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Abstract

The category of Hopf monoids over an arbitrary symmetric monoidal category as
well as its subcategories of commutative and cocommutative objects respectively
are studied, where attention is paid in particular to the following questions: (a)
When are the canonical forgetful functors of these categories into the categories of
monoids and comonoids respectively part of an adjunction? (b) When are the various
subcategory-embeddings arsing naturally in this context reflexive or coreflexive? (c)
When does a category of Hopf monoids have all limits or colimits? These problems
are also shown to be intimately related. Particular emphasis is given to the case of
Hopf algebras, i.e., when the chosen symmetric monoidal category is the category
of modules over a commutative unital ring.
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1 Introduction

In his seminal book “Hopf Algebras” [12] Sweedler states, after discussing the
existence of free bialgebras over coalgebras and cofree bialgebras over algebras,
the following concerning analoguous problems for Hopf algebras:

1. Given a coalgebra D, there is
a.1 a free Hopf algebra on D and
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a.2 a free commutative Hopf algebra on D.
a.3 Both of these are cocommutative if D is cocommutative.

2. Given an algebra A there is
b.1 a cofree Hopf algebra on A and
b.2 a cofree cocommutative Hopf algebra on A.
b.3 Both of these are commutative if A is.

He does not give any proof of these statements, and it took a couple of years
until Takeuchi proved — with two completely different constructions — a.1
and a.2 [14]. Concerning Sweedler’s further claims the author has not seen any
proof in print.

It should be noted at this stage that in the more recent literature there seems to
be a tendency to use the term “cofree Hopf algebra” differently from Sweedler’s
appropriate use, by referring to a Hopf algebra whose underlying coalgebra is
cofree over some vector space (see, e.g., [7]).

There is another obviously interesting question concerning (co)universal con-
structions in the realm of Hopf algebras: is it possible to adjoin (freely or
cofreely) an antipode to a bialgebra, in other words: is the category of Hopf
algebras a reflexive or coreflexive subcategory of that of bialgebras? (see e.g.
[13]). The trivial connection between the existence of (co)frees and (co)reflec-
tions clearly is that the latter imply the former due to composition of adjoints
(the category of bialgebras has free objects and cofree objects, respectively).

That this implication can be reversed is one of the results of this note, which
tries to shed some light on the existence and relationship of such (co)universal
constructions by purely categorical methods.

A further non-trivial problem is that of existence of limits and colimits re-
spectively in categories of Hopf algebras due to the algebraic and coalgebraic
nature of their structure. We will show that the existence of arbitrary free or
cofree Hopf algebras implies completeness—even local presentability—of the
respective category.

In view of the increasing interest in Hopf algebras not only over a field k but
rather over an arbitrary commutative unital ring R (see e.g. [4]) one is led to
use as a base category for such studies the category ModR of R–modules. In
fact we take a further step of abstraction and use, for developing a framework
to deal with these universal constructions, an arbitrary symmetric monoidal
category C. This enables us to extend our study to categories of group objects
in a suitable category with finite products; this way we have an additional
tool to deal with a category like cocHopfR, the category of cocommutative
Hopf algebras over R, which is known to be the category of group objects
in cocCoalgR, the (cartesian closed — see [3]) category of cocommutative
coalgebras.
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Our results then include in particular, referring to Sweedler’s claims above,
purely categorical arguments for

• a.1 ⇒ a.2 (Corollary 4.3)
• a.3 for the case of the free commutative Hopf algebra (Corollary 4.3).

Concerning the remaining case we only prove the somewhat weaker state-
ment that free cocommutative Hopf algebras over cocommutative coalgebras
exist (Theorem 4.5).
• b.1 ⇒ b.2 (Corollary 4.4)
• b.3 for the case of the cofree cocommutative Hopf algebra (Corollary 4.4),

and again, for the remaining case the weaker statement that cofree commu-
tative Hopf algebras over commutative algebras exist (Theorem 4.8).

We add, as an appendix, a review of Takeuchi’s proof mentioned above from
a more categorical point of view in order to indicate which role is played by
his assumption that the underlying ring is even a field.

