
ON SUBCATEGORIES OF THE CATEGORY OF HOPF ALGEBRAS
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Abstract. The various canonical subcategories of the category HopfR of Hopf algebras over a commu-
tative ring R, like those of (co)commutative Hopf algebras or Hopf algebras whose antipode is bijective
or of order 2, are shown to be locally presentable categories and reflective and coreflective in their
respective supercategories. The reflectivity results provided only hold for commutative von Neumann
regular rings, while most of the coreflectivity results are valid over any ring. As a consequence one gets
existence of free commutative Hopf algebras over coalgebras and cofree cocommutative Hopf algebras
over algebras.

1. Introduction

It has been shown recently (see [5]) that the category HopfR of Hopf algebras over a commutative
ring R is a locally presentable category, thus, in particular it has all limits and colimits, is wellpowered
and cowellpowered and has a generator (see [1]). Also, coreflections of BialgR, the category of bialgebras
over R, into HopfR have been shown to exist for any such ring, and existence of reflections has been
proved in case the ring is in addition von Neumann regular. In this restricted case also constructions of
the reflections and coreflections respectively could be described, generalizing and dualizing respectively
the familiar construction of the Hopf envelope of a bialgebra over a field k.

Note that the condition on R to be von Neumann regular is needed to ensure that homomorphisms of
coalgebras and, thus, of bialgebras have image factorizations: this fact is crucial for the explicit description
of limits of bialgebras given in [5]. That is what we refer to (possibly implicitly), whenever this condition
is used in the sequel.

This note complements these results by investigating the categories

• cHopfR, the category of commutative Hopf algebras over R,
• cocHopfR, the category of cocommutative Hopf algebras over R,
• c,cocHopfR, the category of commutative and cocommutative Hopf algebras over R,
• S2=idHopfR, the category of Hopf algebras over R with antipode satisfying S2 = id,
• biHopfR, the category of Hopf algebras over R with bijective antipode.

Recall that these subcategories are related as indicated in the digram below.
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Moreover, each of the categories c,cocHopfR, cocHopfR, cHopfR, and HopfR is a full subcategory of
the respective subcategory of BialgR, denoted analogously.

The following diagram then summarizes our results where each label c marks a coreflective embedding
and each label r a reflective one. Labels in brackets indicate that the respective result only holds over
von Neumann regular rings.
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Note that, for R = k, a field, the reflection of BialgR into HopfR is the well known Hopf envelope of a
bialgebra and the reflection of BialgR into biHopfR has been proved in [7].

Composition of adjunctions then yields the following additional results: (1) For any commutative ring
there exists a cofree cocommutative Hopf algebra over any algebra. (2) For any von Neumann regular
ring there exists a free commutative Hopf algebra over any coalgebra. The latter statement generalizes a
result of Takeuchi (see [8]) for the case of fields.

2. Prerequisites

To reduce the problem we will make use of the following well known facts.

Fact 1. For every symmetric monoidal category C, the categories MonC of monoids in C and ComonC
of comonoids in C are symmetric monoidal categories with strict monoidal underlying functors into C.
The same holds for the categories cMonC of commutative monoids in C and cocComonC of cocom-
mutative comonoids in C. Consequently, the categories BialgR, cBialgR and cocBialgR are monoidal.
HopfR, cHopfR and cocHopfR are also monoidal.

Fact 2 (Eckmann-Hilton Principle). For every symmetric monoidal category C, the category Mon(MonC)
of monoids in MonC, the category of monoids in C, coincides with cMonC, the category of commutative
monoids in C.

Dually: Comon(ComonC) = cocComonC.

Fact 3. Every strict monoidal functor F : C → C′ induces functors F̂ : MonC → MonC′ and (dually)
F ∗ : ComonC→ ComonC′ such that

MonC F̂ //

|−|
��

MonC′

|−|
��

ComonC F∗
//

|−|
��

ComonC′

|−|
��

C F // C′ C F // C′

If F has a right adjoint, then F̂ has a right adjoint and, dually:
If F has a right adjoint, then F ∗ has a right adjoint.

These adjoints commute with the underlying functors | − | as well.

Fact 4. For every symmetric monoidal category C the following hold.
(1) cMonC is closed in MonC under limits.
(2) cocComonC is closed in ComonC under colimits.

