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Abstract

We study the various categories of corings, coalgebras, and comodules from
a categorical perspective. Emphesis is given to the question which properties
of these categories can be seen as instances of general categorical resp. alge-
braic results. We obtain new results concerning the existence of limits and of
factorizations of morphisms.
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Introduction

The categories CoalgR of R–coalgebras, for a commutative ring R, and ComodA of
A–comodules for a given R–coalgebra A have attracted attention and quite a number
of their categorical properties have been obtained, as well as some others labelled
“unexpected” or “curious”. In analogy also the categories CoringA of A–corings
w.r.t. a (not necessarily commutative) R–algebra A and ComodC of C–comodules
for a given A–coring C have been investigated (see [8] for a comprehensive overview).
We will offer a common approach to these and other results through “Universal
Coalgebra” the dual of a generalization of “Universal Algebra” as established by
Birkhoff. We first recall the following fundamental definitions.

1 Definition Let F : C −→ C be an endofunctor of the category C.
An F–algebra is a pair (C,α) where α : FC −→ C is a C–morphism. An F–

algebra homomorphism f : (C,α) −→ (C ′, α′) is a C–morphism f : C −→ C ′ such
that the diagram

FC
α //

Ff

��

C

f

��
FC ′ α′

// C ′
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commutes. F–algebras and their homomorphisms constitute the category AlgF .
An F–coalgebra is a pair (C,α) where α : C −→ FC is a C–morphism. An F–

coalgebra homomorphism f : (C,α) −→ (C ′, α′) is a C–morphism f : C −→ C ′ such
that the diagram

C
α //

f

��

FC

Ff

��
C ′ α′

// FC ′

commutes. F–coalgebras and their homomorphisms constitute the category CoalgF .

Note that Birkhoff’s Ω–Algebras for a signature Ω = (Ωn) form the category
AlgHΩ for the endofunctor HΩ on the category Set of sets and mappings (with Σ
denoting the coproduct (disjoint union) in Set) defined by

HΩ(X) =
∑

n

Ωn ×Xn

so motivating the notion of F–algebra.
The categories of A-corings, R–coalgebras as well as their respective module

categories are defined as full subcategories of categories CoalgF of F–coalgebras
for suitable functors F as follows

1. The category CoalgR of R–coalgebras for a commutative unital ring R is the
full subcategory of CoalgTR for

TR : ModR −→ ModR

M 7−→ (M ⊗R M)×R

spanned by those TR–coalgebras making the following diagrams commute where
m : M −→ M ⊗M and e : M −→ R are the coordinates of α : M −→ TRM
and the double arrows indicate the obvious isomorphisms:

M ⊗M
1m⊗m //M ⊗ (M ⊗M)

aM

��

M

m

;;wwwwwwwwww

m
##G

GGGGGGGGG

M ⊗M
m⊗1M

// (M ⊗M)⊗M

R⊗M M
rM +3lMks M ⊗R

M ⊗M

e⊗1M

OO

M

1M

KS

m
oo

m
//M ⊗M

1M⊗e

OO

Diagram 1 (co–associative law) Diagram 2 (co–neutral law)
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2. Similarly, given an R–coalgebra A, the category AComod of left A–comodules
is the full subcategory of CoalgAM for

AM : ModR −→ ModR

M 7−→ A⊗R M

spanned by those AM–coalgebras (M,α : M −→ A ⊗R M) which make the
following diagrams commute

A⊗M
m⊗1M // (A⊗A)⊗M

a

��

M

α

<<xxxxxxxxxxxx

α

""F
FF

FF
FF

FF
FF

F

A⊗M
1A⊗α

// A⊗ (A⊗M)

M
α //

lM

��

A⊗M

e⊗1M
yyttttttttttttt

R⊗M

Diagram 3 Diagram 4

where 〈m, e〉 : A −→ (A⊗A)×R is the R–coalgebra structure of A.

3. Considering instead of AM the functor

MA : ModR −→ ModR

M 7−→ M ⊗R A

one would obtain the category ComodA of right A–comodules as a subcate-
gory of CoalgMA.