2 A review of bimonoids

2.1 The definition of bimonoids. Given a symmetric monoidal category
C = (C,− ⊗ −, I), the categories MonC of monoids in C and the category
ComonC of comonoids in C inherit, in a canonical way, the monoidal structure
from C making them symmetric monoidal categories again. Restricting these
structures to their subcategories cocComonC of cocommutative comonoids
and cMonC of commutative monoids respectively, here yields the cartesian
respectively cocartesian structure. One then has

• MonComonC = ComonMonC, and this category is called the category
BimonC of bimonoids in C, which has subcategories
• cBimonC = ComoncMonC, the category of commutative bimonoids,
• cocBimonC = MoncocComonC, the category of cocommutative bimonoids.

Somewhat more explicitely and with some redundance, a bimonoid thus is a
quintuple C = (C,m, e, µ, ε) where (C,m, e, ) is a monoid such that m and e
are even comonoid homomorphisms, and (C, µ, ε) is a comonoid such that µ
and ε are monoid homomorphisms. The morphims in BimonC are monoid-
and comonoid homomorphisms simultanously. For details see [10]. We denote
a bimonoid by C = (Cc, Cm) where Cc := (C, µ, ε) is the underlying comonoid
and Cm := (C,m, e) the underlying monoid. Note that, assigning to any bi-

monoid C, the bimonoid Cop =
(
(Cc)op, (Cm)op)

)
made up of the opposites of

the monoid and comonoid part of C, defines a functorial isomorphism (−)op

on BimonC.
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2.2 Convolution monoids. For any pair of bimonoids (C,D) the hom-set
C(C,D) carries the structure of a monoid (in Set) given by the multiplication
(for f, g ∈ C(C,D))

f ∗ g : = m ◦ (f ⊗ g) ◦ µ
with µ the comultiplication of C and m the multiplication of D, and the unit

C
ε−→ 1

e−→ K

where ε is the counit of C and e the unit of D. We denote this monoid, called
convolution monoid, by Conv(C,D).

2.3 In case the category C is locally presentable and the functor − ⊗ −
preserves directed colimits or, for each C in C, the functor C⊗− preserves at
most countable coproducts it holds that (see [10]), in the following diagram,

• all categories are locally presentable,
• all arrows labelled fm are finitary monadic functors,
• all arrows labelled cm are comonadic functors,
• all hooked arrows are accessible embeddings with r denoting a reflective and
c a coreflective one.

cocBimonC � � c //

fmuulllllllllllll BimonC
cm

''OOOOOOOOOOOO
fm

vvmmmmmmmmmmmmm cBimonC? _roo

cm
''OOOOOOOOOOO

cocComonC

cm

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXX ComonC//c� �

cm

((QQQQQQQQQQQQQQ MonC oo r ? _

fm

wwnnnnnnnnnnnnn cMonC

fm
ssgggggggggggggggggggggggggg

C

3 Hopf monoids

3.1 Antipodes. Hopf monoids are defined to be special bimonoids as follows.

Definition A bimonoid C = (C,m, e, µ, ε) is called Hopf monoid, provided
there exists a C-morphism S : C → C satisfying the following equations:

m ◦ (S ⊗ 1C) ◦ µ = e ◦ ε = m ◦ (1C ⊗ S)⊗ µ

S is called the antipode of C.

We collect some general properties of antipodes as follows.

Facts Let C be a bimonoid with antipode S; then
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1. the antipode is unique (since it is the inverse of the 1C in the convolution
monoid Conv(C, C).

2. S : C −→ Cop is a bimonoid morphism.
3. Every bimonoid homomorphism f : C → C ′, where C ′ also is a Hopf

monoid with antipode S ′, f respects the antipodes, i.e., one has

S ′ ◦ f = f ◦ S.

(since S ′ ◦ f and f ◦ S both are inverses of f in the convolution monoid
Conv(C, C ′)).

