Description Logics:
an Introductory Course on a Nice Family of Logics

Day 2: Tableau Algorithms

Uli Sattler
Which of the following subsumptions hold?

- \(r \) some (A and B) is subsumed by \(r \) some A
 \[\exists r. (A \cap B) \subseteq \exists r. A \]

- (r some A) and (r only B) is subsumed by \(r \) some B
 \[\exists r. A \cap \forall r. B \subseteq \exists r. B \]

- r only (A and not A) is subsumed by r only B
 \[\forall r. (A \cap \neg A) \subseteq \forall r. B \]

- \(r \) some (r only A) is subsumed by \(r \) some (r some (A or not A))
 \[\exists r. (\forall r. A) \subseteq \exists r. (\exists r. (A \cup \neg A)) \]

- r only (A and B) is subsumed by (r only A) and (r only B)
 \[\forall r. (A \cap B) \subseteq \forall r. A \cap \forall r. B \]

- \(r \) some B is subsumed by r only B
 \[\exists r. B \subseteq \forall r. A \]
Today

- relationship between standard DL reasoning problems
- a tableau algorithm to decide consistency of \mathcal{ALC} ontologies and all other standard DL reasoning problems
- a proof of its correctness
- with some model properties
- some optimisations
- some extensions
 - inverse roles
 - (sketch) number restrictions
- some discussions
- ...loads of stuff: ask if you have a question!
Standard DL Reasoning Problems

Given an ontology $\mathcal{O} = (\mathcal{T}, \mathcal{A})$,
- is \mathcal{O} consistent? \(\mathcal{O} \models \top \subseteq \bot \)?
- is \mathcal{O} coherent? is there concept name A with $\mathcal{O} \models A \subseteq \bot$?
- compute class hierarchy! for all concept names A, B: $\mathcal{O} \models A \subseteq B$?
- classify individuals! for all concept names A, individual names b: $\mathcal{O} \models b : B$?

Theorem 2 Let \mathcal{O} be an ontology and a an individual name not in \mathcal{O}. Then
1. C is satisfiable w.r.t. \mathcal{O} iff $\mathcal{O} \cup \{a : C\}$ is consistent
2. \mathcal{O} is coherent iff, for each concept name A,
 $\mathcal{O} \cup \{a : A\}$ is consistent
3. $\mathcal{O} \models A \subseteq B$ iff $\mathcal{O} \cup \{a : (A \cap \neg B)\}$ is not consistent
4. $\mathcal{O} \models b : B$ iff $\mathcal{O} \cup \{b : \neg B\}$ is not consistent

\(\Rightarrow \) a decision procedure to solve consistency decides all standard DL reasoning problems
A problem is a set $P \subseteq M$

 - e.g., M is the set of all \mathcal{ALC} ontologies,
 - $P \subseteq M$ is the set of all consistent \mathcal{ALC} ontologies
 - ...and the problem P is to decide whether, for a given $m \in M$, we have $m \in P$

An algorithm is a decision procedure for a problem $P \subseteq M$ if it is

 - sound for P: if it answers "$m \in P$", then $m \in P$
 - complete for P: if $m \in P$, then it answers "$m \in P$"
 - terminating: it stops after finitely many steps on any input $m \in M$

Why does "sound and complete" not suffice for being a decision procedure?
A tableau algorithm for \(\mathcal{ALC} \) ontologies

For now:

- \(\mathcal{ALC} \): \(\land, \lor, \neg, \exists r.C, \forall r.C \)
- an algorithm to decide consistency of an ontology

The algorithm decides "Is \(\mathcal{O} \) consistent" by trying to construct a model \(\mathcal{I} \) for \(\mathcal{O} \):

- if successful, \(\mathcal{O} \) is consistent: "look, here is a (description of a) model"
- otherwise, no model exists – provably (we were not simply too lazy to find it)

Algorithm works on a set of ABoxes:

- initialised with a singleton set \(S = \{ \mathcal{A} \} \) when started with \(\mathcal{O} = (T, \mathcal{A}) \)
- ABoxes are extended by rules to make constraints on models of \(\mathcal{O} \) explicit
- \(\mathcal{O} \) is consistent if, for (at least) one of the ABoxes \(\mathcal{A}' \) in \(S \), \((T, \mathcal{A}') \) is consistent
Technical: we say C and D are equivalent, written $C \equiv D$, if they mutually subsume each other.