4. Corings and their comodule categories can be described in the same way. To
obtain A–corings one simply replaces the functor TR : ModR −→ModR by

TA : AModA −→ AModA

M 7−→ (M ⊗A M)×A

where now A is an R–algebra and AModA denotes the category of (A,A)–
bimodules with the usual tensor product −⊗A −.

5. In order to obtain, for given A–corings C and D, the categories CComod,
ComodC and CComodD of left C–comodules, right C–comodules and (C,D)–
cobicomodules, respectively (see [8]), one replaces the functors AM and MA

by
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CM : A–Mod −→ A–Mod
M 7−→ C ⊗A M

MC : Mod–A −→ Mod–A
M 7−→ M ⊗A C

or CMD : AModB −→ AModB

M 7−→ (C ⊗A M)× (M ⊗A D)

with A–Mod, Mod–A, and AModB denoting the categories of left, right
A–modules and (A,B)–bimodules, respectively.

Clearly, categorical properties of, say, the category CoalgR of R–coalgebras then
are determined by

• properties of the category ModR,

• properties of the functor TR,

• the way CoalgR is embedded in CoalgTR.

Now there is a well established theory how to study equationally defined subcate-
gories K of categories AlgF of functor algebras for functors F : C −→ C by means
of properties of C, F , and the way K is embeddded in AlgF (see [2]). The main
results of this theory can be summarized as follows, generalizing basic results of
classical universal algebra.

2 Theorem Let C be a complete and cocomplete regularly cowellpowered category
with regular factorizations. Let F : C −→ C be a functor which preserves regular
epimorphisms and which, moreover, is a constructive varietor.

Then for a full and isomorphism closed subcategory K of AlgF the following are
equivalent:

1. K is a variety,

2. K is comonadic over C,

3. K is closed in AlgF under

• products and subalgebras, and also

• homomorphic images which are carried by retractions in C,

For any such subcategory the following hold:

1. K is regularly epireflective in AlgF .

2. K is complete and limits in K are created by the underlying functor
| − | : AlgF −→ C.
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3. K is cocomplete.

4. K has image–factorizations and, more general, regular factorizations of cones
which are created by | − |.

In the above theorem completeness of AlgF is trivial and only needs complete-
ness of C. The properties 1. and 3. are consequences of 4. and property 4. is a
consequence of the assumptions on F and C w.r.t regular factorizations.

We want to explore to what extent properties of the categories CoalgR, CoringA

and their respective categories of comodules can be obtained from the above theorem
by simple dualization, i.e., without further proof.

The dualization principle at work here is the following simple observation

3 Fact For any functor F : C −→ C one has

CoalgF = (Algop)op

where F op : Cop −→ Cop is the functor dual to F (i.e., acting on Cop, the dual of
C, as F ).

Thus, in order to obtain properties for the categories mentioned above, we need
to know whether the functors TR and MA and their appropriate modifications satisfy
the duals of the assumptions in Theorem 2. In the process of doing so we will also
explain notions used above, which might not be familiar to the non–categorical
reader as, e.g., (constructive) varietor; we will in fact then immediately explain the
dualized version.

A first example of how this works shall end this introduction. The following is
well known and easy to prove:

4 Fact For endofunctors F on any category C, the underlying functor AlgF −→ C
creates limits and, moreover, colimits of those types which are preserved by F .

The duality principle thus yields

5 Proposition The categories CoalgTR and CoalgMA have all colimits, provided
C is cocomplete. These are obtained by forming the respective colimit in C and
supplying this with the unique coalgebra structure which makes the colimit injections
coalgebra homomorphisms.

Another simple consequence of (the dual of) Fact 4 is the following result, a
much more involved proof of which is given, e.g., in [9, 1.5.29].

6 Proposition If R is a field then for each object C in CoalgTR and CoalgMA

respectively, the following hold:

1. The subcoalgebras of C form a complete lattice subC.

2. In subC one has
∧

=
⋂

.

