PSPACE Bounds for Rank 1 Modal Logics

Lutz Schröder and Dirk Pattinson
Introduction

• Complexity of ‘static’ modal logics typically $PSPACE$, e.g.
 - $K (KB, S4, \ldots)$: witness algorithm for shallow Kripke models
 - Graded modal logic (GML): constraint set algorithm (Tobies 01)
 - Logic of knowledge and probability: shallow model method based on local small model property (Fagin/Halpern 94)
 - Epistemic logic (Vardi 89), coalition logic (Pauly 02): shallow neighbourhood models.

• Generalize method of (Vardi 89) to arbitrary rank-1 logics
• Obtain uniform shallow-model based $PSPACE$ algorithm
• Semantic basis: coalgebraic modal logic
Disclaimer

- \textit{PSPACE} completeness of probabilistic modal logic follows from earlier results by Fagin/Halpern.
Disclaimer

- $PSPACE$ completeness of probabilistic modal logic follows from earlier results by Fagin/Halpern.

- To make up, we prove $PSPACE$ completeness of majority logic (Pacuit/Salame KR 2004).
Coalgebra

\(T : \text{Set} \rightarrow \text{Set} \) functor (e.g. datatype)

Coalgebra \((X, \xi) = \text{map } \xi : X \rightarrow TX\)

\(\xi\): transition map

\(\xi(x)\): structured collection of observations/successor states
Coalgebraic Modal Logic

(Pattinson 04) **Predicate lifting** for $T : \text{Set} \rightarrow \text{Set} = \text{nat. transformation}

$$\lambda : 2^T \rightarrow 2^{T^\text{op}}$$

Λ set of predicate liftings:

$$\phi ::= \bot \mid \phi \land \psi \mid \neg \phi \mid [\lambda] \phi \ (\lambda \in \Lambda)$$

Semantics in T-coalgebra (X, ξ):

$$x \models_{(X, \xi)} [\lambda] \phi \iff \xi(x) \in \lambda X [\phi]_{(X, \xi)}$$
Examples

- **K**: $TX = \mathcal{P}(X)$, $\lambda_X^\forall(A) = \mathcal{P}(A) \subseteq \mathcal{P}(X)$, $[\lambda^\forall] = \Box$

- Atomic Propositions: $TX = \mathcal{P}V$, $\lambda^a_X(A) = \{ B \in \mathcal{P}(V) \mid a \in B \}$; $[\lambda^a] \phi = a$

- Probabilistic Modal Logic:
 $D_\omega X = \text{finitely supported probability measures } P \text{ over } X$; $TX = D_\omega X \times \mathcal{P}(V)$; $\lambda^p(A) = \{(P,B) \mid PA \geq p\}$; $[\lambda^p] = L_p$; $L_p \phi = \text{‘} \phi \text{ holds in the next step with probability } \geq p \text{’}$

- Coalition Logic: $[C] \phi \text{ ‘coalition } C \text{ can force } \phi \text{’}$.
Example: Majority Logic

\[TX = \text{Bags } \sum n_i x_i \text{ over } X \]

\[\lambda^k_X(A) = \{ \sum n_i x_i \mid \sum_{x_i \in A} n_i > k \}, \quad k \geq 0 \]

\[\lambda^W_X(A) = \{ \sum n_i x_i \mid \sum_{x_i \in A} n_i \geq \sum_{x_i \notin A} n_i \} \]

→ operators \[\Diamond_k = [\lambda^k] \] of graded modal logic:

\[\Diamond_k \phi = \text{‘} \phi \text{ holds in more than } k \text{ successor states’}, \]

plus weak majority operator \[W = [\lambda^W] \]

\[W \phi = \text{‘} \phi \text{ holds in at least half of the successor states’} \]
One-Step Rules

A one-step rule over V is a rule R of the form $\frac{\phi}{\psi}$, where

$\phi \in \text{Prop}(V)$ \hspace{1cm} (Rank 0)

ψ clause over atoms $[\lambda]a$, $a \in V$ \hspace{1cm} (Rank 1)

R one-step sound if

$$X \models \phi_\tau \implies TX \models \psi_\tau$$

for all $\mathcal{P}(X)$-valuations τ.