Technical: all concepts are assumed to be in Negation Normal Form transform all concepts in \mathcal{O} into $\text{NNF}(C)$ by pushing negation inwards, using

\[
\neg(C \cap D) \equiv \neg C \cup \neg D \quad \neg(C \cup D) \equiv \neg C \cap \neg D \\
\neg(\exists R.C) \equiv (\forall R.\neg C) \\
\neg(\forall R.C) \equiv (\exists R.\neg C)
\]

Lemma: Let C be an \mathcal{ALC} concept. Then $C \equiv \text{NNF}(C)$.

From now on, all concepts in GCIs and concept assertions are assumed to be in NNF, and we use $\neg C$ to denote the $\text{NNF}(\neg C)$.
A tableau algorithm for \textit{ALC} ontologies

The algorithm

- works on sets of ABoxes S
- starts with a singleton set $S = \{\mathcal{A}\}$ when started with $\mathcal{O} = (\mathcal{T}, \mathcal{A})$
- applies \textit{rules} that infer constraints on models of \mathcal{O}
- a rule is applied to some $\mathcal{A} \in S$; its application replaces \mathcal{A} with one or two ABoxes
- answers "\textit{O} is consistent" if rule application leads to an ABox \mathcal{A} that is
 - \textit{complete}, i.e., to which no more rules apply and
 - \textit{clash-free}, i.e., $\{a : A, a : \neg A\} \not\subseteq \mathcal{A}$, for any a, A
- for optimisation, we can avoid applying rules to ABoxes containing a clash
Using the tableau algorithm for ALC ontologies

Following Theorem 2, we can use the algorithm to test

- satisfiability of a concept C by starting it with $\{a : C\}$
- satisfiability of a concept C wr.t. O by starting it with $O \cup \{a : C\}$ (a not in O)
- subsumption $C \sqsubseteq D$ by starting it with $\{a : (C \cap \neg D)\}$
- subsumption $C \sqsubseteq D$ wr.t. O by starting it with $O \cup \{a : (C \cap \neg D)\}$ (a not in O)
- whether b is an instance of C wr.t. O by starting it with $O \cup \{b : \neg C\}$

...and interpreting the results according to Theorem 2.
Preliminary Tableau Expansion Rules for \mathcal{ALC}

\Box-rule: if $a : C_1 \cap C_2 \in A$ and $\{a : C_1, a : C_2\} \not\subseteq A$
then replace A with $A \cup \{a : C_1, a : C_2\}$

\square-rule: if $a : C_1 \sqcup C_2 \in A$ and $\{a : C_1, a : C_2\} \cap A = \emptyset$
then replace A with $A \cup \{a : C_1\}$ and $A \cup \{a : C_2\}$

\exists-rule: if $a : \exists s.C \in A$ and there is no b with $\{(a, b) : s, b : C\} \subseteq A$
then create a new individual name c and
replace A with $A \cup \{(a, c) : s, c : C\}$

\forall-rule: if $\{a : \forall s.C, (a, b) : s\} \subseteq A$ and $b : C \not\in A$
then replace A with $A \cup \{b : C\}$

GCI-rule: if $C \sqsubseteq D \in \mathcal{T}$ and $a : (\neg C \sqcup D) \not\in A$ for a in A,
then replace A with $A \cup \{a : (\neg C \sqcup D)\}$
Tableau Algorithm for \mathcal{ALC}: Observations

- We only apply rules if their application does "something new"
- The \sqcap-rule is the only one to replace an ABox with more than one other
- To understand the GCI-rule, convince yourself that
 \begin{align*}
 \mathcal{I} \text{ satisfies a GCI } C \sqsubseteq D \text{ iff, for each } e \in \Delta^\mathcal{I}, \text{ we have }& e \not\in C^\mathcal{I} \text{ or } e \in D^\mathcal{I} \\
 \text{and } e \not\in C^\mathcal{I} \text{ is the case iff }& e \in (\neg C)^\mathcal{I}
 \end{align*}
- The GCI-rule adds a disjunction per individual and GCI \Rightarrow this is
 - **bad**, and
 - **stupid** for GCIs with a concept name on its left hand side (why?)
 \Rightarrow we add an abbreviated GCI rule:

 GCI-2-rule: if B is a concept name, $a : F \not\in A$ for $a : B \in A$ and $B \sqsubseteq F \in \mathcal{T}$, then replace A with $A \cup \{a : F\}$

- If A is replaced with A', then $A \subseteq A'$
Example: apply the tableau algorithm to $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ with

$$\mathcal{T} = \{ A \sqsubseteq B \cap \exists r.G \cap \forall r.C, \quad \mathcal{A} = \{ a: A, \quad b: E, \quad c: G \} \}
\quad E \sqsubseteq A \cap H \cap \forall r.F, \quad (a, c): r, \quad (b, c): r,\quad
g \sqsubseteq E \sqcap P, \quad c: G\}
\quad H \sqsubseteq E \cup \forall r.\neg C\}$$
Termination of our Tableau Algorithm for \(\text{ALC} \)

As is, the tableau algorithm does not terminate:

Example: apply the tableau algorithm to \(\mathcal{O} = (\mathcal{T}, \mathcal{A}) \) with \(\mathcal{T} = \{ A \sqsubseteq \exists r. A \} \) and \(\mathcal{A} = \{ a : A \} \).

To ensure termination, use blocking: each rule is only applicable to an individual \(a \) in an ABox \(\mathcal{A} \) if there is no other individual \(b \) with

\[
\{ C \mid a : C \in \mathcal{A} \} \subseteq \{ C \mid b : C \in \mathcal{A} \}.
\]

In case we have

- a freshly introduced individual (i.e., not present in input ontology) \(a \),
- an individual \(b \) with
 - \(\{ C \mid a : C \in \mathcal{A} \} \subseteq \{ C \mid b : C \in \mathcal{A} \} \),
 - \(b \) is older than \(a \) (i.e., was created earlier than \(a \))

we say \(b \) blocks \(a \) and we say \(a \) is blocked.
Tableau Expansion Rules for \mathcal{ALC}

\sqcap-rule: if $a : C_1 \sqcap C_2 \in \mathcal{A}$, a is not blocked, and $\{a : C_1, a : C_2\} \not\subseteq \mathcal{A}$
then replace \mathcal{A} with $\mathcal{A} \cup \{a : C_1, a : C_2\}$

\sqcup-rule: if $a : C_1 \sqcup C_2 \in \mathcal{A}$, a is not blocked, and $\{a : C_1, a : C_2\} \cap \mathcal{A} = \emptyset$
then replace \mathcal{A} with $\mathcal{A} \cup \{a : C_1\}$ and $\mathcal{A} \cup \{a : C_2\}$

\exists-rule: if $a : \exists s.C \in \mathcal{A}$, a is not blocked, and there is no b with
$\{(a, b) : s, b : C\} \subseteq \mathcal{A}$
then create a new individual c and replace \mathcal{A} with $\mathcal{A} \cup \{(a, c) : s, c : C\}$

\forall-rule: if $\{a : \forall s.C, (a, b) : s\} \subseteq \mathcal{A}$, a is not blocked, and $b : C \not\in \mathcal{A}$
then replace \mathcal{A} with $\mathcal{A} \cup \{b : C\}$

GCI-rule: if $C \sqsubseteq D \in \mathcal{T}$, a is not blocked, and
if C is a concept name, $a : C \in \mathcal{A}$ but $a : D \not\in \mathcal{A}$,
then replace \mathcal{A} with $\mathcal{A} \cup \{a : D\}$
else if $a : (\not\exists C \sqcup D) \not\in \mathcal{A}$ for a in \mathcal{A},
then replace \mathcal{A} with $\mathcal{A} \cup \{a : (\not\exists C \sqcup D)\}$
Convince yourself that, for the given example, the tableau algorithm terminates:

Example: apply the tableau algorithm to $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ with $\mathcal{T} = \{A \sqsubseteq \exists r.A\}$ and $\mathcal{A} = \{a : A\}$.