Proof: The functors TR and MA preserve subspaces and intersections of subspace
of a given vector space (see [12, p. 568]). Since these intersections are limits the
result follows from Fact 4. �
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1 The categories CoalgTI and CoalgMA

In the following let (C,⊗, I) be a monoidal category, where

• C is a variety in the sense of Birkhoff, hence, in particular, a locally finitely
presentable category, which is regularly cowellpowered and has a faithful un-
derlying functor | − | : C −→ Set, which creates limits and directed colimits,

• the tensor product is given by universal bimorphisms in the sense of [4]; in
particular, each functor C ⊗− : C −→ C is a left adjoint.

Examples of such categories are

1. the category ModR of R modules for a commutative unital ring R, and

2. the category AModA of (A,A)–bimodules for a unital (not necessarily com-
mutative)ring A.

Given a category as above we consider the functors

T 2 : C −→ C TI : C −→ C
C 7−→ C ⊗ C C 7−→ (C ⊗ C)× I

AM : C −→ C MA : C −→ C
C 7−→ A⊗ C C 7−→ C ⊗A

where, in the last two cases, (A,A
〈m,e〉−→ TIA) is a TI–coalgebra. Their respective

categories CoalgTI , CoalgMA, and CoalgAM then are concrete over C by means
of obvious underlying functors | − |.

TI–coalgebras (C,C
〈m,e〉−→ (C⊗C)×I) which make the diagrams 1 and 2 commute

(with R replaced by I) form the category Comon of comonoids in (C,⊗, I). AM–
coalgebras (C,C

α−→ A⊗ C) which make the diagrams 3 and 4 commute, form the
category ACoact of left A–coactions in (C,⊗, I); right A–coactions are defined by
means of MA in the obvious way.

Combining the various options we obtain

• CoalgR, the category of R–coalgebras for a commutative unital ring R is the
category of comonoids in (C,⊗, I) = (ModR,−⊗R −, R),

• ComodA, the category of right A–modules for an R–algebra A (R a commu-
tative ring) is the category of right A–coactions in (ModR,−⊗R −, R),

• AComod, the category of left A–comodules for an R–algebra A is the category
of left A–coactions in (ModR,−⊗R −, R),

• CoringA, the category of A–corings for a unital (not necessarily commutative)
R–algebra A is the category of comonoids in (C,⊗, I) = (AModA,−⊗A−, A).
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The categories of comodules for corings do not fit into this picture literally, since
their respective functors M act on a category like A–Mod, which is not monoidal.
The abstract setting here is that of a monoidal category (C,⊗C, I) a faithful functor
|−| : C→ C′ and a bifunctor C×C′ −⊗−−→ C′ with |C1⊗CC2| = |C1|⊗|C2| and natural
isomorphisms |I|⊗− ' id′C, and (|C1|⊗|C2|)⊗C ′ ' |C1|⊗(|C2|⊗C ′) subject to the
condition that, for each C in C, |C|⊗− is a left adjoint. The paradigmatic example
is | − | : AModA → A–Mod. The arguments and results to follow nevertheless here
apply as well.

We start stating the following consequence of our basic assumptions.

7 Lemma MA preserves all colimits and finite products, since it is a left adjoint.

8 Proposition The functor

T 2 : C −→ C
M 7−→ M ⊗M

preserves directed colimits.

For the sake of the non–categorical reader we mention that directed colimits often
are called “direct limits”, a notion we consider misleading. Though the statement
is probably well known we give an elementary proof of it (For a more categorical
argument based on monoidal closedness see [11]) because of its importance in the
present context.