Congruence rule: (C) $\frac{a \leftrightarrow b}{[\lambda]a \leftrightarrow [\lambda]b}$
One-Step Completeness

Set \mathcal{R} of rules (strictly) one-step complete if for all $\mathfrak{A} \subset \mathcal{P}(X)$ and every clause ϕ over atoms $[\lambda]A$, $A \in \mathfrak{A}$, if $TX \models \phi$, then

ϕ is derivable using $\text{Prop}(\mathfrak{A})$-instances ($\mathfrak{A}$-instances) of \mathcal{R}.
Hintikka Sets

• Set Σ of formulae closed \iff
 - closed under subformulae and
 - closed under normalized negation \sim.

• Hintikka set $H \subset \Sigma$:
 - $\bot \notin H$,
 - $\phi \land \psi \in H \iff \phi \in H \land \psi \in H$ for $\phi \land \psi \in \Sigma$
 - $\neg \phi \in H \iff \phi \notin H$ for $\neg \phi \in \Sigma$.

• $\Sigma(\phi) =$ closure of $\{\phi\}$.
A Shallow Model Theorem

(Method of (Vardi, LICS 89))

Theorem \(\mathcal{R} \) strictly one-step complete \(\Rightarrow \)

\(\chi \) satisfiable iff

\[\chi \in H \text{ for some } \Sigma(\chi) \text{-Hintikka set } H \text{ such that } \]

\[\text{for } \phi/\psi \in \mathcal{R} \cup \{C\}, \sigma \text{ subst., } \psi\sigma \text{ clause over } \Sigma(\chi), \]

\[H \models \neg\psi\sigma \quad \Rightarrow \quad \neg\phi\sigma \text{ satisfiable.} \]

Proof: ‘construct’ a shallow tree model recursively from models for the \(\neg\phi\sigma \) (non-constructive existence proof).
Finding Strictly One-Step Complete Sets

Theorem The set of all sound one-step rules is strictly one-step complete.

Corollary CML has the shallow model property.
Finding Strictly One-Step Complete Sets

Theorem The set of all sound one-step rules is strictly one-step complete.

Corollary CML has the shallow model property.

Rule resolution: \([\lambda]a \in \psi_1, \neg[\lambda]a \in \psi_2\)

\[
\frac{\phi_1}{\psi_1}, \quad \frac{\phi_2}{\psi_2} \sim \frac{\phi_1 \land \phi_2}{(\psi_1 \cup \psi_2) - \{[\lambda]a, \neg[\lambda]a\}}
\]

Theorem Resolution closed & one-step complete \(\implies\) strictly one-step complete.
Example: \(K \)

One-step complete rule set:

\[
\frac{a}{\Box a} \quad \frac{a \land b \rightarrow c}{\Box a \land \Box b \rightarrow \Box c}.
\]

Resolution closure:

\[
\frac{\bigwedge_{i=1}^{n} a_i \rightarrow b}{\bigwedge_{i=1}^{n} \Box a_i \rightarrow \Box b (n \geq 0)}
\]
Example: Majority Logic

Resolution closed one-step complete rule set:

\[
\sum a_i + \sum_1^v c_r + m \leq \sum b_j + \sum_1^w d_s \quad (m \in \mathbb{Z})
\]

\[
\land \Diamond k_i a_i \land \land W c_r \rightarrow \lor \Diamond l_j b_j \lor \lor W d_s
\]

with side condition

\[
\sum (k_i + 1) - \sum l_j + w - 1 - \max(m, 0) \geq 0
\]
\[
v - w + 2m \geq 0.
\]

Obtained from known one-step complete set of 7 axioms.
Decidability in PSPACE

• Close rules under removal of duplicate literals in conclusions
 ○ Avoids big rules matching small clauses
 ○ Possible blowup of the rule set

• Require tractability of the rule set
 ○ Represent rules by codes, up to equivalence of premises
 ○ Side conditions, clauses of premise, validity of codes in NP
 ○ Polynomial bound on codes of matching rules

• Traverse shallow model in $APTIME = PSPACE$
Example: Majority Logic

- **Closure under reduction:**

\[
m \leq \sum r_i a_i + \sum s_j b_j \\
\bigvee \text{sgn}(r_i) \bigtriangleup k_i a_i \lor \bigvee \text{sgn}(s_j) Wb_j \quad (r_i, s_j \in \mathbb{Z})
\]

