γ

Ab,q)),

if q1 = q2 = q3 = q or δ(q1, a1) = ( , , l) or δ(q3, a3) = ( , , r).

The remaining cases are similar. In particular, at cells close to the
left or right border of a configuration, it suffices to take a smaller
environment into account.

Now, let w = a1 · · · an be some input word for A. Define a con-
cept Cw by taking:

Cw =Tape u Cn uAa1,q0 u
n−1l

i=1

3ikAai+1,q u

3(n−1)k(A6b,q UP2) u3 t
a∈Γ,q∈F

Aa,q.



Intuitively, Tape ensures a computation is initiated, Cn ensures that
the tape is separated into configurations,Aa1,q0 and the big conjunc-
tion enforces that the input word is written on the tape and A6b,q UP2

ensures that the remaining cells are labeled with blank 6b and are
non-head states. Finally, the last conjunct expresses that a final state
is reachable. Based on the construction, it is not hard to verify the
following claim, which finishes the reduction.

Claim. A accepts w of length n if there is a model of Cw and Tn.
o

4.1 MTL0,∞
ALC

Restricting the intervals to the form [0, c] and [c,∞) leads to bet-
ter complexity also for MTLALC ; however, not to EXPTIME as for
LTL0,∞

ALC . To see this, we sketch here how to adapt the reduction used
in the previous theorem to get an EXPSPACE-lower bound. A match-
ing upper bound follows from Theorem 8 below.

Recall that CIs (2)-(4) provide the central idea of the reduction.
While (2) and (3) are already in MTL0,∞

ALC , we replace (4) with CIs

¬3[0,i]> u
k−1l

l=i+2

¬Aπ(l) v Aπ(i+1), and (9)

Aπ(i) v ¬3[0,i−1]>, (10)

for all 0 ≤ i < k − 1. Intuitively, (9) expresses that if there is a gap
of at least i (realized by ¬3[0,i]>) and all Aπ(l) for l > i+ 1 are not
satisfied, that is, there is no larger gap, conclude Aπ(i+1). Together
with (10), this implies that, again, a unique Aa,q is satisfied for all
domain elements in a world. Note that, as there is a fixed Turing
machine with an EXPSPACE-hard word problem, k is fixed and we
do not require succinct encoding here.

The remainder of the above proof deals with synchronizing infor-
mation between consecutive configurations. While the concept Cn
can certainly not be defined in MTL0,∞

ALC , we can use the succinct in-
tervals to communicate between tape cells that are exponentially far
away. For instance, we can mark everyN = k ·2n-th time point with
a concept name X by X v ♦[0,N ]X u 2[0,N−1]¬X. We thus get:

Theorem 4. Satisfiability in MTL0,∞
ALC is EXPSPACE-complete.

5 Temporal TBoxes
We now take a look at the case where temporal operators can also
be applied to concept inclusions in the TBox, which adds means for
expressing dynamics of global information, e.g., in norms.

5.1 Temporal TBoxes in LTLbin
ALC

Temporal LTLbin
ALC-TBoxes are defined by the following grammar:

ϕ,ψ ::= C v D | ¬ϕ | ϕ ∧ ψ | #ϕ | ϕUIψ,

where C,D are LTLbin
ALC-concepts, I an interval. We define the truth

relation I, n |= ϕ (with I an interpretation and n ∈ N a time point)
by starting with I, n |= C v D iff CI,n ⊆ DI,n, and extending it
to the complex TBox formulas analogously to Section 2; e.g., I, n |=
#ϕ iff I, n+ 1 |= ϕ. I is a model of a temporal LTLbin

ALC-TBox ϕ if
I, 0 |= ϕ.

We are concerned with the problem of temporal TBox satisfiability,
that is, the problem of deciding whether a given temporal TBoxϕ has
a model. Note that, in contrast to Section 3, a concept is not part of the
input because there is a model of a concept C and a temporal TBox
ϕ if and only if the temporal TBox ¬(> v ¬C) ∧ ϕ is satisfiable.

Temporal TBoxes are useful to set the dynamics of protocols or
norms. For example, the temporal LTLbin

ALC-TBox

♦[4,4](PhDStud u ∃defends.Thesis u ¬∃has.ConfPub v
#∃takes.ValidationExam)

says that after 4 years there will be a norm stating that all PhD stu-
dents who defend their thesis and do not have a conference publica-
tion will need to take a validation exam the year after that.