Proof: Let Mi
αij−→ Mj be a directed diagram in C and Mj

λj−→ M its colimit.
Since the underlying functor | − | : C −→ Set preserves directed colimits (note that
this also is a consequence of Fact 4 since polynomial functors HΩ on Set preserve
directed colimits) and so does X 7−→ X × X on Set, the top row of the following
commutative diagram is a (directed) colimit:

|Mi| × |Mi|

−⊗i−

��

|αij |×|αij |// |Mj | × |Mj |

−⊗j−

��

|λj |×|λj | // |M | × |M |

f

||

A
6

+
�

�
�

}

−⊗−

��
|Mi ⊗Mi|

|fi|

..

|αij⊗αij |
// |Mj ⊗Mj |

|fj |
&&MMMMMMMMMMMMMMM |λj⊗λj |

// |M ⊗M |

|ϕ|

��
|N |

The lower triangle in this diagram refers to any compatible family of C–mor-
phisms Mj⊗Mj −→ N , which obviously determines a family |fj |◦−⊗j−, compatible
with the top row diagram, thus inducing a unique map f making the outer right
hand “square” commute.

From the construction of directed colimits in Set one deduces easily that f is a
bimorphism in the sense of [4], hence induces a unique ϕ : M ⊗M −→ N in C such
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that the right hand “triangle” commutes as well. Now the required equation

ϕ ◦ (λj ⊗ λj) = fj

follows from the universal property of − ⊗j −. The required uniqueness of ϕ is an
immediate consequence of uniqueness of f w.r.t. commutativity of the right hand
triangle. �

9 Corollary TI preserves directed colimits.

Proof: This follows from Proposition 8 since any functor C×− preserves directed
colimits in Set and thus in any variety. �

Since the category C is locally finitely presentable by assumption the following
is a consequence of Corollary 7 and Lemma 9 (see [2, 3.25] or [6]) in connection with
[1, 20.56].

10 Proposition The underlying functors CoalgTI → C and CoalgMA → C for
any comonoid A have right adjoints, and thus are comonadic.

11 Remark Recall that an endofunctor F on C is called covarietor provided that
CoalgF has cofree coalgebras, i.e., the underlying functor CoalgF −→ C has a
right adjoint. For covarietors in our context it holds that, for each C–object X, the
couniversal linear map ε : X] −→ X from the cofree F–coalgebra X] over X to X is
a surjection: since X has a coalgebra structure, e.g., the zero–map, the identity 1X

factors as 1X = εy.

It is of importance to know (see Theorem 2) whether F is even a constructive
covarietor, i.e., whether the cofree objects in our categories can be constructed by
means of a standard construction which we sketch as follows (see [2] for details).
For an object X in the base category X, assumed to be complete, one constructs a
chain

1 !←− X1]
x21←− X2]

x32←− X3] ←− . . .←− Xi] ←− . . .

by transfinite induction and then, for each f : Y −→ X in X, a cone (fi] : Y −→ Xi])i

— “computation of coterms” — for this chain. If this chain stops at some ordinal
κ, Xκ] carries an F–coalgebra structure which makes it cofree over X.

12 Proposition Let F : C −→ C be a functor which preserves regular epimor-
phisms (surjections). If F is a covarietor it is even a constructive covarietor.

Proof: In order to show that the canonical chain

1 !←− X1] ←− X2] ←− . . . Xi] ←−

stops for each module X, observe first, that the connecting homomorphisms of this
chain are all surjections (we use notation as in [2])

i) X1]
!−→ 1 is surjective,
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ii) xij surjective ⇒ X × Fxij surjective (since F preserves surjections),

iii) the limit–projections at limit steps are surjective by the construction of di-
rected limits in Set (and hence in C), since the connecting morphisms of the
chain of which the limit is taken are surjective by ii).

Since C is regularly co–wellpowered it suffices for the canonical chain to stop to
find a cone YX

fi−→ Xi] in C, compatible with that chain, consisting of surjective
homomorphisms only. Construct such a cone from a surjective f : YX −→ X with a
surjective F–coalgebra action α : YX −→ FYX as “computation of coterms” fi]:

i) f0] =!: YX −→ 1 is surjective.

ii) fi] surjective ⇒ fi+1] = 〈f, Ffi] ◦ α〉 : YX −→ Xi+1] = X × FX]
i surjective.

iii) fj], for a limit ordinal j, is surjective again by the way directed limits are
constructed, since the fi], i < j, all are surjective.

