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Abstract

It is well known that the model categories of universal Horn theories are
locally presentable, hence essentially algebraic [2]. In the special case of qua-
sivarieties a direct translation of the implicational syntax into the essentially
equational one is known [1]. Here we present a similar translation for the
general case, showing at the same time that many relationally presented Horn
classes are in fact (equivalent to) quasivarieties.
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Introduction

The class of locally finitely presentable categories is known to comprise all complete
categories of finitary (many-sorted) algebras (see [3]). There is a universal syntax
by which locally finitely presentable categories can be specified, namely that of an
essentially equational theory, which generalizes the classical syntax of equational
classes of algebras to a specification of certain classes of partial algebras (see [2]).
While it is easy to specify implicationally defined classes of algebras this way (see
[1]), a canonical specification for Horn classes (which are known to be locally finitely
presentable categories) by an essentially equational theory seems not to be known:
The univeral representation presented in [2] might be viewed unnatural: e.g., rep-
resenting POS — the category of partially ordered sets and monotone maps — this
way would require ℵ0 sorts, whereas a 1–sorted representation is possible, as is shown
in [5].

We are to provide in this note — combining ideas of [1] and [5] — an essentially
equational representation of Horn classes much simpler than in [2], which moreover in
many cases represents Horn classes as quasivarieties. The main idea is to introduce,
for each relational symbol provided by the signature under consideration, a new sort
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and a family of operations corresponding to the respective projections; this enables
us, in a second step, to represent (relational) implications in terms of (partial)
operations and equations. For a related approach see [4].

Preliminaries

Language and notation are mainly as in [2]. To make this note as selfcontained as
possible we briefly explain the basic notions.

Products of (finite) families of sets or maps are denoted by
n∏

i=1

Ai or A1× . . .×An

(respectively
n∏

i=1

fi or f1× . . .×fn) according to convenience; the product projection

onto the i-th component of a (subset of a) product is denoted by πi, with superscripts

referring to the particular product if necessary. The map B −→
n∏

i=1

Ai induced by

a family of maps (gi : B −→ Ai)i=1...n, i.e., the map g with πi ◦ g = gi for each i is
denoted by 〈gi〉.

Let Σ = Σop ∪̇ Σrel be an S–sorted finitary signature, i.e., S is a set of sorts, Σop

is set of operational symbols, Σrel is a set of relational symbols, and for each symbol
ω ∈ Σ there is given an arity arω = (s1, . . . , sn, s0) ∈ Sn+1 (for some n ∈ N) . In
view of the role the arities are to play we will use more suggestive notions for them
as follows:

• for σ ∈ Σop we write s1 × . . .× sn → s0 instead of (s1, . . . , sn, s0).

• for σ ∈ Σrel we write s1 × . . .× sn × s0 instead of (s1, . . . , sn, s0).

A Σ-structure then is a triple A =
(
(As)s∈S, (σA)σ∈Σop , (RA)R∈Σrel

)
where

(As)s∈S is a family of S-indexed sets, σA : As1 × . . .× Asn → As0 is a map for
each σ ∈ Σop with arσ = s1 × . . .× sn → s0, and RA ⊂ As1 × . . .× Asn × As0 is a
subset for each R ∈ Σrel with arR = s1 × . . .× sn × s0. A morphism of Σ-structures
f : A → B is an S-indexed family of maps (fs : As → Bs)s∈S satisfying the conditions

• σB◦(fs1 × . . .× fsn) = fs0◦σA for each σ ∈ Σop with arσ = s1 × . . .× sn → s0,

• fs1 × . . .× fsn [RA] ⊂ RB for each R ∈ Σrel with arR = s1 × . . .× sn × s0.

This defines the category StrΣ of Σ-structures which – by means of the obvious
underlying functor StrΣ −→ SetS – is a concrete category over SetS, the S-fold
power of the category of sets and mappings.

The signature Σ is called finite provided both, S and Σ, are finite sets. As usual
Σ is called a signature of algebras if Σrel is empty; in this case Σ-structures are

simply denoted as pairs
(
(As)s∈S, (σA)σ∈Σop

)
.
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The following particular types of subcategories of categories of the form StrΣ are
of special interest:

Horn classes: Let there be given a set I of Σ–implications

α1 ∧ α2 ∧ . . . ∧ αn =⇒ β

where n ∈ N and αi and β are atomic Σ–formulas (i.e., either Σop-equations, or for-
mulas R(t1, . . . , tm) where R ∈ Σrel is an m–ary relational symbol and t1, . . . , tm are
terms of the corresponding sorts). The full subcategory Mod(Σ, I) of StrΣ spanned
by all Σ–structures satisfying the implications in I is then called a (universal) Horn
class. If, for each implication in I, the conclusion β is in fact an equation, we call
the Horn class quasivarietal.