...now for the general case!
Properties of our tableau algorithm

Lemma 3: Let \mathcal{O} an \mathcal{ALC} ontology in NNF. Then
1. the algorithm terminates when applied to \mathcal{O}
2. if the rules generate a complete & clash-free ABox, then \mathcal{O} is consistent
3. if \mathcal{O} is consistent, then the rules generate a clash-free & complete ABox

Corollary 1: 1. Our tableau algorithm decides consistency of \mathcal{ALC} ontologies.
2. Satisfiability (and subsumption) of \mathcal{ALC} concepts is decidable in $\text{P}Space$.
3. Consistency of \mathcal{ALC} ontologies is decidable in ExpSpace.
4. \mathcal{ALC} ontologies have the finite model property
 i.e., every consistent ontology has a finite model.
5. \mathcal{ALC} ontologies have the tree model property
 i.e., every consistent ontology has a tree model.
Proof of Lemma 3.1: Termination

Let \(\text{sub}(\mathcal{O}) \) be the set of all subconcepts of concepts occurring in \(\mathcal{A} \) together with all subconcepts of \(\neg C \sqcup D \) for each \(C \sqsubseteq D \in \mathcal{T} \).

1. a rule replaces one ABox with at most two ABoxes
2. the ABoxes are constructed in a monotonic way, i.e., each rule adds assertions, nothing is removed
3. concept assertions added are restricted to \(\text{sub}(\mathcal{O}) \) and
 \[
 \# \text{sub}(\mathcal{O}) \leq \Sigma_{C \sqsubseteq D \in \mathcal{O}} (2 + |C| + |D|) + \Sigma_{a: C \in \mathcal{O}} |C|
 \]
 because, at each position in a concept, at most one sub-concept starts
4. due to blocking, there can be at most \(2\# \text{sub}(\mathcal{O}) \) individuals in each ABox: if \(\{C \mid a: C \in \mathcal{A}\} \subseteq \{C \mid b: C \in \mathcal{A}\} \), \(a \) is blocked and no rules are applied to \(a \).

Eventually, all ABoxes will be complete (and possibly have a clash), and the algorithm terminates.
If we start the algorithm with \(\{a : C\} \) to test satisfiability of \(C \), and construct ABox in non-deterministic depth-first manner rather than constructing set of ABoxes so that we only consider a single ABox and re-use space for branches already visited, mark \(b : \exists R.C \in A \) with “todo” or “done” we can run tableau algorithm (even without blocking) in polynomial space:

- ABox is of depth bounded by \(|C| \), and
- we keep only a single branch in memory at any time.
If we start the algorithm with \mathcal{O} to test its consistency, and construct ABox in non-deterministic depth-first manner rather than constructing set of ABoxes so that we only consider a single ABox, we can run tableau algorithm in exponential space:

- number of individuals in ABox is bounded by $2^{\# \text{sub}(\mathcal{O})}$

This is not optimal: we will see tomorrow that consistency of \mathcal{ALC} ontologies is decidable in exponential time, in fact ExpTime-complete.
(2) Let A_f be a complete & clash-free ABox generated for $O = (T, A)$, and let B_f be A_f without assertions involving blocked individuals.

Define an interpretation I as follows:

- $\Delta^I := \{x \mid x \text{ is an individual in } B_f\}$
- $A^I := \{x \in \Delta^I \mid x : A \in B_f\}$ for concept names A
- $r^I := \{(x, y) \in \Delta^I \times \Delta^I \mid (x, y) : r \in B_f$ or $(x, y') : r \in A_f$ and y blocks y' in $A_f\}$

and show, by induction on structure of concepts:

(C1) $x : D \in B_f$ implies $x \in D^I$

(C2) $C \subseteq D \in T$ implies $C^I \subseteq D^I$

I is a model of (T, B_f) (I satisfies all role assertions by definition)

I is a model of (T, A) because $A \subseteq B_f$

$O = (T, A)$ is consistent
Proof of Lemma 3.2: Soundness II

\[\Delta^I := \{x \mid x \text{ is an individual in } \mathcal{B}_f\}\]
\[A^I := \{x \in \Delta^I \mid x: A \in \mathcal{B}_f\}\] for concept names \(A\)
\[r^I := \{(x, y) \in \Delta^I \times \Delta^I \mid (x, y): r \in \mathcal{B}_f \text{ or} (x, y'): r \in \mathcal{B}_f \text{ and } y \text{ blocks } y'\}\]