(with correspondingly modified side condition)

- **Tractability:**
 - Equivalence of premises & satisfaction of side condition: linear inequations.
 - Thus: polynomially bounded solution (standard linear programming)
Next: $PSPACE$, semantically

- Semantic criterion:
 - Strong one-step small model property & tractable one-step model checking $\Rightarrow PSPACE$
 - Better bound on branching in shallow models
 - Off-the-shelf application to logics of uncertainty (Halpern/Pucella)
Next: \textit{PSPACE}, semantically

\begin{itemize}
\item Semantic criterion:
 \begin{itemize}
 \item Strong \textit{one-step small model property} \& \\
 \textit{tractable one-step model checking} $\implies \textit{PSPACE}$
 \item Better bound on branching in shallow models
 \item Off-the-shelf application to logics of uncertainty (Halpern/Pucella)
 \end{itemize}
\item Merits of the above ‘syntactic’ criterion:
 \begin{itemize}
 \item Potentially handles exponential branching
 \item Algorithm computes shallow proof that witnesses
 \begin{itemize}
 \item a weak \textit{subformula property}
 \item encapsulation of \textit{cuts} in the rule set
 \end{itemize}
 \item E.g., obtain complete axiomatization for W alone!
 \end{itemize}
\end{itemize}
Conclusion

• Coalgebraic modal logic has the shallow model property

• Obtain \textit{PSPACE} algorithm for satisfiability, given a tractable ‘saturated’ axiomatization

• Recover known results: \(K \), GML, PML, Coalition Logic are in \textit{PSPACE}

• New (easier?) algorithm for GML

• \textbf{New tight bound:} Majority logic is in \textit{PSPACE}
Future Work

• Semantic $PSPACE$ criterion (see above)

• Compositionality

• Semantics-free approach:
 ○ construct functor for given rank 1 logic
 ○ obtain fmp, $PSPACE$ bound, proof theoretic properties. . .

• Coalgebraic CTL

• How do we tackle rank n?
Coalition Logic

(Pauly 2002)

\[TX = \exists \left\{ \Sigma_1 \ldots \Sigma_n \right\} \cdot \prod \Sigma_i \rightarrow X, \]

where \(N = \{1, \ldots, n\} \) set of agents.

For a coalition \(C \subset N \),

\[\lambda^C A = \{ f : \prod \Sigma_i \rightarrow X \mid \exists \sigma_C. \forall \sigma_{N-C}. f(\sigma_C, \sigma_{N-C}) \in A \}. \]

\(\lambda^C \) operators \([\lambda^C] = [C]\) of coalition logic

\([C] \phi = \text{‘}C\text{ can force } \phi\text{’}.\)
PSPACE-Tractability

Represent rules (modulo propositional equivalence of premises) by codes

Definition \(\mathcal{R} \) is PSPACE-tractable if

- rules matching a reduced clause \(\rho \) have codes of size polynomially bounded by \(|\rho| \)
- It can be decided in NP whether
 - a given code represents a rule in \(\mathcal{R} \)
 - a given rule matches a given reduced clause
 - a given clause belongs to the CNF of the premise of a given rule

L. Schröder and D. Pattinson: PSPACE Bounds for Rank 1 Modal Logics; LICS 06
Matching for Majority Logic

- Rule codes: \(((r_i), (s_j), (k_i), m)\)
- Equivalence of premises & Satisfaction of side condition: linear inequations.
- Thus: polynomially bounded solution (standard linear programming)
- CNF of premise:

\[
m \leq \sum_{i \in I} r_i c_i \equiv \bigwedge_{r(J)<k} \left(\bigwedge_{j \in J} c_j \rightarrow \bigvee_{j \notin J} c_j \right),
\]
Deduction

Deduction system induced by \mathcal{R}:

- Propositional reasoning
- Instances of rules in $\mathcal{R} \cup \{C\}$, i.e. \mathcal{R} plus congruence rule

$$a \leftrightarrow b$$

$$\frac{[\lambda]a \leftrightarrow [\lambda]b}{[\lambda]a \leftrightarrow [\lambda]b}$$

Theorem Deduction is sound if \mathcal{R} is one-step sound

Theorem Deduction is complete if \mathcal{R} is one-step complete