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Abstract

Takeuchi’s famous free Hopf algebra construction is analyzed from a categorical
point of view, and so is the construction of the Hopf envelope of a bialgebra. Both
constructions this way appear as compositions of well known and natural construc-
tions. This way certain partially wrong perceptions of these constructions are clar-
ified and their mutual relation is made precise. The construction of Hopf envelopes
finally is shown to provide a construction of a Hopf coreflection of bialgebras by
simple dualization. The results provided hold for any commutative von Neumann
regular ring, not only for fields.
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Introduction

In his seminal monograph on Hopf algebras [15] Sweedler already made the
claims that (a) for any algebra A there exists a cofree Hopf algebra over A and
(b) for any coalgebra C there exists a free Hopf algebra over C. He did not
give any proofs and it took some years until Tackeuchi [16] proved claim (b).
Proofs of (a) only were provided recently ([13], [2], [4]). Later the construction
of a Hopf reflection of given bialgebra B, also called Hopf envelope of B, grew
out of Takeuchi’s construction. This is sometimes (see e.g. [14]) attributed to
Manin [8]; the only careful description this author is aware of is [10].

The reasons to revisit Takeuchi’s construction are twofold: firstly, his con-
struction and its relation to that of a Hopf envelope seem not to be too well
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understood, as shown by the the quite recent survey [14] (see a more de-
tailed comment in Section 3.2 below) and also by the quite general perception
that Takeuchi’s construction is a generalization of the free group construc-
tion (see the final remark in 3.2 correcting this). Secondly, the direct proof
(that is, without using the existence of free Hopf algebras) of the fact that
the category HopfR of Hopf algebras is closed under products in the category
BialgR of bialgebras for any von Neumann regular ring R (see [13]) allows
for a description of these constructions as compositions of extremely natural
standard categorical constructions: The free Hopf algebra construction is the
composition of the free bialgebra construction (a standard free monoid con-
struction) with that of the Hopf envelope (= Hopf reflection) and the latter is
the composition of special instances of the free algebra construction for func-
tor algebras and that of so-called E-reflective subcategories. This categorical
approach moreover allows for a construction of the coreflection of BialgR into
HopfR (which exists for every ring R by [13]) for von Neumann regular rings
by simple dualization, thus making the calculations of [4] superfluous.

The assumption on R to be von Neumann regular, used throughout in this
note, might be too restrictive (see also [13]). What only is needed (in order to
be able to lift image factorizations from the category ModR of R-modules to
BialgR) is the slightly (?) weaker property that for every injective R-linear
map f its tensor square f ⊗ f is injective again.

1 Categorical prerequisites

For the sake of the reader who is not completely familiar with the categorical
constructions we are going to use we will sketch these here briefly.

1.1 Free monoids

It is well known that the construction of the free monoid X∗ over a set X as the
word monoid over X only depends on the facts that the category Set of sets
and maps has (finite and countable) coproducts (disjoint unions) and, for every
set X, the functor “multiply by X” on Set, X×−, preserves these coproducts
(see [7]). Thus, this construction can be generalized to provide free monoids
over any monoidal category (C,−⊗−, I), provided that each functor “tensor
by C” on C, C ⊗ −, preserves (finite and countable) coproducts. Applied
to the monoidal category Mod of modules over any commutative ring (with
its standard tensor product) this shows that the tensor algebra TM over a
module M is the free R-algebra over M . CoalgR, the category of R-coalgebras,
is monoidal (by the tensor product inherited from ModR). Since coproducts
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in CoalgR are created by the underlying functor CoalgR
Vc−→ ModR, the

same argument describes the construction of the free bialgebra (= monoid
in CoalgR) T ?C over a coalgebra C. T ?C is, algebraically, the tensor algebra
TVcC over the underlying module VcC of C endowed with the unique coalgebra
structure (∆, ε) making the embedding of VcC into TVcC (the unit of the
adjunction for T ) a coalgebra morphism, which, thus, becomes the unit for
the adjunction T ∗ a Vc (see e.g. [13]).