In case Σrel = ∅ the category Mod(Σ, I) is called a quasivariety. The category
POS of partially ordered sets is an example of a Horn class, which is not a quasiva-
riety. Horn classes are locally finitely presentable categories (see [2]).

Categories of partial algebras: Denote by PAlgΣ the full subcategory of StrΣ consisting
of those Σ-structures A for which each relation RA (R ∈ Σrel, arR = (s1, . . . , sn, s0))
satisfies

(a1, . . . , an, a0), (a1, . . . , an, b0) ∈ RA =⇒ a0 = b0.

In other words, for any A in PAlgΣ each relation RA with arity (s1, . . . , sn, s0) “is”
a partial map from some subset domRA ⊂ As1 × . . .× Asn into As0 .

Considering categories of the form PAlgΣ we might speak of partial operational
symbols instead of relational symbols and denote their arities the same way as for
(total) operational symbols; we also might write Σp instead of Σrel and Σt instead
of Σop in this case, and then call Σ a signature of partial algebras.

Essentially equational (essentially algebraic) categories: By an essentially equational
theory (Ω, def, E) with set of sorts S we mean a S–sorted finitary signature Ω =
Ωt ∪̇ Ωp of partial algebras together with finite sets defω of Ωt–equations for each ω ∈
Ωp (the domain conditions of ω), where for arω = s1 × . . .× sn → s0 the elements of
defω are equations in the S-sorted variables xs1 , . . . , xsn , and a set E of Ω–equations
(the identities of the theory). The theory is called finite if S and Ω are finite sets.

A partial Ω–algebra A is called a model of this theory iff

(i) the operations ωA are total for each ω ∈ Ωt;

(ii) for ω ∈ Ωp with arω = s1 × . . .× sn → s0 and (a1, . . . , an) ∈ As1 × . . .× Asn

one has (a1, . . . , an) ∈ domωA iff tA(a1, . . . , an) = t′A(a1, . . . , an) for all equa-
tions t ∼ t′ ∈ defω.

(iii) A satisfies the identities of E1.

1Satisfaction here is meant in the weak sense: if both sides of the equation are defined then
they are equal.
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These models form the full subcategory Mod(Ω, def, E) of PAlgΩ (which thus is a
concrete category over SetT ).

Categories of the form Mod(Ω, def, E) for essentially equational theories (Ω, def, E)
are called essentially algebraic (or essentially equational) categories. It is shown in
[2] that the locally finitely presentable categories are (up to equivalence of categories)
precisely the essentially equational categories.

A paradigmatic example of a (1-sorted) essentially equational category ist the
category Cat of small categories and functors: the total operations are — besides the
identities as constants — domain and codomain, the only partial (binary) operation
is composition and defcomposition consists of the single equation domain (x) =
codomain (y). Cat is not (equivalent to) a Horn class.

Each quasivariety has a canonical representation by an essentially equational
theory as follows (see [1]): add to the given siganture, for each implication

%1 ∼ τ1 ∧ . . . ∧ %n ∼ τn =⇒ π ∼ τ,

one partial operation ω with domain condition defω = {%i ∼ τi | i = 1, . . . , n}
together with the equations ω ∼ π and ω ∼ τ .

Results

For a given S–sorted finitary signature Σ = Σop∪Σrel we define an S∗–sorted finitary
signature of algebras ΩΣ as follows:

• S∗ = S ∪̇{sR | R ∈ Σrel} is the set of sorts.

• ΩΣ
op = Σop ∪̇

⋃
{ΣR | R ∈ Σrel} is its set of operational symbols, where,

for R ∈ Σrel of arity s1 × . . . × sn, the set ΣR consists of n = n(R) (unary)
operational symbols Rπi (i = 1, . . . , n) with arities sR → si; the arity of
σ ∈ Σop is the one given by the signature Σ.

Note that ΩΣ is finite provided Σ is finite.

Proposition 1 For every S–sorted finitary signature Σ there exist a finitary S∗–
sorted signature of algebras ΩΣ, a set IΣ of ΩΣ–implications, and functors

StrΣ
GΣ

−−−→ Mod(ΩΣ, IΣ)
FΣ

−−−→ Str Σ

such that FΣ ◦GΣ = 1 and GΣ ◦ FΣ ' 1.
If the signature Σ is finite, so is the signature ΩΣ and also the set of implications

IΣ.