The first result here is that the complexity of temporal TBox satis-
fiability is exponentially higher than for concept satisfiability relative
to global TBoxes; notably, the lower bound is a consequence of The-
orem 3 above.

Theorem 5. Satisfiability of temporal LTLbin
ALC-TBoxes is

2EXPSPACE-complete.

Membership in 2EXPSPACE is a consequence of the follow-
ing: (i) satisfiability of temporal LTLALC-TBoxes is EXPSPACE-
complete [25], and (ii) any LTLbin

ALC temporal TBox can be trans-
lated into an equivalent though exponentially larger LTLALC-TBox,
by expanding the succinctly encoded intervals.

For the lower bound, we reduce the satisfiability problem for
MTLALC , which is 2EXPSPACE-hard cf. Theorem 3. Introduce a
fresh concept name Gap, which intuitively models the “gaps” be-
tween consecutive observations in MTLALC , and define the map ·†
inductively by taking:

A† = A

(¬C)† = ¬(C†)

(C uD)† = C† uD†

(∃r.C)† = ∃r.C†

(#IC)† = GapUI(¬Gap u C†)

(C UID)† = (Gap t C†)UI(¬Gap uD†)

(C v D)† = (¬Gap u C† v D†)

It is routine to verify that:

Lemma 8. An MTLALC-concept C and TBox T are satisfiable iff
the following temporal LTLbin

ALC-TBox is satisfiable:

¬(> v Gap t ¬C†) ∧

2
∧
α∈T

α† ∧ 2(> v Gap ∨ > v ¬Gap) ∧ 23(> v ¬Gap).

5.2 Temporal TBoxes in MTLALC

The syntax of temporal MTLALC-TBoxes is obtained from the syn-
tax of LTLbin

ALC-TBoxes by just replacing #ϕ with #Iϕ. The seman-
tics is adapted accordingly as discussed in Section 4; for instance

I, n |= #Iϕ iff I, n+ 1 |= ϕ and τ(n+ 1)− τ(n) ∈ I.

Theorem 6. Satisfiability of temporal MTLALC-TBoxes is
2EXPSPACE-complete.



The lower bound is inherited from Theorem 3. For the upper bound,
we lift the mapping ·† given in the proof of Theorem 5 to tempo-
ral MTLALC-TBoxes. For a temporal MTLALC-TBox ϕ, define ϕ†

inductively as follows:

(ϕ ∧ ψ)† = ϕ† ∧ ψ†

(¬ϕ)† = ¬(ϕ†)

(#Iϕ)† = (> v Gap)UI(> v ¬Gap ∧ ϕ†)

(ϕUIψ)† = (> v Gap ∨ ϕ†)UI(> v ¬Gap ∧ ψ†)

The following Lemma, which is proved similar to Lemma 8, together
with the fact that satisfiability of temporal LTLbin

ALC-TBoxes can be
checked in 2EXPSPACE concludes the upper bound.

Lemma 9. A temporal MTLALC-TBox ϕ is satisfiable iff ϕ† ∧
2(> v Gap ∨ > v ¬Gap) ∧ 23(> v ¬Gap) is satisfiable.

5.3 Restriction to intervals [0, c], [c,∞)

We have seen in Theorem 2 that the restriction to intervals of the
form [0, c], [c,∞) leads to better complexity in the case of (classical)
satisfiability. We show here that this in fact also applies to temporal
TBoxes. In fact, the observations made in Section 3.2 apply here as
well and it is fairly straightforward to extend it to this more general
setting. The upper bound is then obtained by adapting a strategy that
has been used for monodic first-order temporal logic,QT LU21 in [15,
Theorem 11.30].