1.2 Free functor algebras

Throughout this section C denotes a category and F an endofunctor of C.
For details concerning this section we refer to [1].

1 Definition The category AlgF has as objects, called F–algebras, all pairs
(C, αC) where C is an object of C and αC : FC → C is a morphism. Mor-
phisms f : (C, αC)→ (D,αD) of AlgF , called F–algebra homomorphisms, are
morphisms f : C → D in C such that the square

FC
αC //

Ff

��

C

f

��
FD αD

//D

commutes. Composition and identities in AlgF are those of C.

The paradigmatic example here is that of a set functor HΩ induced by a
signature Ω: Finitary universal algebras of a given (one–sorted) signature Ω =
(Ωn)n∈N, where Ωn is the set of all n–ary operation symbols, can be viewed as
F–algebras for the following endofunctor F = FΩ of Set: FΩ assigns to a set
X the set

∑
n∈N Ωn×Xn. Correspondingly FΩ assigns to a map f : X → Y the

map
∑
n∈N Ωn × fn, i.e., the map

∑
n∈N Ωn ×Xn → ∑

n∈N Ωn × Y n mapping a
pair (ω, (x1, . . . , xn)) to the pair (ω, (fx1, . . . , fxn)).

There is well known construction of free functor algebras as follows: Let C have
countable colimits. Given an object X in C define an ω–chain X]

i (i < ω) as
follows:

0
!−→ F0 +X

F !+X−−−→ F (F0 +X) +X
F (F !+X)+X−−−−−−−→ F (F (F0 +X) +X) +X · · ·

If now F preserves colimits of ω–chains, then for every object X of C,

X] = colim
i<ω

X]
i
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is a free F–algebra on X.

Note that this construction not only is very general, being applicable to
nearly all categories, but also extremely natural: specialized to the set functor
FΩ : Set→ Set induced by a signature Ω it describes the construction of term
algebras, while specialization to a monotone map f on a complete lattice with
X = 0 it is nothing but the Tarski-Knaster construction of the least fixpoint of
f . In fact the above construction can be considered to be the “categorization”
of that construction.

If F also preserves coproducts the above construction can be simplified as
follows: the chain is simply

0
!−→ X

F !+X−−−→ F (X) +X
F (F !+X)+X−−−−−−−→ F (F (X)) + F (X) +X · · ·

with colimit X] =
∐
n∈N F

n(X). In fact one has (even without F preserving
colimits of chains — see [3, Thm. 2.1])

2 Fact Let C have finite and countable coproducts and F : C → C preserve
these. Then the free F -algebra (X], αX) over an object X in C is given by X] =∐
n∈N F

n(X) with action αX : F (X])→ X] determined by commutativity of the
following diagram (for all n > 0), where we write F 0 = idC, F n+1 = F ◦ F n

and where ιn is the nth coproduct injection.

F nX
idFnX //

Fιn−1

��

F nX

ιn

��
FX] αX //X]

The unit of the adjunction is ι0, the 0th coproduct injection.

Proof: Since F preserves coproducts the left column of the diagram is a
coproduct, and this implies existence of αX .

If now f : X → H is a C-morphism where (H,αH) is an F -algebra, define a
family (fn)n∈N of C-morphisms by

f0 := F 0X = X
f−→ H

fn+1 := F n+1X = F (F nX)
Ffn−−→ FH

αH−−→ H

The coproduct property yields a unique C-morphism f ] :
∐
n∈N F

nX → H
with f ] ◦ ιn = fn for all n.