3.2 The category HopfC. Since, by the above, bimonoid homomorphisms
respect antipodes we define

Definition The full subcategory of BimonC spanned by all bimonoids with
an antipode is called the category HopfC of Hopf monoids. cHopfC and

cocHopfC denote the categories of commutative and cocommutative Hopf
monoids, respectively.

The following two cases are of particular interest

Car The cartesian case, i.e., when the monoidal structure on C is just given
by cartesian product (and terminal object 1);

Mod The module case, i.e., when C is ModR, for some commutative ring R
with unit, equipped with the usual tensor product.

3.3 Groups in a category. In the cartesian case the category of comonoids
in C is equivalent to C since every C-object C carries only the trivial comonoid
structure (C,∆, !) with ∆ the diagonal and ! the unique morphism into the
terminal object; moreover, the monoidal structure on MonC inherited from C
is again the cartesian one. Thus, in this case BimonC = MonC. Moreover, the
defining equations for an antipode here agree with the defining equations for
group-inversion. Hence, in the cartesian case, the category HopfC is nothing
but the category Grp(C) of groups in C.

Remark It follows from 2.1 that, in particular,

1. cocHopfC = Grp(cocComonC)

2. cHopfC =
[
Grp(cMonC)op

]op
.

3.4 Hopf algebras. In the module case one writes HopfR : = HopfModR
and calls the Hopf monoids in ModR Hopf algebras.
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4 Universal constructions for HopfC

4.A The general case

For the whole of this section we will assume that the category C is locally
presentable and the functor − ⊗ − preserves directed colimits or, for each C
in C, the functor C ⊗− preserves at most countable coproducts, as in 2.3.

4.1 Accessability. Concerning categorical properties of the categories of
Hopf monoids we then have

Proposition Each of the categories HopfC, cHopfC, and cocHopfC is ac-
cessible.

Proof: Since Hopf monoids are bimonoids C equipped with a bimonoid ho-
momorphism S : C → Cop they can be considered as (−)op-algebras in the

sense of [1]) for the functorial isomorphism BimonC (−)op

−−−→ BimonC (see
2.1). This functor clearly is accessible and therefore the forgetful functor
Alg(−)op → BimonC is accessible (see [1,2]) and so is its composition U with
BimonC→ C by 2.3. We define natural transformations ϕ1, ϕ2, ψ : U −→ U
as follows (denoting an Alg(−)op–object as a pair (C, S : C −→ Cop) with
C = (C,m, e, µ, ε))

ϕ1
(C,S) : = C

µ−→ C ⊗ C S⊗1−−→ C ⊗ C m−→ C

ϕ2
(C,S) : = C

µ−→ C ⊗ C S⊗1−−→ C ⊗ C m−→ C

ψ(C,S) : = C
ε−→ I

e−→ C.

Then, obviously, HopfC is the equifier of (ϕ1, ψ) and (ϕ2, ψ) in the sense of
[2] and thus an accessible category by [2, 2.76].
The same argument applies if instead of BimonC the categories cBimonC
and cocBimonC are considered. �

4.2 Closure properties. It clearly would be interesting to know more about
closure properties of the subcategories depicted in the following diagram. By
2.3 we already know that the embeddings in the bottom row are reflexive
(labelled r) and coreflexive (c) respectively; they are also closed under directed
and absolute colimits (see [10]).

cocHopfC � � //
_�

��

HopfC
_�

��

cHopfC? _oo
_�

��
cocBimonC � � c // BimonC cBimonC? _roo
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We also have

Proposition HopfC is closed in BimonC w.r.t. directed colimits and ab-
solute limits and colimits and so are the other subcategories depicted in the
above diagram.

Proof: Given a directed colimit Ci
λi−→ C (i ∈ I) in BimonC where each Ci

has an antipode Si, the colimit property yields a morphism C S−→ Cop. That
S satisfies the relevant equations follows from a simple diagram chase which
can be carried out in C since the forgetful functor BimonC −→ C preserves
directed colimits. The proof for absolute (co)limits is essentially the same.
The same argument works for the commutative and the cocommutative case.