If, for every object C in C, the functor C 7→ C ⊗ − preserves (for any regular cardinal λ) λ-directed
colimits then cMonC is closed in MonC under λ-directed colimits as well.
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3. Limits and Colimits in HopfR

As shown in [5], colimits in HopfR are formed as in BialgR and the latter are the respective colimits
in AlgR supplied with the unique coalgebra structure making the colimiting maps in AlgR also coalgebra
homomorphism. In other words, if—for example—(Hi, Si)i∈I is a family of Hopf algebras and λi : Ha

i → H
a coproduct in AlgR of its underlying algebras Ha

i , then a coproduct of the family (Hi, Si)i∈I in HopfR
is (H, S) = (H,∆, ε, S) where ∆: H → H ⊗ H and ε : H → R are the unique coalgebra homomorphisms,
such that the diagrams

Hi
λi //

∆i

��

H

∆
��

Hi ⊗Hi
λi⊗λi

// H ⊗H

Hi
λi //

εi   A
AA

AA
A H

ε

��
R

(1)

commute, while S : H→ Hop,cop is the unique bialgebra homomorphism making the diagram

H
S // Hop,cop

Hi

λi

OO

Si

// Hop,cop
i

λi

OO (2)

commute. Note that, for R = k a field, the case of coproducts indeed is already contained in [8].
Limits can be constructed dually, provided that R is von Neumann regular.
This is enough to prove the following results concerning closure under limits and colimits respectively

of the various subcategories we are interested in.

Proposition 1. In the chains of subcategories

cocHopfR ⊂ S2=idHopfR ⊂ biHopfR ⊂ HopfR ⊂ BialgR

cocHopfR ⊂ cocBialgR ⊂ BialgR
each subcategory is closed under all colimits in each of its successors. In particular, each of these categories
is cocomplete.

Proof. To show that biHopfR ⊂ HopfR is closed under colimits one has, by the above, only to prove
that the morphism S in diagram (2) is bijective if all the Si are bijective. Since bijective bialgebra
homomorphisms are isomorphisms of bialgebras, one has the following commutative diagram in BialgR

Hop,cop T // H
S // Hop,cop

Hop,cop
i

λi

OO

S−1
i

// Hi

λi

OO

Si

// Hop,cop
i

λi

OO

where T is the bialgebra homomorphism induced by the family (S−1
i )i (note that the left hand column is

a colimit as well). The equations Si ◦ S−1
i = id for each i then induce S ◦ T = id by the colimit property.

T ◦ S = id is proved analogously.
A similar argument shows that S2=idHopfR is closed under colimits in HopfR and, thus, in biHopfR.
Since cocBialgR = cocComon(AlgR) ⊂ Comon(AlgR) = BialgR, closure of colimits here is a special

instance of Fact 4 (2).
Now closure of cocHopfR under colimits in HopfR as well as in BialgR is obvious, since colimits in

HopfR are formed on the level of BialgR.
Cocompleteness of the categories under consideration now follows from cocompleteness of BialgR and

HopfR respectively. �

Proposition 2. If R is von Neumann regular, then in the chains of subcategories

cHopfR ⊂ S2=idHopfR ⊂ biHopfR ⊂ HopfR ⊂ BialgR

cHopfR ⊂ cBialgR ⊂ BialgR
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each subcategory is closed under all limits (and λ-directed colimits for each λ) in each of its successors.
cBialgR is closed under all limits in BialgR even for arbitrary rings.

Proof. The proofs are dual (for directed colimits analogous; clearly in ModR each functor C 7→ C ⊗ −
preserves (directed) colimits) to the arguments in the previous proof. �

4. The Adjunctions

4.1. Reflectivity and Coreflectivity.

Proposition 3. For any ring R, in the chains of subcategories

cocHopfR ⊂ S2=idHopfR ⊂ HopfR

cocHopfR ⊂ cocBialgR ⊂ BialgR
every category is locally presentable and coreflective in each of its successors.

Proof. All categories can be represented as equifiers of families of pairs of natural transformations between
accessible functors (analogous to the respective arguments in [3] and [4]). Thus, they are accessible
categories by [1, 2.76]. Being cocomplete by Proposition 1 they then are locally presentable by [1, 2.47].
Coreflectivity then follows by the Special Adjoint Functor Theorem. �

Proposition 4. For any von Neumann regular ring R, in the chains of subcategories

cHopfR ⊂ S2=idHopfR ⊂ biHopfR ⊂ HopfR

cHopfR ⊂ cBialgR ⊂ BialgR
every category locally presentable and reflective in each of its successors.
cBialgR is locally presentable and reflective in BialgR even for every commutative ring R.

Proof. All categories are, by Proposition 2, closed under limits and λ-directed colimits for any λ. Since
HopfR and BialgR are locally presentable (see [5]), all categories then are locally presentable as well
and reflective in their respective supercategories by [1, 2.48]. �

Corollary 1. For any von Neumann regular ring R, in the chain of subcategories

S2=idHopfR ⊂ biHopfR ⊂ HopfR

every category is coreflective in each of its successors.