By definition one has f ] ◦ ι0 = f . Moreover, f ] is a morphism (X], αX) →
(H,αH) in AlgF , that is, the equation f ] ◦ αX = αH ◦ Ff ] holds, since, for
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each n ∈ N

f ] ◦ αX ◦ Fιn = f ] ◦ ιn+1 = fn+1 = αH ◦ Ffn = αH ◦ Ff ] ◦ Fιn

and Fιn is a coproduct. f ] is unique with f ]◦ι0 = f , too. In fact, if φ : (X], αX)→
(H,αH) is a homomorphism with φ ◦ ι0 = f , then

f ] ◦ ιn = φ ◦ ιn =⇒ f ] ◦ ιn+1 = φ ◦ ιn+1

and thus φ = f ], since f ] ◦ ιn+1 = fn+1 = αH ◦ Ffn = αH ◦ Ff ] ◦ Fιn =
αH ◦ Fφ ◦ Fιn = φ ◦ αX ◦ Fιn = φ ◦ ιn+1 for all n. �

1.3 E-reflective subcategories

Recall the following simple and easy to use criterion for reflectivity of a sub-
category.

3 Fact ([6, 37.1]) Let A be a category equipped with a factorization struc-
ture (E,M) for morphisms which, moreover, is E-co-wellpowered. Then the
following are equivalent for any full subcategory B of A.

(1) B is E-reflective in A, that is, B is reflective in A and every reflection
map belongs to E.

(2) B is closed in A under products and M-subobjects.

In more detail, the reflection of an A-object A is given as follows: Let S be
the class of all A-morphisms f : A→ Bf into an B-object Bf .

Each such f as an (E,M)-factorization A
qf−→ Cf

mf−−→ Bf . By hypothesis there

is a set {A qi−→ Ai | i ∈ I} ⊂ E such that, for each f ∈ S, there is some i = if
and an isomorphism φf : Aif → Cf with φf◦qif = qf . The family (qi)i∈I induces

a morphism q : A→ ∏
I Ai with (E,M)-factorization A

r−→ RA
l−→ ∏

I Ai.

Now r : A→ RA is the B-reflection of A.

2 Some properties of HopfR

2.1 Hopf algebras as functor algebras

We define a category nHopfR of near Hopf algebras as follows: its objects
are pairs (B, S) with a bialgebra B and a bialgebra homomorphism S : B →
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Bop,cop (equivalently S : Bop,cop → B). A morphism f : (B, S)→ (B′, S ′) then
is a bialgebra homomorphism satisfying S ′◦f = f ◦S. In other words, nHopfR
is the category AlgH of functor algebras for the endofunctor H on BialgR
sending B to Bop,cop. The full embedding HopfR ↪→ BialgR now factors as

HopfR ↪→ nHopfR → BialgR

where the first arrow is a (full) embedding and the second one the forgetful
functor.

We will need the following lemma.

4 Lemma Let f : (B,m, e, µ, ε, S)→ (B′,m′, e′, µ′, ε′, S ′) be a homomorphism
of near Hopf algebras. Then

(1) f ◦ (S ? idB) = (S ′ ? idB′) ◦ f
(2) f ◦ (e ◦ ε) = (e′ ◦ ε′) ◦ f

Proof: Everything follows from commutativity of the diagrams

B
µ //

f
��

B ⊗B

f⊗f
��

B⊗S // B ⊗B m //

f⊗f
��

B

f
��

B
ε //

f
��

R

R
��

e // B

f
��

B′ µ′
// B′ ⊗B′

B′⊗S′
// B′ ⊗B′

m′
// B′ B′ ε′

// R
e′

// B′

�

2.2 Image factorization of Hopf homomorphisms

The image factorization of homomorphisms in ModR lifts to a factorization
system not only always in AlgR, but also in CoalgR, provided that R is
von Neumann regular (recall that a commutative unital ring R is von Neu-
mann regular iff, for each injective R-linear map f and each R-module M the
map f⊗ idM is injective). While the lifted factorization in AlgR is the (regular
epi, mono)-factorization, it is the (epi, regular mono)-factorization in CoalgR.
Consequently, the surjections are precisely the epimorphisms in CoalgR, while
the injections are the regular monomorphisms. If R is von Neumann regular
image factorizations also provide a (surjective, injective)-factorization struc-
ture on BialgR.