The above proposition — being only a slight generalization of [2, 3.20] — is
included here, as well as its proof, because it serves as a basis for the (proofs of) the
following results.
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Proposition 2 Let Σ be an S–sorted finitary signature and Mod(Σ,J ) ⊂ StrΣ a
quasivarietal Horn class. Then there exists a set IJ of ΩΣ–implications (of the same
cardinality as J ) such that GΣ and FΣ can be restricted to an equivalence between
Mod(Σ,J ) and the S∗–sorted quasivariety Mod(ΩΣ, IΣ ∪ IJ ).

Proposition 3 Let Σ be an S–sorted finitary signature and H = Mod(Σ,J ) ⊂ StrΣ
an arbitrary universal Horn class. Then there exists an essentially equational theory
(ΩH, def, EH) with set of sorts S∗ such that H and Mod(ΩH, def, EH) are equivalent.

If Σ is a finite signature and the set J of implications is finite, then (ΩH, def, EH)
is a finite theory.

Proofs

Proof of Proposition 1. For Σ = Σop ∪ Σrel with set of sorts S we have S∗ =
S ∪̇ Σrel and ΩΣ = Σop ∪̇

⋃
{ΣR | R ∈ Σrel}. Define IΣ as

IΣ =
{

Rπ1x ∼ Rπ1y ∧ . . . ∧ Rπnx ∼ Rπny =⇒ x ∼ y | R ∈ Σrel

}
Given a Σ–structure

A =
(
(As)s∈S, (σA)σ∈Σop , (RA)R∈Σrel

)
define

GΣA =
(
(Āt)t∈S∗ , (σĀ)σ∈Σop , ( RπĀ

i )Rπi∈ΣR, R∈Σrel

)
by

• Āt : =

{
As if t = s ∈ S
RA if t = sR, R ∈ Σrel

• σĀ : = σA

• RπĀ
i : =

n(R)∏
i=1

Asi
⊃ RA πi−−→ Asi

i.e., RπĀ
i is the (restricted) product projection.

GΣA then obviously satisfies all implications in IΣ. GΣ becomes a functor if one
defines, for a StrΣ–morphism h = (hs)s∈S : A −→ B, GΣh =

(
h̄t : Āt −→ B̄t

)
t∈S∗ by

h̄t =


hs : As −→ Bs if t = s ∈ S

n(R)∏
i=1

hsi
: RA −→ RB if t = sR, R ∈ Σrel

2

2here, clearly, h̄sR
is meant to be

∏
hsi restricted and corestricted to RA and RB respectively.
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Now define, for any (ΩΣ, IΣ)–model

A =
(
(At)t∈S∗ , (σA)σ∈ΩΣ

op

)
,

the Σ–model
FΣA =

(
(Ãs)s∈S, (σÃ)σ∈Σop , (RÃ)R∈Σrel

)
by

• Ãs : = As,

• σÃ : = σA,

• RÃ : = im 〈RπA
i 〉 i.e., RÃ is the image of the map 〈RπA

i 〉 : AsR
−→

n(R)∏
i=1

Asi
.

FΣ becomes a functor if we define

FΣ
(
(At

ht−−→ Bt)t∈S∗
)

= (As
hs−−→ Bs)s∈S.

It is obvious that the equation FΣ◦GΣ = 1 holds. Also for A =
(
(At)t∈S∗ , (σA)σ∈ΩΣ

)
and GΣ ◦ FΣA =

(
(Ã

-
t)t∈S∗

)
,

(
(σ

¯̃A
)

σ∈ΩΣ

)
one obviously has

• Ã
-
s = As for each s ∈ S

• σ
¯̃A = σA for each σ ∈ Σop

For R ∈ Σrel we have Ã
-
sR

= RÃ = im
〈(

RπA
i

)
i

〉
. Since A satisfies the implications

of IΣ, the map
〈(

RπA
i

)
i

〉
is monic, hence a bijection χA

R : AsR

∼−−→ RÃ. Similarly,

for h = (ht)t∈S∗ : A −→ B in Mod(ΩΣ, IΣ) and GΣ ◦ FΣh = (¯̃h)t∈S∗ one has ¯̃hs = hs

for each s ∈ S. For R ∈ Σrel the map ¯̃hSR
: RÃ −→ RB̃ is the (co/restriction) of

n(R)∏
i=1

hsi
. Hence, in the following diagram all cells commute.