Show, by induction on structure of concepts: (C1) \(x: D \in \mathcal{B}_f\) implies \(x \in D^I\)

- for concept names \(D\): by definition of \(I\)
- for negated concept names \(D\): due to clash-freeness and induction
- for conjunctions/disjunctions/existential restrictions/universal restrictions \(D\): due to completeness and by induction
Proof of Lemma 3.2: Soundness III

\[\Delta^I := \{ x \mid x \text{ is an individual in } B_f \} \]

\[A^I := \{ x \in \Delta^I \mid x : A \in B_f \} \quad \text{for concept names } A \]

\[r^I := \{ (x, y) \in \Delta^I \times \Delta^I \mid (x, y) : r \in B_f \text{ or } (x, y') : r \in B_f \text{ and } y \text{ blocks } y' \} \]

(C2): \(C \sqsubseteq D \in \mathcal{T} \) implies \(C^I \subseteq D^I \)

This is an immediate consequence of

- \(\Delta^I \) being a set of individual names in \(\mathcal{A}_f \),
- \(\mathcal{A}_f \) being complete \(\Rightarrow \) the GCI-rule is not applicable \(\Rightarrow \) if \(C \sqsubseteq D \in \mathcal{T} \):
 - if \(C \) is a concept name \(x \in C^I \), then \(x : C \in B_f \), and thus \(x : D \in B_f \)
 - else, \(x : (\dashv C \sqcup D) \in B_f \)
- (C1)
Proof of Lemma 3.3: Completeness

(3) Let \mathcal{O} be consistent, and let \mathcal{I} be a model of \mathcal{O}.

Use \mathcal{I} to identify a clash-free & complete ABox:

Inductively define a total mapping π:

start with $\pi(a) = a^\mathcal{I}$, and show that

each rule can be applied such that (\star) is preserved

\[
(\star) \text{ if } x : C \in \mathcal{A}, \text{ then } \pi(x) \in C^\mathcal{I}
\]

\[
\text{if } (x, y) : r \in \mathcal{A}, \text{ then } \langle \pi(x), \pi(y) \rangle \in r^\mathcal{I}
\]

• easy for \cap-, \forall-, and the GCI-rule,

• for \exists-rule, we need to extend π to the newly created r-successor

• for \cup-rule, if $C_1 \sqcup C_2 : x \in \mathcal{A}$, (\star) implies that $\pi(x) \in (C_1 \sqcup C_2)^\mathcal{I}$

 \implies we can choose $\mathcal{A}_i = \mathcal{A} \cup \{x : C_i\}$ with $\pi(x) \in C_i^\mathcal{I}$ and thus preserve $(\star)$$

\implies easy to see: (\star) implies that ABox is clash-free
Proof of Lemma 3: Harvest

Consider the model \(\mathcal{I} \) constructed for a clash-free, complete ABox in soundness proof:

- \(\mathcal{I} \) is **finite** because ABox has finitely many individuals
- a **tree** if blocking has **not** occurred
- not a **tree** if blocking has occurred:
 but it can be **unravelled** into an (infinite) tree model

Hence we get Corollary 1.4 and 1.5 for (almost) free from our proof:

Corollary 1:

4. \(\mathcal{ALC} \) ontologies have the **finite model property**
 i.e., every consistent ontology has a **finite** model.

5. \(\mathcal{ALC} \) ontologies have the **tree model property**
 i.e., every consistent ontology has a **tree** model.
The tableau algorithm presented here

→ **decides** consistency of \(\mathcal{ALC} \) ontologies, and thus also

→ all other standard reasoning problems

→ uses **blocking** to ensure termination, and

→ can be implemented as such or

 using a **non-deterministic** alternative for the \(\sqcup \)-rule and backtracking.

→ in the worst case, it builds ABoxes that are exponential in the size of the input.

 Hence it runs in (worst case) ExpSpace,

→ can be implemented in various ways,

 – order/priorities of rules

 – data structure

 – etc.