One certainly has, for a morphism f in BialgR, the implications

(1) f is an extremal epic =⇒ f is surjective =⇒ f is an epimorphism.
(2) f is an extremal mono =⇒ f is injective =⇒ f is a monomorphism.
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The following lemma, which is easy to prove (the required morphisms are
obtained by diagonal fill ins and the required equations follow from the as-
sumption that each m ∈M is a monomorphism), shows in particular that the
categories HopfR and nHopfR are closed in BialgR under image factoriza-
tions, if R is von Neumann regular.

5 Lemma Let (E,M) be a factorization system for morphisms on BialgR
with every m ∈ M a monomorphism and every e ∈ E an epimorphism in C.
Then (E,M) restricts to a factorization structure on nHopfR. Moreover, if
f : (B, S) → (H,SH) is a homomorphism of near Hopf algebras with (H,SH)
even a Hopf algebra, then the bialgebra A over which f can be factored is a
Hopf algebra and, in fact, an M-subalgebra of (H,SH).

6 Lemma Let R be a von Neumann regular ring and B be an R-bialgebra.
Every subalgebra A of (the underlying algebra of) B contains a largest sub-
coalgebra C of (the underlying coalgebra of) B and this is a subbialgebra of
B. If (B, S) is even a near Hopf algebra and A is S-invariant, then so is C
(equivalently: C becomes a subobject of (B, S) in the category of near Hopf
algebras).

Proof: C exists since the subcoalgebras of an R-coalgebra from a complete
lattices, provided that R is von Neumann regular (see e.g. [11]). Since the
multiplication m of B is a coalgebra homomorphism, the image m[C ⊗ C] of
C⊗C is a coalgebra (again by von Neuman regularity of R) and contained in
A. The sup-assumption on C now shows that C is a subbialgebra.

The argument concerning S is analogous. �

7 Remark The use of images in the proof above can be expressed more cat-
egorically by saying that C⊗C → m[C⊗C] ↪→ B is the (E,M)-factorization

of C⊗C i⊗i−−→ B⊗B m−→ B with E all surjective and M all injective homomor-
phisms. Von Neumann regularity then guarantees that E and M are closed
under tensor squaring which is what is needed to ensure that subcoalgebras
form a complete lattice which is closed under formation of images. Therefore
the above result can be dualized and one obtains

Let R be a von Neumann regular ring and B be an R-bialgebra. For every coal-
gebra quotient C of (the underlying coalgebra of) B there is a largest algebra
quotient 1 A of (the underlying algebra of) B smaller then C (as a quotient
in ModR) and this is a bialgebra quotient of B. If (B, S) is even a near Hopf
algebra and S induces a morphism on C, then so it does on A and A becomes
a quotient of (B, S) in the category of near Hopf algebras.

1 We here refer to the usual ordering of quotients: (B
q−→ Q) ≥ (B

q′−→ Q′) iff there

exists some Q
h−→ Q′ with q′ = h ◦ q.
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2.3 Limits and colimits of Hopf algebras

We recall from [12] and [13]

8 Fact For every commutative unital ring R the category BialgR has products
and coproducts.

9 Fact For every commutative unital ring R the following hold:

(1) HopfR is closed under colimits in BialgR.
(2) HopfR is closed under limits in BialgR, provided that the ring R is von

Neumann regular.

Since the underlying functor nHopfR → BialgR creates limits (as every un-
derlying functor of a category of functor algebras does) and colimits (since the
functor H—see [1]—does), it thus follows that, for every von Neumann regular
ring R, the category HopfR is closed under limits and colimits in nHopfR.