Proof. By the previous results all embeddings preserve colimits and their domains are locally presentable.
They, thus, have right adjoints again by the Special Adjoint Functor Theorem. �

Corollary 2. (1) For every commutative ring R, c,cocBialgR is reflective in cocBialgR and coreflec-
tive in cBialgR.

(2) c,cocHopfR is reflective in cocHopfR for every von Neumann regular ring R and coreflective in
cHopfR for every commutative ring R.

(3) cHopfR is coreflective in cBialgR for every commutative ring R.
(4) cocHopfR is reflective in cocBialgR for every von Neumann regular ring R.
(5) c,cocHopfR is reflective and coreflective in c,cocBialgR for every von Neumann regular ring R.

Proof. Observe that, by the Eckmann-Hilton Principle, one has

cBialgR = Mon(BialgR) (3)

cocBialgR = Comon(BialgR) (4)

c,cocBialgR = Mon(cocBialgR) (5)

c,cocBialgR = Comon(cBialgR) (6)

cHopfR = Mon(HopfR) (7)

cocHopfR = Comon(HopfR) (8)

c,cocHopfR = Mon(cocHopfR) (9)

c,cocHopfR = Comon(cHopfR) (10)
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Now reflectivity of c,cocBialgR in cocBialgR, for example, follows from Fact 3 by using equations (4)
and (6): The embedding E : cBialgR ↪→ BialgR has a left adjoint by Proposition 4 and it is a trivial
observation that the embedding c,cocBialgR ↪→ cocBialgR is, in the notation of Fact 3, nothing but E∗.

All other claims follow analogously (for statements 3 and 4 use, instead of Propositions 4 and 3 the
(co)reflectivity results of [5]). �

Remark 1. Some of the results above can, in the restricted case of a von Neumann regular ring, also
be obtained by using the explicit construction of the Hopf (co)reflection as presented in [6]. Recall that,
given a bialgebra B, one constructs its (co) reflection as follows: Define a family of bialgebras (Bn)n∈N
by B0 := B and Bn+1 := Bop,cop

n . Then the Hopf reflection RB of B is a (suitable) homomorphic image
of

∐
Bn while the Hopf coreflection of B is a (suitable) subbialgebra of

∏
Bn.

Now, obviously, if B is commutative (cocommutative, commutative and cocommutative) so is each
Bn and then

∐
Bn and

∏
Bn respectively (since the functors on BialgR sending B to Bop or Bcop

are isomorphisms and therefore preserve (co)products). It is, moreover, easy to see that images and
subbialgebras of a commutative (cocommutative, commutative and cocommutative) bialgebra have the
respective property again. Thus the Hopf (co)reflection of a commutative (cocommutative, commutative
and cocommutative) bialgebra is a commutative (cocommutative, commutative and cocommutative) Hopf
algebra.

4.2. Monadicity. Extending the results from [5] that HopfR is comonadic over AlgR (always) and
monadic over CoalgR, provided that R is von Neumann regular, we also get

Proposition 5. For every von Neumann regular ring R, the following hold:
(1) (a) The cofree Hopf algebra on a commutative algebra A is commutative and, thus, the cofree

commutative Hopf algebra on A.
(b) cHopfR is comonadic over AlgR.

(2) (a) The free Hopf algebra on a cocommutative coalgebra C is cocommutative and, thus, the free
cocommutative Hopf algebra on C.

(b) cocHopfR is monadic over CoalgR.
Statement 1 (a) even holds for an arbitrary commutative ring R.

Proof. As in the arguments for the previous Corollary use equation (7) and the fact that Mon(AlgR) =

cAlgR. The lift V̂ of forgetful functor V : HopfR → AlgR then is the forgetful functor cHopfR → cAlgR.
By Fact 3 this functor has a right adjoint G̃ , since V has a right adjoint G (see [5]) and the digram

cAlgR
G̃ //

|−|

��

cHopfR

|−|

��
AlgR G

// HopfR

commutes. But this commutativity precisely says, that the cofree Hopf algebra on a commutative algebra
A is commutative. This proves 1 (a). Comonadicity now follows by Beck’s Theorem (see e.g. [2]) since
HopfR → AlgR is monadic and cHopfR is closed in HopfR under limits.

Statement 2 follows dually. �

The following now is easy to prove, too, where the second statement generalizes a result of [8].

Proposition 6. (1) Let R be an arbitrary commutative ring. Then there exists a cofree cocommuta-
tive R-Hopf algebra over any R-algebra.

(2) Let R be a von Neumann regular ring. Then there exists a free commutative R-Hopf algebra over
any R-coalgebra.

Proof. Over every algebra A there exists a cofree Hopf algebra HA by [5]. By composition of adjunctions
(see e.g. [2]) the coreflection of HA into cocHopfR, which exists by Proposition 3, is cofree over A.

The second statement follows analogously. �
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