AsR

χA
R

��

RπA
i

��

hsR // BsR

χB
R

��

RπB
i

��

RÃ
¯̃
hR //

��

RB̃

��∏
Asi

πi

��

Q
hsi //

∏
Bsi

πi

��
Asi hsi

// Bsi
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Thus, the S∗–sorted maps χA
t : At −→ ¯̃At with

χA
t =

{
1As if t = s ∈ S
χA

R if t = sR, R ∈ Σrel

are isomorphisms A −→ GΣFΣA, natural in A. 3

Lemma Let Σ be a S–sorted finitary signature and α = Q(t1, . . . tn) an atomic
Σ–formula with Q a relational symbol of arity s1 × . . . × sn. Let Eα be the set of
ΩΣ–equations

Eα =
{

Qπ1 ∼ t1, . . . ,
Q πn ∼ tn

}
.

Then the following holds:

(i) If ā = (a1, . . . , am) is an assignment to variables in the Σ–structure A such that(
tA1 (ā), . . . , tAn (ā)

)
∈ QA, then there exists an assignment ā∗ = (b, a1, . . . , am)

in the (ΩΣ, IΣ)–model GΣA fulfilling all equations in Eα.

(ii) Let b̄ = (b, a1, . . . , am) be an assignment to variables in the (ΩΣ, IΣ)–model A
such that b̄ fulfills all equations in Eα; then

(
tF

ΣA
1 (b̄•), . . . , tF

ΣA
n (b̄•)

)
∈ QFΣA

for the assignment b̄• = (a1, . . . , am) in the in the Σ–structure FΣA.

Proof x1, . . . , xm denote the S–sorted variables needed by t1, . . . , tn, xi of sort si.
Let A =

(
(As), (σA)σ, (RA)R

)
be a Σ–structure and ā = (a1, . . . , am) with

ai ∈ Asi
an assignment to the variables x1, . . . , xm, such that

(
tAi (ā), . . . , tAn (ā

)
∈ QA.

Then ā∗ = (b, a1, . . . , an) with b =
(
t1(ā), . . . , tn(ā)

)
is an assignment to the S∗–

sorted variables (x, x1, . . . , xm) with x of sort sQ in the ΩΣ–model GΣA. To prove
that ā∗ fulfills all equations in Eα now is trivial.

Conversely, if b̄ = (b, a1, . . . , am) is an assignment to the S∗–sorted variables
(x, x1, . . . , xm) with x of sort sQ in the Mod(ΩΣ, IΣ)–model A =

(
(At)t, (σA)σ

)
ful-

filling all equations in Eα a straightforward calculation shows that for the assignment
b̄• = (a1, . . . , am) to the S–sorted variables x1, . . . , xm in the Σ–structure FΣA one
has

(
tF

ΣA
1 (b̄•), . . . , tF

ΣA
n (b̄•)

)
∈ QFΣA. 3

Proof of Proposition 2. For each implication

J : α1 ∧ . . . ∧ αk =⇒ s ∼ t

we consider the sets Eαi
of ΩΣ–equations as in the Lemma where applicable. If

αi = (si ∼ ti) is an equation we define Eαi
to be {si ∼ ti}. By ei we denote the

conjunction of the equations of Eαi
, i.e.,

ei =

{ (
Riπ1 ∼ ti1

)
∧ . . . ∧

(
Riπni

∼ tini

)
if αi = Ri(t

i
1, . . . t

i
ni

)
si ∼ ti if αi = (si ∼ ti)
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Let now J̄ be the implication

J̄ : e1 ∧ e2 ∧ . . . ∧ ek =⇒ s ∼ t

and IJ the set of all implications J̄ for J ∈ J . It remains to show that GΣ maps
H = Mod(Σ,J ) into Mod(ΩΣ, IΣ∪IJ ) and that FΣ maps this category back into H.