→ is amenable to optimisations...
Naive implementation of ALC tableau algorithm is doomed to failure:

It constructs a

- set of ABoxes,
- each ABox being of possibly exponential size, with possibly exponentially many individuals (see binary counting example)
- in the presence of a GCI such as $\top \sqsubseteq (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcap D_n)$ and exponentially many individuals, algorithm might generate double exponentially many ABoxes

\Rightarrow requires double exponential space or

- use non-deterministic variant and backtracking to consider one ABox at a time

\Rightarrow requires exponential space
Implementing the \textit{ALC} Tableau Algorithm

Optimisations are crucial

- concern every aspect of the algorithm
- help in “many” cases (which?)
- are implemented in various \textit{DL} reasoners
 - e.g., FaCT++, Pellet, RacerPro

In the following: a selection of some vital optimisations
Reasoners provides service “classify all concept names T”, i.e., for all concept names C, D in T, reasoner decides does $T \models C \subseteq D$?

\leadsto test consistency of $T \cup \{a : (C \cap \neg D)\}$

$\leadsto n^2$ consistency tests!

Goal: reduce number of consistency tests when classifying $TBox$

Idea 1: “trickle” new concept C into hierarchy computed so far

$C \subseteq D_i$ w.r.t. T? $\quad \circ D_1 \quad \circ D_2$
Reasoners provides service "classify all concept names \mathcal{T}", i.e.,
for all concept names C, D in \mathcal{T}, reasoner decides does $\mathcal{T} \models C \subseteq D$?

\leadsto test consistency of $\mathcal{T} \cup \{a : (C \cap \neg D)\}$

$\leadsto n^2$ consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 1: "trickle" new concept C into hierarchy computed so far
Reasoners provides service “classify all concept names T”, i.e., for all concept names C, D in T, reasoner decides does $T \models C \sqsubseteq D$?

\[
\implies \text{test consistency of } T \cup \{ a : (C \cap \neg D) \} \\
\implies n^2 \text{ consistency tests!}
\]

Goal: reduce number of consistency tests when classifying TBox

Idea 1: “trickle” new concept C into hierarchy computed so far
Reasoners provides service “classify all concept names \mathcal{T}”, i.e., for all concept names C, D in \mathcal{T}, reasoner decides does $\mathcal{T} \models C \sqsubseteq D$?

\leadsto test consistency of $\mathcal{T} \cup \{a: (C \cap \neg D)\}$

$\leadsto n^2$ consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 2:
- maintain graph with a node for each concept name
- edges representing subsumption, disjointness ($\mathcal{T} \models A \sqsubseteq \neg B$), and non-subsumption
- initialise graph with all “obvious” information in \mathcal{T}
- to avoid testing subsumption, exploit
 - all info in ABox during tableau algorithm to update graph
 - transitivity of subsumption and its interaction with disjointness
Remember: for \(T = \{ C_i \sqsubseteq D_i \mid 1 \leq i \leq n \} \), where no \(C_i \) is a concept name, each individual \(x \) will have \(n \) disjunctions \(x: (\neg C_i \sqcup D_i) \) due to

GCI-rule: if \(C \sqsubseteq D \in T \), \(a \) is not blocked, and

if \(C \) is a concept name, \(a: C \in A \) but \(a: D \notin A \),
then replace \(A \) with \(A \cup \{ a: D \} \)
else if \(a: (\neg C \sqcup D) \notin A \) for \(a \) in \(A \),
then replace \(A \) with \(A \cup \{ a: (\neg C \sqcup D) \} \)

Problem: high degree of choice and huge search space
blows up set of ABoxes

Observation: many GCIs are of the form \(A \sqcap \ldots \sqsubseteq C \) for concept name \(A \)
e.g., Human \(\sqcap \ldots \sqsubseteq C \) or Device \(\sqcap \ldots \sqsubseteq C \)
Optimising the \mathcal{ALC} Tableau Algorithm: Absorption

Idea: localise GCIs to concept names by transforming

$A \sqcap X \sqsubseteq C$ into equivalent $A \sqsubseteq \neg X \sqcup C$

e.g., $\text{Human} \sqcap \exists \text{owns Pet} \sqsubseteq C$ becomes $\text{Human} \sqsubseteq \neg \exists \text{owns Pet} \sqcup C$

For “absorbed” $T = \{A_i \sqsubseteq D_i \mid 1 \leq i \leq n_1\} \cup \{C_i \sqsubseteq D_i \mid 1 \leq i \leq n_2\}$
the second, non-deterministic choice in GCI-rule is taken only n_2 times.

