Mathematische Grundlagen der Informatik I, WS01/02 Aufgabenblatt 3

Aufgabe 1.

Seien $x, y \in \mathbb{N}$. $x \mid y$ soll heißen: x ist ein Teiler von y, also $\exists z \in \mathbb{N}$: xz = y. Zeigen Sie: "|" ist eine Ordnungsrelation.

Aufgabe 2.

Geben Sie drei Relationen auf den natürlichen Zahlen an, deren Definitionsbereich alle natürlichen Zahlen umfasst, sowie mit den Eigenschaften

- a) symmetrisch und transitiv, nicht reflexiv.
- b) reflexiv und transitiv, nicht symmetrisch.
- c) reflexiv und symmetrisch, nicht transitiv.

(Definitionsbereich einer Relation R: $D(R) = \{x \mid \exists y : (x, y) \in R\}$)

Aufgabe 3.

Sei ~ eine Äquivalenzrelation auf der Menge M. Sei $x \in M$ und $\overline{x} = \{y \in M \mid y \sim x\}$ die Äquivalenzklasse von x. Ist jetzt $y \in M$ ein weiteres Element so gilt:

$$\overline{x} = \overline{y} \text{ oder } \overline{x} \cap \overline{y} = \emptyset.$$

Aufgabe 4.

Sei $M := \{a,b,c\}, N := \{x,y\}$. Mittels geeigneter Diagramme geben Sie alle

surjektiven nicht-surjektiven injektiven nicht-injektiven

Abbildungen $M \rightarrow N$ an.

Aufgabe 5*.

Die wesentliche Eigenschaft geordneter Paare ist die folgende:

$$(a,b) = (c,d) \rightarrow ((a=c) \land (b=d))$$

Zeigen Sie, dass die Definition $(a,b) := \{\{x\}, \{x,y\}\}\$ diese Eigenschaft besitzt.