Let A =
(
(As)s, (σA)σ, (RA)R

)
be in H. It suffices to show that GΣA satisfies

all implications of the form J̄ . Let now b̄ be an assignment to the variables needed
for J̄ in GΣA satisfying the premis J̄ . Then b̄ satisfies all equations in Eαi

for each
i = 1, . . . , k. By (ii) of the Lemma there results an assignment b̄• in FΣGΣA = A
such that each atomic formula αi is satisfied by b̄•. Since J holds in A we conclude
sA(b̄•) = tA(b̄•), hence GΣAs(b̄) = GΣAt(b̄), since b̄ and b̄• differ only in (not) assigning
values to variables of the sorts sRi

which don’t occur in s and t respectively.
Conversely, let A =

(
(At)t, (σA)σ

)
be in Mod(ΩΣ, IΣ∪IJ ) and ā an assignment

to the variables needed in J ∈ J in the Σ–structure FΣA, such that each atomic
formula αi occuring in the premis of J is satisfied by ā. By (i) of the Lemma there
exists an assignment ā∗ in GΣFΣA fulfilling the equations in Eαi

for all i. Since
GΣFΣA and A are isomorphic by Proposition 1 and A satisfies the implications in
IJ so does GΣFΣA; hence we conclude

sGΣFΣA(ā∗) = tG
ΣFΣA(ā∗), thus sFΣA(ā) = tF

ΣA(ā). 3

Before considering the general case of an arbitrary Horn class H ⊂ StrΣ we recall
from the introduction the description of the quasivariety Mod(ΩΣ, IΣ) by means of
an essentially equational theory: (Ω̃Σ, def, EΣ) is the essentially equational theory
with

• S∗ as set of sorts,

• Ω̃Σ
t = ΩΣ

op

• Ω̃Σ
p = {R̃ | R ∈ Σrel}, where for each R ∈ Σrel of arity s1 × . . . × sn the

corresponding R̃ is considered as a (binary) operational symbol of arity sR ×
sR → sR with domain condition

defR̃ =
{

Rπix ∼ Rπiy | i = 1, . . . , n
}

.

• EΣ =
⋃

R∈Σrel

ER with ER =
{

R̃(x, y) ∼ x, R̃(x, y) ∼ y
}

It is well known (and easy to see) that the obvious forgetful functor

Mod(Ω̃Σ, def, EΣ) −→ Mod(ΩΣ)

yields an isomorphism

Mod(Ω̃Σ, def, EΣ) −→ Mod(ΩΣ, IΣ).
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Proof of Proposition 3. We continue as in the preceding remark and enlarge the
theory (Ω̃Σ, def, EΣ) to (ΩH, def, EH) as follows:

• ΩH
t : = Ω̃Σ

t = ΩΣ
op

• ΩH
p : = Ω̃Σ

p ∪̇ {J̃ | J ∈ J } = Σrel∪̇ {J̃ | J ∈ J } where for each implication

J : α1 ∧ . . . ∧ αk =⇒ β

in J (with αi = Ri(t
i
1, . . . , t

i
ni

), β = Q(t1, . . . , tm) and needed variables

x1, . . . , xl of sorts s1, . . . , sl ∈ S) J̃ is a partial operational symbol with arity

sR1 × . . .× sRk
× s1 × . . .× sl → sQ

3

with domain condition defJ̃ =
k⋃

i=1

Eαi
,

• EH = EΣ ∪ EJ with EJ : =
⋃

J∈J

{
QπiJ̃ ∼ ti | i = 1, . . . ,m

}
.

Observe first that the obvious forgetful functor

V : Mod(ΩH, def, EH) −→ Mod(Ω̃Σ, def, EΣ)

is full: if h = (ht)t : V A −→ V B is a homomorphism in Mod(Ω̃Σ, EΣ) and J ∈ J
it is to be shown that, for each ā = (b1, . . . bk, a1, . . . , al) fulfilling all equations in
defJ̃ in the algebra A, h(ā) fulfills these equations in B and also the homomorphism
condition

hQ ◦ J̃A(ā) = J̃B ◦ hsR1
× . . .× hsRk

× hs1 × . . .× hsl
(ā) = J̃Bh(ā).

To prove this, consider ā = (b1, . . . , bk, a1, . . . , al) ∈ dom J̃A with bi of sort sRi
, aj

of sort sj. ā ∈ dom J̃A implies bi = RiπA
ji
(ā) = (tiji

)A(ā) for all i, ji; since h is a
morphism in Mod(ΩΣ, IΣ) one has

hsRi
(tiji

)A(ā) = (tiji
)B

(
h(ā)

)
for all i, ji,

and therefore
RiπB

ji

(
h(ā)

)
= RiπB

ji

(
(hsRi

(bi)
)

= (tiji
)B

(
h(ā)

)
,

thus, h(ā) ∈ domJ̃B. Now, for ā ∈ domJ̃A, one concludes for all terms ti of sorts s′i
occuring in the conclusion β:

QπB
i J̃B

(
h(ā)