3 Some constructions of adjoints

3.1 Constructing the Hopf envelope

The best way to understand the construction of the Hopf envelope, i.e., the
reflection from bialgebras into Hopf algebras, is to look at it as composition
of left adjoints to the functors (see 2.1)

HopfR ↪→ Alg(−)op,cop and Alg(−)op,cop → BialgR

10 Lemma The underlying functor nHopfR = AlgH
|−|−→ BialgR has a left

adjoint given by the unit

ι0 : B → |(B∗, S∗)|

where
(
B∗, (ιn : Bn → B∗)n∈N

)
is the (countable) coproduct in BialgR of the

family (Bn)n∈N, defined recursively by

B0 := B, Bn+1 := Bop,cop
n .

and S∗ : (B∗)op,cop → B∗ is the unique bimonoid homomorphism such that the
following diagrams commute, for all n ∈ N, n > 0.
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Bn = Bop,cop
n−1

ιop,copn−1

��

id //Bn

ιn

��
(B∗)op,cop S∗ //B∗

Proof: The lemma follows from an application of Fact 2 to the functor
H : BialgR → BialgR sending B to Bop,cop which, as an isomorphism, clearly
preserves coproducts; these exist by 8. �

Note that the description of S∗ given in [10] is obtained from the above by
applying the isomorphism (−)op,cop.

11 Lemma Let R be a von Neumann regular ring. Then HopfR is reflective
in nHopfR and the HopfR-reflection of a near Hopf algebra (B, S) is given
by a surjective homomorphism r : (B, S)→ (HB, SB).

Denoting by S is the class of all near Hopf homomorphisms (B, S)
f−→ (Hf , Sf )

into some Hopf algebra and by S̄ a representative set of all surjections in
S, the homomorphism r is characterized by any of the following equivalent
properties:

(1) B
r−→ HB is the image of the morphism B

q−→ ∏
p∈S̄ Hp induced by the

family p ∈ S̄.
(2) ker r = ∩f∈S ker f .

Proof: By Lemma 5 and Fact 9 we can apply Fact 3; this proves the first part
of the Lemma, since, obviously (use Lemma 4), HopfR is closed in nHopfR
under subobjects carried by injective homomorphisms.

Statement 1 follows by applying the construction sketched in 1.3.

Since every f ∈ S factorizes through r one has ker r ⊂ ∩f∈S ker f ; thus, r ∈ S
implies ker r = ∩f∈S ker f . This proves 2. �

A more explicit (and even dualizable) description of r is possible. For this
recall the following fact from [13].

12 Fact Let (B, S) be a near Hopf algebra and q : B → B̄ the (multiple)
coequalizer of the linear maps S ? idB, idB ? S and e ◦ ε in ModR. Then B̄
carries a (unique) coalgebra structure (µ̄, ε̄) such that q is a homomorphism of
coalgebras.

13 Remark Note that this is nothing but the dual of the well known fact
(see e.g. [5, 4.3.3] or [13]) that the (multiple) equalizer of the linear maps
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S ? idB, idB ? S and e ◦ ε in ModR is an algebra.

To be able to apply this fact recall that B̄ = B/(I + J) with I = im(S ? idB −
e◦ε) and J = im(idB ?S−e◦ε). We then can prove the following result, which
in particular expresses the conceptual meaning of the final step of Takeuchi’s
construction.

14 Proposition Let R be a von Neumann regular ring and (B, S) a near Hopf
algebra over R. The Hopf reflection r : (B, S)→ (HB, SB) is characterized by
any of the following equivalent properties.

(1) r : B → HB is the largest algebra quotient of B which factors (in ModR)
over the coequalizer q : B → B̄.

(2) ker r is the ideal 〈M〉 generated by

M := {(S ? id− eε)(x), (id ? S − eε)(x) | x ∈ B}.

In particular, the ideal 〈M〉 is a bi-ideal and invariant under S.