Thus we only need to find, to each module X, an F–coalgebra (YX , α) with α
surjective and a surjective homomorphism f : YX −→ X. Since F is a covarietor
there exists a cofree coalgebra (YX , β) for each module X. By Lambek’s Lemma
there is an isomorphism (in C) YX

ϕ−→ X×FYX ; thus, the composition α of ϕ with
the projection onto FYX is an F–coalgebra (YX , α) with α surjective. Finally the
couniversal homomorphisms ε : YX −→ X is surjective (see Remark 11). �

The following now is an immediate consequence.

13 Theorem The functors TI and MA, for any A, are constructive covarietors.

2 Closure Properties

It is of interest to know to what extent the categories CoalgR and ComodA are
closed in their respective categories of functor coalgebras w.r.t. certain categorical
constructions. We need the following notions:

14 Definition A pair (C, (fi)I) (where I might be a class) with a family of homo-
morphisms fi with common codomain C is called episink provided the family (fi)I

is right cancellable, i.e., (∀i ∈ I ∀ r, s : C −→ D rfi = sfi)⇒ r = s.
A subcoalgebra (C,α) of (C ′, α′) is called split provided the embedding s : C −→

C ′ splits in C, i.e., there is some r ∈ HomC(C ′, C) with rs = idC .

15 Proposition The category CoalgI is closed in CoalgTI under episinks and
split subcoalgebras, i.e.,

1. for every episink
(
(C,α), (fi)

)
in CoalgTI the coalgebra (C,α) is an I–coalgebra

provided the domain of each fi is one, and

2. every split TI–subcoalgebra of an I–coalgebra is an I–coalgebra.
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Proof: Ad 1: Let ei : (Ci, αi)→ (C,αC) be a nonempty episink (the case I = ∅ is
trivial).
Let every (Ci, αi) be co-associative. Consider the following diagram: Here the left
hand cells commute since the ei are homomorphisms; the right hand cell commutes
by naturality of a; the top and bottom cells commute by (bi)functoriality of −⊗−;
the outer frame commutes since the (Ci, αi) are co-associative. Thus, the inner cell
commutes as required, since the ei are jointly cancellable.

Ci ⊗ Ci

mCi
⊗Ci//

ei⊗ei

��

(Ci ⊗ Ci)⊗ Ci

(ei⊗ei)⊗ei

��

aCi

}}

C ⊗ C
mC⊗C

// (C ⊗ C)⊗ C

aC

��

Ci
ei //

mCi

==||||||||||||||||||||||||||

mCi

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
B C

mC

<<yyyyyyyyyyyy

mC

""E
EE

EE
EE

EE
EE

E

C ⊗ C
C⊗mC // C ⊗ (C ⊗ C)

Ci ⊗ Ci Ci⊗mCi

//

ei⊗ei

OO

Ci ⊗ (Ci ⊗ Ci)

ei⊗(ei⊗ei)

OO

Ad 2: Let m : (C,αC) → (D,αD) be a monomorphism splitting in C with (D,αD)
co-associative. In the following diagram

C ⊗ C
mC⊗C //

m⊗m

��

(C ⊗ C)⊗ C

(m⊗m)⊗m

��

aC

}}

D ⊗D
mD⊗D

// (D ⊗D)⊗D

aD

��

C
m //

mC

>>|||||||||||||||||||||||||

mC

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
D

mD

<<yyyyyyyyyyyy

mD

""E
EE

EE
EE

EE
EE

E

D ⊗D
D⊗mD // D ⊗ (D ⊗D)

C ⊗ C
C⊗mC

//

m⊗m

OO

C ⊗ (C ⊗ C)

m⊗(m⊗m)

OO
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the left hand cells commute since m is a homomorphism; the right hand cell com-
mutes by naturality of a; the top and bottom cells commute by (bi)functoriality of
−⊗−; the inner cell commutes since the (D,αD) is co-associative. Thus, the outer
cell commutes as required, since with m the morphism m ⊗ (m ⊗ m) is a (split)
monomorphism and therefore cancellable.