�

Corollary Also the subcategories in the top row of the diagram above are
closed in HopfC w.r.t. directed and absolute colimits and absolute limits.

For additional information in the case of Hopf algebras see Section 5.

4.3 Universal constructions. The following interesting questions now arise
naturally:

• Is HopfC reflexive or coreflexiv in BimonC?
• Is HopfC (co)monadic over MonC or ComonC?
• Is HopfC a locally presentable category?

Clearly coreflexivity or comonadicity cannot be expected in general, as the
simpliest case C = Set shows. These questions are related as follows.

Proposition The following are equivalent

(a) HopfC −→ ComonC has a left adjoint.
(b) HopfC is finitary monadic over ComonC.
(c) HopfC is closed in BimonC w.r.t. limits.
(d) HopfC is reflexive in BimonC.

Any of these conditions implies that HopfC is locally presentable.

Proof: (a) implies (b) by the Beck–Paré Theorem since HopfC is closed in
BimonC under absolute coequalizers (4.2) and BimonC→ ComonC creates
those (see 2.3). (b) implies (c) since the forgetful functors of both categories
create limits. (c) implies (d) by the reflection theorem for locally presentable
categories (see [2, 2.48]). (d) implies (a)statement by composition of adjoints.
Given any one of these properties HopfC is not only accessible (4.1) but also
complete. �
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For examples of when the above conditions might be satisfied see the following
subsections.

Corollary Assume that the equivalent conditions of the previous proposition
are satisfied. Then the following hold:

1. cHopfC is reflexive in HopfC.
2. The forgetful functor cHopfC→ ComonC has a left adjoint.
3. cHopfC is reflexive in cBimonC.
4. The left adjoint to cHopfC→ ComonC maps cocommutative comonoids

to cocommutative (and commutative) Hopf monoids.

Proof: Ad 1. We only need to show that cHopfC is closed in HopfC
w.r.t. limits, but this is obvious since HopfC and cBimonC are reflexive
in BimonC. 2. is trivial by composition of adjoints. 3. follows similarly to 1.

Concerning 4. consider the following diagram where (−)op refers to taking the
opposite comonoid structure. Since this is an isomorphism on both categories,
the adjoint to | − | will send an object fixed by (−)op at the bottom row to
one fixed by (−)op at the top row.

cHopfC (−)op
//

|−|′

��

cHopfC

|−|

��
ComonC (−)op

// ComonC �

4.4 Couniversal constructions. There is a result seemingly—but not for-
mally—dual to Proposition 4.3 as follows:

Proposition The following are equivalent

(a) HopfC −→MonC has a right adjoint.
(b) HopfC is comonadic over MonC.
(c) HopfC is closed in BimonC w.r.t. colimits.
(d) HopfC is coreflexive in BimonC.

Any of these conditions implies that HopfC is locally presentable.

Proof: (a) implies (b) by the Beck–Paré Theorem since HopfC is closed in
BimonC under absolute equalizers (4.2) and BimonC → ComonC creates
those (see 2.3). (b) implies (c) since the forgetful functors of both categories
create colimits. (c) implies (d) by the Special Adjoint Functor Theorem (by
3. HopfC is cocomplete, thus locally presentable; now recall that a locally
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presentable category is cowellpowered and has a generator). (d) implies (a) by
composition of adjoints. �

As above one now gets

Corollary Assume that the equivalent conditions of the previous proposition
are satisfied. Then the following hold:

1. cocHopfC is coreflexive in HopfC.
2. The forgetful functor cocHopfC→MonC has a right adjoint.
3. cocHopfC is coreflexive in cocBimonC.
4. The right adjoint to cocHopfC→MonC maps commutative monoids to

commutative (and cocommutative) Hopf monoids.

4.B The cartesian case

It has been shown in [11] that—given the general assumptions of this section—
in the cartesian case, i.e., when Hopf monoids in C are just the group objects
in C, HopfC is a reflexive subcategory of BimonC. By Remark 3.3 we thus
obtain

4.5 Theorem For every commutative unital ring R the following hold.

1. cocHopfR is a reflexive subcategory of cocBialgR.
2. The forgetful functor cocHopfR → cocCoalgR has a left adjoint.
3. The category cocHopfR is locally presentable.