Proof: For every near Hopf homomorphism f : (B, S)→ (H,SH) into a Hopf
algebra one concludes from Lemma 4

f ◦ (S ? idB) = f ◦ (e ◦ ε) = f ◦ (idB ? S)

Thus, by the definition of coequalizer, there exists a (unique) linear map
f̄ : B̄ → H with f = f̄ ◦ q. In particular, the reflection r is an algebra homo-
morphism, which factors over q.

Since r is the largest such quotient iff ker r = 〈M〉, it only remains to prove
that, if r : B → B′ is the largest algebra quotient which factors over q as
r = s ◦ q, then B′ not only is an algebra but even a Hopf algebra and r is a
homomorphism of near Hopf algebras.

In fact, we get from Remark 7 that B′ already is a near Hopf algebra and r
homomorphism of near Hopf algebras. That B′ then even is a Hopf algebra
follows by means of Lemma 4 from the fact that it is a (linear) quotient of B̄
and the latter’s coequalizer description in Fact 12. �

15 Remark It is clear from the above that it would suffice, in the definition
of the set M , to have x running through a subset of B which generates B as
an algebra.

With notation as above we thus get, for every von Neumann regular ring R,
the following result.
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16 Proposition B
ι0−→ B∗

r−→ HB is a Hopf reflection of any bialgebra B.

This is, by the above, the description of the Hopf envelope as given in [10]
(with ∪nιn[Bn] as generating set for B∗).

3.2 Constructing the free Hopf algebra

By composition of adjoints and the description of free bialgebras as given
in 1.1 we thus obtain Takeuchi’s description of the free Hopf algebra over a
coalgebra as follows.

Let C be an R-coalgebra, where R is a von Neumann regular ring. Then the
free Hopf algebra H(C) over C is the Hopf reflection of the free bialgebra T ∗C.
Having in mind that the left adjoint of the forgetful functor BialgR → CoalgR
commutes with coproducts, the above description of the Hopf reflection gives
Takeuchi’s original construction of H(C). This also clarifies completely the
relation between Takeuchi’s construction and that of the Hopf envelope.

In view of [14, 13.2] it might be worthwhile to clarify Takeuchi’s original no-
tation: Where he writes Bop for a bialgebra B he certainly means, in todays
notation, the bialgebra Bop,cop (otherwise his antipode would be an algebra
homomorphism, not an anti-homomorphism as required). Thus, also taking
the opposite algebraic structure into account in his construction is not ‘su-
perfluous/invisible’ as claimed in [14], but used explicitely (only somewhat
hidden by notation).

Our analysis moreover shows that Takeuchi’s free Hopf algebra construction
is not a generalization of the free group construction as often perceived. One
certainly could construct free groups also analogously to the construction just
presented, that is, by composing the word monoid construction with the re-
flection from monoids into groups; the typical free group construction however
represents a free group differently, namely as a quotient of the term algebra
for the signature (×, (−)−1, 1).

3.3 Constructing the Hopf coreflection

As shown in [13] the category of Hopf algebras also is coreflective in the cat-
egory of bialgebras, and this even for any commutative ring R. In case R is
von Neumann regular, we can provide a construction of the coreflection by
simple categorical dualization of the above construction of the Hopf envelope.

For a precise formulation of this dualization process recall that BialgR is
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nothing but the category BimonC of bimonoids in the symmetric monoidal
category C = ModR and, similarly, HopfR is the category HopfC of Hopf
monoids in C = ModR. Moreover, for each symmetric monoidal category
C, the (categorical) dual of BimonC is the category of bimonoids in the
dual Cop of C (the dual of the category C underlying C, equipped with
the same tensor product), that is, (BimonC)op = Bimon(Cop), and also
(HopfC)op = Hopf(Cop). Note that the convolution monoid of a bimonoid B
over C coincides with the convolution monoid of B, if considered a bimonoid
over Cop.