In both cases (C,αC) satisfies the co–neutral law by similar arguments. �

In the same way one proves

16 Proposition The category ComodA is closed in CoalgMA under episinks and
split subcoalgebras.

17 Remark 1. Proposition 16 clearly equally holds for left coactions.

2. Proposition 15 also holds w.r.t. cocommutative coalgebras by means of a
similar argument.

3. Note that closure under episinks in particular means closure under all kinds
of colimits and under homomorphic images.

3 Factorizations

The image–factorization of a homomorphism is an important tool in algebra, which
is intimately related to the notion of subalgebra. In (Set–based) algebra an image
is always given by a regular epimorphism (surjection), a subalgebra by a monomor-
phism (injection); hence in coalgebra one might expect the dual of this situation.
Being aware of the fact that what was stated above for (Set–based) algebra heavily
depends on the fact that every Set–functor preserves surjections (assuming AC) the
dual case would require preservation of monomorphism s which, for example is not
given in general for the functors TI and MA. To ensure this property we therefore
will have to take provision by additional assumptions. We therefore start by exam-
ining the embeddings of subcoalgebras and projections to homomorphic images in
CoalgTI and CoalgMA.

18 Proposition Let F denote any of the functors TI and MA. Then the following
holds:

1. The epimorphisms in CoalgF are precisely the surjective homomorphisms.

2. Every injective homomorphism in CoalgF is a strong monomorphism.

The same holds in any full coreflective subcategory of CoalgF .

Proof: 1. is clear since the underlying functor CoalgF −→ C is a faithful left
adjoint (and this argument also applies to the case of a coreflective subcategory).

2. We need to show that every commutative diagram in a full coreflective sub-
category of CoalgF

11



(A,α) e //

f

��

(B, β)

g

��
d

{{
(C, γ) m

// (D, δ)

with e an epimorphism and m injective admits a unique diagonal d. By 1. and the
fact that injective linear maps are strong monomorphisms in C, d : B −→ C exists
uniquely as a linear map, which is easily seen to be a CoalgF–morphism. �

19 Remark It can be shown that the converse of statement 2. above does not hold.

20 Remark In general it is not possible to define an image of a homomorphism in
our categories. Consider the following simple example in CoalgTZ:

Let ϕ : (Z4, idZ2) −→ (Z8, 0) be defined by ϕ([x]4) = [2x]8. Consider the TZ–
coalgebras (Z4, α) and (Z8, β) where α([x]) = [3x] and β([x]) = [2x]. Then ϕ : Z4 −→
Z8 with ϕ(Z4, α) −→ (Z8, β) is a coalgebra homomorphism.
Now Imϕ = {[0]8, [2]8, [4]8, [6]8} and with ϕ : Z4

e−→ Imϕ
m
↪→ Z4 we have e ⊗

e([x]4) = [2x]8, m⊗m([x]8) = [2x]8.
The only coalgebra actions on Imϕ are 0, id and “multiplication by 2 or 3”. One

easily checks that the first three options would not make e a homomorphism, while
for the last option m fails to be one.

Things are much better behaved in case F is an endofunctor on ModR where
the ring R is regular; to see this we first need the following lemma.

21 Lemma Every cocone (M, (Mi
fi−→ M)I) in ModR, where I even might be a

class, can be factored as fi = Mi
ei−→ U

m−→ M where (U, (ei)) is an episink and m
is injective. Moreover, these factorizations are (essentially) unique.

Proof: If I = ∅ the statement means: there exists a submodule U ⊂ M so that
the empty cocone on U is an episink: take U = 0!

For I 6= ∅ let m be the embedding of the submodule U of M generated by ∪fi[Mi]
(note that — even though I might be a class, there is only a set of submodules
fi[Mi]), i.e., U =

∑
fi[Mi], the sum taken over a suitable subset of I, and ei : Mi −→

U the corestriction of fi, for each i ∈ I. �

22 Proposition Let F be an endofunctor on ModR which preserves monomor-
phisms (injective linear map). Then the statement of the lemma also holds in
CoalgF . Moreover, the factorization

fi = (Ci, αi)
ei−→ (U, ν) m−→ (C,α)

in CoalgF is obtained by supplying U =
∑

fi[Ci] (as a submodule of C) with the
unique F–coalgebra structure making m and all ei coalgebra homomorphisms.
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Proof: The required coalgebra structure on U is obtained as the “diagonal” of
the following diagram, which exists by the previous lemma, since Fm is injective by
assumption.