Due to this proximity, we sketch only the necessary changes. We
need to extend the definition of a type to reflect the information about
the TBox formulas as follows. For a TBox formula ϕ, denote with
sub(ϕ) the set of all subformulas of ϕ together with all subconcepts
appearing in some of these subformulas; in particular, sub(ϕ) can
contain both a concept inclusion C v D and a concept C. Similar
to Section 3.2, cl(ϕ) is the closure under single negation of sub(ϕ)
extended with the set

{αU[0,c]β, αU[c,∞)β | c ∈ [0,K], αUIβ ∈ sub(ϕ)},

where K is the largest constant in ϕ and α, β could be concepts or
TBox formulae. Now, a type is a subset t ⊆ cl(ϕ) such that:

• α ∈ t iff ¬α 6∈ t, for all ¬α ∈ cl(ϕ);
• ψ ∧ χ ∈ t iff {ψ, χ} ⊆ t, for all ψ ∧ χ ∈ cl(ϕ);
• D u E ∈ t iff {D,E} ⊆ t, for all D u E ∈ cl(ϕ);
• C v D ∈ t and C ∈ t implies D ∈ t.

As argued in Section 3.2, we only need to consider those (exponen-
tially many) types, which satisfy property (P), appropriately lifted to
include TBox formulas. A quasistate for ϕ is a set of types with the
additional requirement that the types agree on the TBox formulas,
that is, ψ ∈ t iff ψ ∈ t′ for types t, t′ in the same quasistate, and
all TBox subformulas ψ. After lifting also the run condition (R3) to
apply to TBox formulas, the notion of a quasimodel remains (almost)
identical: a quasimodel for ϕ is a pair (S,R) such that:

(Q1) ϕ ∈ t for some t ∈ S(0); and
(Q2) for all t ∈ S(n), n ≥ 0 there is a run r ∈ R such that r(n) = t.

As before, the existence of a quasimodel for ϕ characterizes satisfia-
bility of ϕ. Moreover, if there is a quasimodel, then there is a quasi-
model (S,R) of the regular form

S = S(0) . . . S(n− 1)(S(n) . . . S(n+m− 1))ω

with n ≤ ]qsϕ andm ≤ |sub(ϕ)| ·]qsϕ ·(]ϕ)2 +]qsϕ, where ]ϕ and
]qsϕ denote the number of types and quasistates for ϕ, respectively.
Thus, both the length n of the initial part and the length m of the
cycle are double exponentially bounded.

Based on this, one can devise the following algorithm, similar
to [15, Lemma 11.30] and the algorithm for the proof of Theo-
rem 1: guess numbers n, m within the mentioned bounds, and step
by step the sequence S keeping always only two consecutive qua-
sistates. While guessing the sequence, verify on the fly that each
type in S(i) has a compatible type in S(i + 1), and vice versa. At
time point n, store S(n) and continue m more steps until reaching
S(m + n) = S(n). Moreover, verify that all αUIβ appearing in
some type in S(n) are realized on the way to S(n+m). It should be
clear that this can be done in (non-deterministic) exponential-space,
yielding:

Theorem 7. Satisfiability of temporal LTL0,∞
ALC-TBoxes is

EXPSPACE-complete.

As a consequence of Lemma 9, we additionally obtain:

Theorem 8. Satisfiability of temporal MTL0,∞
ALC-TBoxes is

EXPSPACE-complete.

6 Conclusions and Future Work
In this paper, we have launched the study of metric TDLs allowing
for quantitative temporal reasoning, and established a fairly com-
plete landscape of the complexity of satisfiability for LTLbin

ALC and
MTLALC (over the naturals). Most interestingly, we have shown
that the ability to reason explicitly about timestamps of observations
brings additional computational complexity. In particular, the com-
plexity of concept satisfiability is then the same as that of temporal
TBox satisfiability, c.f. Table 1.

As immediate future work, we will investigate TDLs based on
MTL with continuous-semantics (over the reals). For some appli-
cations, the continuous-semantics seems to be more appropriate in
the sense that a real-time system is continuously observed instead of
only when an event or action happens. The change from pointwise
to continuous semantics is not for free since full MTL becomes un-
decidable; however, several decidable fragments have been already
identified [27]. We plan to build on these results and study TDLs
based on decidable fragments of MTL with continuous-semantics.