As mentioned before we cannot expect an example towards the application of
4.4 in the cartesian case.

4.C The module case

4.6 Free Hopf algebras. Concerning the question as to when the state-
ments of Proposition 4.3 might be true, in the module case the following is
known: statement (a)“free Hopf algebras exist” holds for R = k a field by a
classical result of Takeuchi’s [14] (see Appendix); (d)“free adjunction of an
antipode is possible” is shown to hold in [13] in case every element in an R-
coalgebra is contained in a subcoalgebra which, as an R-module, is finitely
generated and projective (which certainly is the case for R a field).

4.7 Cofree Hopf algebras. It is claimed in [12] that, for R a field, a cofree
Hopf algebra can be constructed over every algebra; so this would be a situa-
tion, where 4.4 applies.
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4.8 Commutative Hopf algebras. In 4.2 we have seen that in general the
category cHopfC will be closed in cBimonC only with respect to absolut and
directed colimits. In case of C = ModR we can prove more.

Proposition cHopfR is closed in cBialgR w.r.t. all colimits.

Proof: By 4.2 we only need to prove closure w.r.t. coequalizers and binary
coproducts. For coequalizers the argument from 4.2 can be adopted, since
the forgetful functor cBialgR −→ cAlgR −→ModR sends a coequalizer to a
surjection (cBialgR −→ cAlgR preserves coequalizers, and these are surjective
in cAlgR since this is a variety).

Let now C i1−→ C1 + C2
i2←− C2 be a coproduct in cBialgR with each Ci having

an antipode Si. Then Ca1
i1−→ Ca1 ⊗ Ca2

i2←− Ca2 is a coproduct in cAlgR, and
i1(c1) = c1 ⊗ e2, i2(c2) = e1 ⊗ c2 for all c1 ∈ C1, c2 ∈ C2 (see 2.1). Let
S : C1+C2 −→ (C1+C2)op be the morphism induced by the coproduct property.
Since S1 and S2 are antipodes we can conclude (writing aC1 +a C2 = (C1 ⊗
C2,m, e, µ, ε)).

m ◦ (1⊗ S) ◦ µ(x) = ε ◦ e(x) = m ◦ (S ⊗ 1) ◦ µ(x) (*)

for all x ∈ {c1 ⊗ e2 | c1 ∈ C1} ∪ {e1 ⊗ c2 | c2 ∈ C2}.

By a well known result (see e.g. [5, 4.3.3]) it follows that (*) also holds for all
x ∈ {c1 ⊗ c2 | c1 ∈ C1, c2 ∈ C2}. Thus, the linear maps C1 ⊗ C2 −→ C1 ⊗ C2

which are to be equal coincide on a generating set. �

As an immediate corollary we get the following result which, despite its com-
plete duality to Theorems 4.5 concerning the results stated, by no means
appears as that theorems formal dual.

Theorem For any commutative unital ring R the following hold:

1. cHopfR is a locally presentable category.
2. cHopfR is coreflexive in cBialgR.
3. cHopfR is comonadic over cAlgR.

Proof: 1. is a consequence of the fact that cHopfR—being accessible by 4.1—
is also cocomplete by the proposition above. For 2. and 3. use the Special
Adjoint Functor Theorem, whose assumptions are satisfied by 1., and the
Beck–Paré Theorem. �

Remark Using different methods, results 2. and 3. of the theorem above have
been obtained in [11] for von-Neumann-regular rings only.
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5 Reflections and coreflections for Hopf algebras

We summarize our results concerning the existence of reflections and core-
flections in the realm of the various categories of Hopf- and bialgebras in the
following diagram

cocHopfR
� � c?

(4.4)
//

_�

(4.5) r c?(4.4)

��

HopfR_�

r∗(4.3)(4.4) c?