Thus, a coreflection from BialgR into HopfR is nothing but a reflection from
Bimon(Modop

R ) into Hopf(Modop
R ).

As an analysis of the construction of the Hopf envelope above shows, we
only used, besides their very definition as categories of bi- and Hopf monoids
respectivley, the following properties of the categories BialgR and HopfR
(which certainly depend on the underlying category C = ModR): (1) BialgR
has products, (2) HopfR is closed in BialgR under products, and (3) The
image factorization from ModR lifts to a factorization structure for BialgR,
to which Lemma 5 can be applied.

By Facts 8 and 9 properties 1. and 2. are shared by (HopfR)op and (BialgR)op

(and this even for every commutative ring R!). Further, the image factorization
structure of ModR also is a factorization structure in Modop

R which obviously
lifts to one in Bimon(Modop

R ) = (BialgR)op (provided that R is von Neumann
regular), to which then Lemma 5 can be applied, too. Observing Fact 12
and the remark following it, our construction, thus, yields a reflection from
Bimon(Modop

R ) into Hopf(Modop
R ), that is, a coreflection from BialgR into

HopfR. Hence, somewhat more explicitly, the following holds. Note that, due
to the dualization process just described, not only coproducts have to be
replaced by products but also quotients by subobjects.

17 Proposition Let R a commutative unital ring which, in addition, is von
Neumann regular. Then a Hopf coreflection of a bialgebra B can be constructed
as follows

Step 1: Form the product B̂ :=
∏
Bn of the family (Bn)n∈N from the proof

of Lemma 10. Let Ŝ be the unique homomorphism, such that the following
diagram commutes.

Bn = Bop,cop
n−1 Bnidoo

(B̂)
op,cop

πop,cop
n−1

OO

B̂

πn

OO

Ŝ
oo

Step 2: Form the image factorization f : H
pf−→ C

jf−→ B̂ of each bialgebra
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homomorphism from a Hopf algebra (H,SH) into B̂ satisfying

f ◦ SH = Ŝ ◦ f

and choose a representative set {Ck | k ∈ K} of these C’s.
Step 3: Form the image factorization of j, the morphism induced by the family
jk,

j =
∐
K

Ck
s−→ HB c−→ B̂.

Then HB c−→ B̂
π0−→ B is a Hopf coreflection of B.

HB is, alternatively, the largest subcoalgebra (which then automatically is a
Hopf algebra) of B̂ contained in

E := {x ∈ B̂ | Ŝ ? idB̂(x) = ê ◦ ε̂(x) = idB̂ ? Ŝ(x)},

that is, the (multiple) equalizer of the linear maps Ŝ ? idB̂, ê ◦ ε̂ and idB̂ ? Ŝ in
ModR.

18 Remark In [4] a Hopf coreflection HB of a bialgebra B is constructed as
the largest subcoalgebra of B̂ contained in the (multiple) equalizer E. The
author does not observe that this is nothing but the categorical dual of the
familiar Hopf envelope construction as in Proposition 14 above and thus pro-
vides an independent proof.

19 Remark Our approach is also applicable to the monoidal category of
sets with cartesian product as tensor product. In that case the category of
bimonoids is (isomorphic to) the category of (ordinary) monoids and the cat-
egory of Hopf monoids is the category of groups.

We thus get the familiar facts that the category of groups is reflective and
coreflective in the category of monoids. There is, however, a notable difference
between this situation and the case of Hopf algebras: While the coreflection
from groups to monoids is a mono-coreflection (the coreflection of a monoid M
is its subgroup of invertible elements) this is not the case for Hopf algebras. If
the Hopf-coreflection of a bialgebra B always were a sub-bialgebra of B, this
would imply that every bialgebra quotient of a Hopf algebra is a Hopf algebra
(use the dual of [6, 37.1]); but this is not the case (not every bi-ideal in a Hopf
algebra is a Hopf ideal — see [9]).
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