GCI-rule: if $C \sqsubseteq D \in T$, a is not blocked, and

if C is a concept name, $a : C \in A$ but $a : D \notin A$,
then replace A with $A \cup \{a : D\}$

else if $a : (\neg C \sqcup D) \notin A$ for a in A,
then replace A with $A \cup \{a : (\neg C \sqcup D)\}$

Observations: If no GCI is absorbable, nothing changes
Each absorption saves 1 disjunction per individual outside A_i,
in the best case, this avoids almost all disjunctions from TBox axioms!
Remember: If a clash is encountered, non-deterministic algorithm backtracks.
i.e., returns to last non-deterministic choice and
tries other possibility

Example: \(x: \exists R. (A \sqcap B) \sqcap ((C_1 \cup D_1) \sqcap \ldots \sqcap (C_n \cup D_n)) \sqcap \forall R. \neg A \)
Remember If a clash is encountered, non-deterministic algorithm backtracks
i.e., returns to last non-deterministic choice and tries other possibility

Example \(\exists R. (A \cap B) \cap ((C_1 \cup D_1) \cap \ldots \cap (C_n \cup D_n)) \cap \forall R. \neg A \)
Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and tries other possibility

Example $x: \exists R. (A \land B) \land ((C_1 \lor D_1) \land \ldots \land (C_n \lor D_n)) \land \forall R. \neg A$

\begin{align*}
\mathcal{L}(x) &= \{C_1\} \\
\mathcal{L}(x) &= \{\neg C_1, D_1\} \\
\mathcal{L}(x) &= \{\neg C_2, D_2\} \\
\mathcal{L}(x) &= \{\neg C_n, D_n\} \\
\mathcal{L}(x) &= \{\neg C_n, D_n\} \\
\mathcal{L}(y) &= \{(A \land B), \neg A, A, B\} \\
\mathcal{L}(y) &= \{(A \land B), \neg A, A, B\} \\
\mathcal{L}(y) &= \{(A \land B), \neg A, A, B\} \\
\mathcal{L}(y) &= \{(A \land B), \neg A, A, B\} \\
\mathcal{L}(y) &= \{(A \land B), \neg A, A, B\}
\end{align*}

Clash Clash Clash ... Clash
Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and
tries other possibility

Example $x: \exists R. (A \sqcap B) \sqcap ((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n)) \sqcap \forall R. \neg A$
Finally: \mathcal{ALC} extends propositional logic

\leadsto heuristics developed for SAT are relevant

Summing up: optimisations are possible at each aspect of tableau algorithm

can dramatically enhance performance

\leadsto do they interact?

\leadsto how?

\leadsto which combination works best for which “cases”?

\leadsto is the optimised algorithm still correct?
Stuff seen today so far

- standard reasoning problems for \mathcal{ALC} ontologies
- and their relationship & reducibility
- tableau algorithm for \mathcal{ALC} ontologies that
 - requires blocking for termination
 - is a decision procedure for all standard \mathcal{ALC} reasoning problems
 - works on a set of ABoxes or in a non-deterministic way with backtracking
 - is implemented in state-of-the-art reasoners
- proof of soundness, completeness, and termination of tableau algorithm
- some optimisations

Next: extension to more expressive DLs
Example: Does $\forall\text{parent.}\forall\text{child.}\text{Blond} \sqsubseteq \text{Blond}$ w.r.t. $T = \{\top \sqsubseteq \exists\text{parent.}\top\}$?

Motivation: with inverse roles, one can use both

- has-child and is-child-of
- has-part and is-part-of

... and capture their interaction

$ALCI$ is the extension of ALC with inverse roles R^- in the place of role names:

$$(r^-)^T := \{\langle y, x \rangle \mid \langle x, y \rangle \in r^T \}.$$

Example: Does $\forall\text{parent.}\forall\text{parent^-}.\text{Blond} \sqsubseteq \text{Blond}$ w.r.t. $T = \{\top \sqsubseteq \exists\text{parent.}\top\}$?