We will also look at quantitative TDLs in the context of ontology-
based data access (OBDA) [14] over temporal databases. We believe
that the present paper lays important foundations for understand-
ing the combined complexity of the query answering problem with
mTDLs. However, for data complexity, i.e., when only the data is
considered as part of the input, TBoxes with succinctly represented
intervals can be used for free. In this case, an interesting problem is
to consider data timestamped with intervals, succinctly representing
its validity time. In this scenario, it would be fruitful to study restric-
tions of mTDLs based on ‘data-tractable’ DLs such as those in DL-
Lite [4] or EL [11], whose temporal extensions to access temporal
(timestamped) data have been recently investigated [10, 6, 16, 22].
However, none of these works studies interval encoding of times-
tamps.
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A Proofs for Section 3: LTLbin
ALC

We may omit ‘for C and T ’ when we refer to types, quasistates and
quasimodels inside proofs.
Lemma 1. There is a model of C and T iff there is a quasimodel for
C and T .

Proof. (⇒) Assume there is a model I = (∆I, (In)n∈N) of C and
T . We define (S,R) as follows. For n ∈ N:

S(n) = {tpI(n, d) | d ∈ ∆I},

where tpI(n, d) = {D ∈ cl(C, T ) | d ∈ DI,n}. Moreover,
associate a run rd to every domain element d ∈ ∆I by setting
rd(n) = tpI(n, d), n ≥ 0. It is straightforward to show that
(S, {rd | d ∈ ∆I}) is a quasimodel.

(⇐) Assume there is a quasimodel (S,R) for C and T . We define
I = (∆I, (In)n∈N) as follows.

∆I = {dr | r ∈ R}

AI,n = {dr | A ∈ r(n), r ∈ R}

rI,n = {(dr, dr′) | ¬∃e.D ∈ r(n)⇒ ¬D ∈ r′(n)}

To show that I is a model of C and T we prove the following claim.

Claim. For all r ∈ R, D ∈ cl(C, T ), and n ≥ 0, we have,

D ∈ r(n) iff dr ∈ DI,n.

Proof of the Claim. We argue by structural induction. It should be
clear that it holds in case D = A is a concept name. Moreover, the
casesD = ¬D′,D = ∃e.D′ andD = D1uD2 are straightforward.
It remains to consider # and UI .

• Assume D = #D′: we have that #D′ ∈ r(n) iff D′ ∈ r(n+ 1)
(by Condition (R2)) iff dr ∈ D′I,n+1 (by induction) iff dr ∈
(#D′)I,n.

• Assume D = D1UID2: we have that D1UID2 ∈ r(n) iff there
is k > n such that k − n ∈ I , D2 ∈ r(k) and D1 ∈ r(i), for
all n < i < k (by Condition (R3)). By induction, this happens iff
dr ∈ DI,k

2 and dr ∈ DI,i
1 , for all n < i < k, which is equivalent

to dr ∈ (D1UID2)I,n.

From this, we easily get that I is a model of C and T . For the
former, it suffices to note that, by Condition (Q1), C ∈ t for some
t ∈ S(0). By (Q2), there is a run r with r(0) = t; the Claim implies
dr ∈ CI,0. For the latter, we know that each t ∈

⋃
n≥0 S(n) is a

type, so CT ∈ t. By the Claim, dr ∈ CI,n
T for all n ≥ 0. o

Lemma 2. There is a quasimodel for C and T iff there is a quasi-
model (S,R) for C and T such that S is of the form

S = Sn0
0 · · ·S

nm−1
m−1 Sωm

for quasistates S0, . . . , Sm with Si ) Si+1, 0 ≤ i < m, and num-
bers n0, . . . , nm−1 < `1.

Proof. The direction (⇐) is trivial. For verifying (⇒), suppose there
is a quasimodel (S′,R′) with S′ = S′(0)S′(1) . . .. We first con-
struct a quasimodel (S,R) satisfying S(i) ⊇ S(i+ 1), for all i ≥ 0:

S(j) =
⋃
`≥j

S′(`) for all j ≥ 0,

R = {r≥n | r ∈ R′, n ∈ N}.

It is routine to verify that (S,R) is a quasimodel. S is a sequence of
quasistates, since S′ is, and each r ∈ R is a run through S, since it
is already a run through S′ and S extends S′. Property (Q1) holds
for (S,R) as C ∈ t for some t ∈ S′(0) and S′(0) ⊆ S(0). To
verify (Q2), suppose t ∈ S(n), that is, t ∈ S′(n + m) for some
m ≥ 0. Since (S′,R′) is a quasimodel, there is a run r ∈ R′ with
r(n + m) = t. By construction of R, we have r≥m ∈ R which
clearly satisfies r≥m(n) = t.