��

cHopfR? _r∗
(4.3)

oo
_�

r (4.8)

��
cocBialgR

� � c
(2.3)

// BialgR cBialgR? _r
(2.3)

oo

where r and c mark embeddings being unconditionally reflective and core-
flective respectively while r∗ and c? mark embeddings whose (co)reflexivity
depends on whether HopfR has free and cofree objects respectively. The la-
bels in brackets show where to find the respective argument in this paper.

6 Appendix: Takeuchi’s Free-Hopf-Algebra construction revisited

Takeuchi [14] proves the existence of a free Hopf algebra H(C) over a coalgebra
C in a four-step process generalizing the construction of a free group on a set.

Step 1 Given C construct V = C +Cop +C +Cop + . . . and define an obvious
shift morphism : V −→ V op.

Step 2 Apply the “free functor” T : CoalgR −→ BialgR to S : V −→ V op

(one clearly might have changed steps one and two).
Step 3 Factor the bialgebra TV suitably such that the map induced by S on

the quotient makes this quotient into a (universal) Hopf algebra.

Clearly, the crucial step is the third one. Takeuchi achieves this by

• forming the subset U ⊂ TV :

U = {S ∗ 1TV (x)− eε(x) | x ∈ V } ∪ {1TV ∗ S(x)− eε(x) | x ∈ V }

and forming the ideal I = 〈U〉 generated by U in TV,
• showing that I in fact is a coideal, such that TV/I becomes a bialgebra,
• showing that I is invariant under S, such that it induces a bialgebra map
Ŝ : TV/I −→ (TV/I )op.

It is then more or less obvious that TV/I is a Hopf algebra with antipode Ŝ,
such that it remains to prove
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Step 4 (TV/I , Ŝ) is free over C (by means of C ↪→ V −→ TV −→ TV/I ).

A slightly better categorical understanding of the crucial Steps 3 and 4 might
be obtained by the following suggestion of an alternative description of the
ideal I occuring in Step 3.

Consider the class S of all bialgebra homomorphisms f : TV −→ H, into a
Hopf algebra H which respect S in the sense that

f ◦ S = SH ◦ f,

where SH is the antipode of H. Let J be the ideal

J =
⋂
f∈S

ker f.

We claim J = I. J ⊂ I is obvious since the quotient map q : TV −→ TV/I
clearly belongs to S. It thus suffices to show U ⊂ J , i.e., to prove

∀f ∈ S u ∈ U =⇒ f(u) = 0.

But this is trivial since, e.g., for u = S ∗ 1(x) − eε(x), x ∈ V , we have

f
(
eε(x)

)
= eHεH(f(x)) (since f is bialgebra homomorphism), f

(
Ŝ ∗ 1(x)

)
=

SH ∗ 1H
(
f(x)

)
(since f , in addition, respects Ŝ), and, thus,

f(u) = SH ∗ 1H − eHεH
(
f(x)

)
= 0

since H is a Hopf algebra.

Observe that, in any case, J is invariant under S: if x ∈ ⋂
f∈S

ker f then, for

each f ∈ S,
f
(
S(x)

)
= SH

(
f(x)

)
= SH(0) = 0.

Thus, as soon as J =
⋂
f∈S

ker f is a coideal, we obtain a bialgebra T/J together

with a linear map Ŝ : TV/J −→ TV/J induced by S. And this makes TV/J
a Hopf algebra: the family of maps

mf : TV/ ⋂
f∈S

ker f −→ H

induced by f ∈ S is clearly a point–separating family of linear maps and
the category of Hopf algebras is closed under such families in the category of
bialgebras as a simple diagram chase shows.

That, finally, C
i
↪→ V

η−→ TV
q−→ TV/J makes TV/J the free Hopf algebra

over C follows from the observation that any coalgebra map g : C −→ H into
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a Hopf algebra H extends uniquely to a coalgebra map V
ĝ−→ H with ĝ◦ i = g

and the homomorphic extension of ĝ belonging to S.

We finally remark that, without resorting to Takeuchi’s proof, the above
method thus provides a free Hopf algebra construction for any ringR, for which
kernels of bialgebra homomorphisms and intersections of those are coideals.
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