)
= tBi

(
h(ā)

)
= hs′i

(
tAi (ā)

)
= hs′i

(
QπA

i J̃A(ā)
)

= QπB
i hQ

(
J̃A(ā)

)
3omit here sRi

if αi is of the form t1 ∼ t2
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Since V B satisfies the implications in IΣ, h is a homomorphism.
Next, we lift GΣ and FΣ along V to obtain functors G and F such that the

diagram

Mod(Σ,J )

��

G // Mod(ΩH , def, EH)

V
��

F // Mod(Σ,J )

��
StrΣ

GΣ
// Mod(ΩΣ, IΣ)

FΣ
// StrΣ

commutes, which immediately yields F ◦G = 1 and, since V is full and faithful, also
G ◦ F ' 1.

Let A =
(
(As)s, (σA)σ, (RA)R

)
satisfy all implications J ∈ J . Consider

GΣA =
(
(Āt), (σ̄A)σ∈ΩΣ

t
, (R̃A)R∈Σrel

)
(we identify, for the sake of simplicity, Mod(Ω̃Σ, def, EΣ) and Mod(ΩΣ, IΣ)).
Define GA : =

(
(Āt), (σ̄A)σ∈ΩΣ

t
, (R̃A)R∈Σrel

, (J̃A)J∈J
)
, where for

J : R1(t
1
1, . . . , t

1
n1

) ∧ . . . ∧Rk(t
k
1, . . . , t

k
nk

) =⇒ Q(t1, . . . , tm) (*)

in J with S–sorted variables x1, . . . xl of sorts s1, . . . sl needed for the tjji
, ti, the

partial operation

RA
1 × . . .×RA

k ×
l∏

i=1

Asi
⊃ domJ̃A J̃A

−−−→ QA

with

domJ̃A = {(b1, . . . , bk, ā) | bj ∈ RA
j , ā ∈

l∏
i=1

Asi
, bj =

(
tj1(ā), . . . , tjnj

(ā)
)
}

is defined by
J̃A(b1, . . . , bk, ā) =

(
t1(ā), . . . , tm(ā)

)
Then any (b1, . . . , bk, ā) ∈

k∏
j=1

RA
j ×

l∏
i=1

Asi
(with bj = (bj

1, . . . , b
j
nj

)) satisfies all equa-

tions in defJ̃ iff, for all j, ij, the equation bj
ij

= RjπA
ij
(bj) = (tjij)

A(ā) holds, i.e.,

iff (b1, . . . , bkā) ∈ domJ̃A, and, if so, J̃A(b1, . . . , bk, ā) ∈ QA since A satisfies the
implication J .

GA satisfies the identities of EJ , hence of EH, since for each (b1, . . . , bk, ā) as
above one has

QπA
i J̃A(b1, . . . , bk, ā) = Qπi

(
tA1 (ā), . . . , tAm(ā)

)
= tAi (ā) = tAi (b1, . . . , bk, ā).
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Since V is full we can define Gh = GΣh for morphisms h in Mod(Σ,J ).
In order to define F we only need to show that, for each A in Mod(ΩH, def, EH),

A =
(
(At)t, (σA)σ, (R̃

A)R, (J̃A)J

)
, the Σ-structure FΣV A =

(
(Ãs)s, (σÃ)σ, (RÃ)R

)
satisfies all implications J ∈ J . Hence let J ∈ J be as in (*) and ā an assignment
to the variables x1, . . . , xl in the algebra FΣV A such that for j = 1, . . . , k

b̃j : =
(
(tj1)

Ã(ā), . . . , (tjnj
)Ã(ā)

)
∈ RÃ

j = im〈 RjπA
i 〉.

Then there exist uniquely determined elements (recall that the maps 〈 RjπA
i 〉 are

monic) bj ∈ RA
j (j = 1, . . . , k) with

RjπA
ij
(bj) = (tjij)

A(ā) for all j, ij.

Since A is an (ΩH, def, EH)–model this means in particular: (b1, . . . , bk, ā) ∈ domJ̃A,
J̃A(b1, . . . , bk, ā) ∈ QA, and QπA

i J̃A(b1, . . . , bk, ā) = tAi (ā) for i = 1, . . . ,m. It follows(
tÃ1 (ā), . . . , tÃm(ā)

)
=

(
tA1 (ā), . . . , tAm(ā)

)
= 〈 QπA

i 〉
(
J̃A(b1, . . . , bk, ā)

)
∈ QÃ. 3
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