To complete the proof, it suffices to show that if there is some
i ≥ 0 such that

S(i) = S(i+ 1) = . . . = S(i+ `1),

then there is a set RQ such that (Q,RQ), with Q defined as Q =
S<i ∗ S(i)ω , is a quasimodel for C and T . More precisely, we need
to show for each t ∈ Q(j), j ≥ 0, the existence of a run r through
Q with r(j) = t. If t ∈ S(j), we are done. Otherwise, j > i + `1
and t ∈ S(i+ `1). By (Q2), there is a run r ∈ R with r(i+ `1) = t.
By the choice of `1, there are p, q such that i ≤ p < q ≤ i+ `1 and
r≥p−K,≤p = r≥q−K,≤q .

Claim. For all m > 0, rm defined as rm = r≤p ∗ (r>p,≤q)m ∗ r>q
is a run through Q.

Proof of Claim. In the base case,m = 1 and so rm = r; it remains to
note that a run through S is a run through Q. For the induction step,
suppose that the claim holds for m. We need to show it for m + 1,
that is, we need to show that

rm+1 = r≤p ∗ r>p,≤q ∗ (r>p,≤q)m ∗ r>q (11)

is a run through Q, that is, that Conditions (R1) to (R3) are satisfied.
Condition (R1) is an immediate consequence of the construction of
rm+1 and Q. For (R2), we only need to check that for every #D ∈
cl(C, T ), #D ∈ rm+1(n) iff D ∈ rm+1(n+1), for all n ≥ 0. This
follows from the fact that r(p) = r(q) and r ∈ R.

For (R3), we check concepts of the form DUIE ∈ cl(C, T ).
Observe that, by construction and the assumption r≥p−K,≤p =
r≥q−K,≤q , we have r≥p−Km = r≥q−Km+1 . By induction, rm+1 satis-
fies (R3) for all n ≥ q −K.

Suppose now that n < q−K. If I = [c1, c2] with c1, c2 ∈ [0,K],
then rm+1 satisfies (R3) at n because r≤qm+1 = r≤q and starting
from n < q−K with an interval with maximum c2 ≤ K, we cannot
exceed q.

Finally, consider n < q−K and I = [c1,∞) with c1 ∈ [0,K]. By
construction of rm+1, we have r≥n,≤qm+1 = r≥n,≤q . If already r≥n,≤qm+1

realizes DUIE, then DUIE ∈ rm+1(n). Otherwise, assume that
r≥n,≤qm+1 does not realize DUIE. Then, for n < q −K, we have that
DUIE ∈ r(n) iff D ∈ r(n), . . . , r(q) and DUE ∈ r(q) = r(p) =
rm(p). By induction hypothesis,

DUE ∈ rm(p) iff r≥pm realizes DUE.

Note that r≤qm+1 = r≤q and r≥pm = r≥qm+1. So, DUIE ∈ rm+1(n)

iff D ∈ rm+1(n), . . . , rm+1(q) and r≥qm+1 realizes DUE. Then, for
n < q −K, DUIE ∈ rm+1(n) iff r≥nm+1 realizes DUIE.

This finishes the proof of the Claim.

Recall that r satisfies r(i + `1) = t. To see that there is a run
r′ through Q such that r′(j) = t, we simply choose m sufficiently
large so that y := p + m(q − p) + i + `1 > j. By the Claim, the
choice of m, and r(i+ `1) = t, we know that rm is a run through Q
which satisfies rm(y) = t. Observe finally that r′ := r≥y−jm is also
a run through Q which satisfies r′(j) = t. o



Lemma 5. There is a quasimodel for C and T iff there is a quasi-
model (S,R) for C and T of the form

S = S0 . . . Sn−1(Sn)ω,

for quasistates S0, . . . , Sn with Si ⊇ Si+1, 0 ≤ i < n ≤ ]C,T .