Ci
ei //

αi

��

U

ν

��

m // C

α

��
FCi Fei

// FU
Fm

// FC

�

In order to be able to apply this proposition (see also the introductory remark
of this section) we will from now on assume that R is regular — equivalently: M ⊗ i
is injective for each R–module M and each injective R–linear map i.

23 Theorem Let R be a regular ring. Then any of the categories CoalgTR and
CoalgMA has

1. image–factorizations of (families) of homomorphisms,

2. kernels, which are subcoalgebras,

3. all limits.

Proof: 1. is clear from the previous proposition.
For 2. we use a standard categorical argument: let f : C −→ C′ be a coalgebra

homomorphism; consider the sink (Ci, (fi)I) of all homomorphisms

Ci
fi−→ C with f ◦ fi = 0.

Then this sink has a factorization
Ci

ei−→ K m−→ C
according to Proposition 22 and K m−→ C is easily seen to be a kernel of f .

3. follows from 2. since a comonadic category with equalizers is complete ([7]).
�

With image–factorizations at hand we can generalize Proposition 6 as follows:

24 Proposition Let R be a regular ring. Then for each object C in any of the
categories CoalgTR and CoalgMA the subobjects of C form a complete lattice.

Proof: Let Ci = (Ci, αi) be a family of subobjects of C = (C,α). By Proposition
22 U =

∑
I Ci carries a unique coalgebra structure β such that all embeddings

Ci ↪→ U and the embedding U ↪→ C are coalgebra homomorphisms. (U, β) then
clearly is the supremum of all Ci in the set of subcoalgebras of C. �

To what extent these results can be carried over to R–coalgebras and A–comodules
will be shown in the next section.
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4 The Covarieties of Coalgebras, Corings and Comod-
ules

Covarieties are those full coequational subcategories of categories of the form CoalgF
(F an endofunctor on a complete category) which have cofree coalgebras. They are
precisely the comonadic categories of C (see [2] for details).

By the results of the previous sections we obtain by simple dualization of Theo-
rem 2 our main result as follows.

25 Theorem Let R be a regular ring. Then the categories CoalgR and ComodA

are covarieties, in particular they are complete and have cofree objects. CoalgR

and ComodA are (regular mono–)coreflective in CoalgTR and CoalgMA respec-
tively. The regular monomorphisms in these categories are precisely the injective
morphisms, the epimorphisms are precisely the surjective ones and every homomor-
phism has an image–factorization, which is created by the underlying functor.

26 Remark It might be noted explicitely that for K = CoalgR and K = ComodA

respectively

1. the coreflection of a functor–coalgebra into K is obtained by forming the fac-
torization of the cocone of all morphisms

(Kf
f−→ C)K∈obK,f

according to Propositon 22. If Kf
ef−→ C∗ m−→ C is this factorization, then

C∗ m−→ C is the coreflection of C into K.

2. the limits in K are the coreflections of the limits formed in the respective
category of functor–coalgebras.

27 Remark The following are obvious consequences:

1. Again, the results obtained hold for all modifications of TR and MA, respec-
tively, as well as for the category cCoalgR of cocommutative coalgebras; con-
cerning A–corings and their module categories it is clearly the ring A (not R)
which is required to be regular.

2. ComodA is comonadic over A–Mod for any A (not necessarily regular). This
is well known (see, e.g., [8, 3.13, 18.13, 18.28]) and, in fact, only the dual of a
simple generalization of [10] or [11, 1.5] to the setting described at the end of
section 1.

3. For regular rings we obtain the known fact that CoalgR and cCoalgR respec-
tively is comonadic over ModR.
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