Proof. We need to show that there is a quasimodel for C and T
iff there is a quasimodel (S,R) for C and T such that S =
S(0)S(1) . . . satisfies the following:

(i) S(i) ⊇ S(i+ 1) for all i ≥ 0; and
(ii) if S(i) = S(i+ 1), then S(i) = S(i+ j) for all j ≥ 0.

Point (i) can be shown with the same ideas as in Lemma 2. To
show Point (ii), we modify (S,R) as follows. Let Q = S<i ∗S(i)ω .
Since S is a sequence of quasistates it follows thatQ is a sequence of
quasistates. Also, if r ∈ R is a run through S then r is a run through
Q. We now want to show that there is RQ ⊇ R such that (Q,RQ) is
a quasimodel. If Q = S then RQ = R and we are done. Otherwise
there is t ∈ Q(j), j > i, such that t 6∈ S(j). We need to show that
there is a run r′ through Q such that r′(j) = t.

Assume that S(i) = S(i + 1). If r ∈ R then there are p, q such
that i ≤ p < q ≤ i+]C,T +1 and r(p) = r(q). Note that in contrast
with Lemma 2 here we only need one type that repeats in r.

Claim. For all m > 0, rm defined as rm = r≤p ∗ (r>p,≤q)m ∗ r>q
is a run through Q.

Proof of Claim. We want to show that Conditions (R1) to (R3)
are satisfied. Condition (R1) is an immediate consequence of the
construction of rm and Q. For (R2), we only need to check that
for every #D ∈ cl(C, T ), #D ∈ rm(n) iff D ∈ rm(n + 1), for
all n ≥ 0. This follows from the fact that r(p) = r(q) and r ∈ R.
Finally, we check (R3). We need to check that for every DUIE ∈
cl(C, T ), DUIE ∈ rm(n) iff r≥nm realizes DUIE, for all n ≥
0. By our definition of types and since r ∈ R we have that
for every DUIE ∈ cl(C, T ) and n ≥ 0:

DUIE ∈ r(n)⇔ r≥n realizes DUIE ⇔

E ∈ r(n+ 1) or {D,DUI−1E} ⊆ r(n+ 1).

Then, by the construction of rm, (R3) holds. This finishes the
proof of the Claim.

Recall that r satisfies r(i) = t. To see that there is a run r′ through
Q such that r′(j) = t, where j > i, we simply choosem sufficiently
large so that y := p+m(q−p) + i > j. By the Claim, the choice of
m, and r(i) = t, we know that rm is a run through Q which satisfies
rm(y) = t. Observe finally that r′ := r≥y−jm is also a run through
Q which satisfies r′(j) = t. Since t was an arbitrary type introduced
in Q, this holds for all such types. So there is RQ ⊇ R such that
(Q,RQ) is a quasimodel. o

B Proofs for Section 5

Lemma 8. An MTLALC-concept C and TBox T are satisfiable iff
the following temporal LTLbin

ALC-TBox is satisfiable:

¬(> v Gap t ¬C†) ∧

2
∧
α∈T

α† ∧ 2(> v Gap ∨ > v ¬Gap) ∧ 23(> v ¬Gap).

Proof. We refer with T † to the temporal LTLbin
ALC-TBox in the

Lemma. (⇐) Assume some model I = (∆I, (In)n∈N) of T †. By
the first conjunct, there is some d ∈ ∆I such that d ∈ (¬GapuC)I,0

and thus, by the second conjunct, I, 0 |= > v ¬Gap. Set τ(0) = 0
and define τ(i+ 1) inductively to be the minimal k > τ(i) such that
I, k |= > v ¬Gap; note that the existence of such a k is guaranteed
by the last conjunct of T †. Moreover, defineJi = Iτ(i) for all i ≥ 0.
It is routine to verify that J = (∆I, (Jn)n∈N, τ) is a model of C and
T .

(⇒) Assume some model I = (∆I, τ) of C and T , where I =

(∆I, (In)n≥0). Let I′i the extension of Ii that interprets GapI
′
i = ∅

and let I∅ the interpretation that interprets everything empty, except
GapI∅ = ∆I. Define a sequence of interpretations J0,J1, . . . as
follows.

Jj =

{
I′i if j = τ(i),

I∅ otherwise
for all j ≥ 0.

It is routine to verify that (∆I, (Jn)n∈N) is a model of T †. o
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