Is $\exists r.\exists s.\neg A$ satisfiable w.r.t. $T = \{\top \sqsubseteq \forall s^-\forall r^-.\neg A\}$?
A tableau algorithm for \textit{ALCI} ontologies

Modifications

necessary to handle inverse roles: consider role assertions in both directions

① introduce $\text{Inv}(r) = \begin{cases} r^- & \text{if } r \text{ is a role name} \\ s & \text{if } r = s^- \end{cases}$

② call \(y \) an \(r \)-neighbour of \(x \) if either \((x, y) : r \in A \) or \((y, x) : \text{Inv}(r) \in A \)

③ substitute “\((x, y) : r \in A \)” in the \forall- and \exists-rule with “has an \(r \)-neighbour \(y \)”...
Tableau Expansion Rules for \mathcal{ALCI}

\Box-rule: if $a : C_1 \sqcap C_2 \in A$, a is not blocked, and $\{a : C_1, a : C_2\} \not\subseteq A$
then replace A with $A \cup \{a : C_1, a : C_2\}$

\sqcup-rule: if $a : C_1 \sqcup C_2 \in A$, a is not blocked, and $\{a : C_1, a : C_2\} \cap A = \emptyset$
then replace A with $A \cup \{a : C_1\}$ and $A \cup \{a : C_2\}$

\exists-rule: if $a : \exists s.C \in A$, a is not blocked, and there is no
s-neighbour b of a with $b : C \in A$
then create a new individual c and replace A with $A \cup \{(a, c) : s, c : C\}$

\forall-rule: if $a : \forall s.C \in A$, and a has an
s-neighbour b in A that is not blocked with $b : C \not\in A$
then replace A with $A \cup \{b : C\}$

GCI-rule: if $C \sqsubseteq D \in \mathcal{T}$, a is not blocked, and
if C is a concept name, $a : C \in A$ but $a : D \not\in A$,
then replace A with $A \cup \{a : D\}$
else if $a : (\neg C \sqcup D) \not\in A$ for a in A,
then replace A with $A \cup \{a : (\neg C \sqcup D)\}$
Example: Is A satisfiable w.r.t. $\{ A \sqsubseteq \exists R^- . A \sqcap (\forall R. (\neg A \sqcup \exists S . B)) \}$?
Is B satisfiable w.r.t. $\{ B \sqsubseteq \exists R . B \sqcap \forall R^- . \forall R^- . (A \sqcap \neg A) \}$?
A tableau algorithm for \mathcal{ALCI} ontologies

Example: Is A satisfiable w.r.t. $\{A \sqsubseteq \exists R^-.A \cap (\forall R. (\neg A \sqcup \exists S.B))\}$?
Is B satisfiable w.r.t. $\{B \sqsubseteq \exists R.B \cap \forall R^-.\forall R^-. (A \cap \neg A)\}$?

The algorithm is no longer sound!

“subset-blocking” $\left(\{C \mid a: C \in \mathcal{A}\} \subseteq \{C \mid b: C \in \mathcal{A}\}\right)$ no longer suffices:

In case we have

- a freshly introduced individual (i.e., not present in input ontology) a,
- an individual b with
 - $\mathcal{L}(a) := \{C \mid a: C \in \mathcal{A}\} = \{C \mid b: C \in \mathcal{A}\} =: \mathcal{L}(b)$,
 - b is older than a (i.e., b was introduced earlier than a)

we say b blocks a and we say a is blocked.
Lemma 4: Let \mathcal{O} be an \mathcal{ALCI} ontology in NNF. Then

1. the algorithm terminates when applied to \mathcal{O}
2. if the rules generate a complete & clash-free ABox, then \mathcal{O} is consistent
3. if \mathcal{O} is consistent, then the rules generate a clash-free & complete ABox
A tableau algorithm for \textit{ALCI} ontologies

Proof: 1. (Termination): identical to the \textit{ALC} case.

2. (Soundness): again, construct a finite (non-tree) model from a complete, clash-free ABox A_f for O

\[
\Delta^I := \ldots \\
A^I := \ldots \\
r^I := \{ \langle x, y \rangle \in \Delta_{I}^2 \mid y \text{ is or blocks an } r\text{-neighbour of } x \text{ or } \}
\]

Again, prove that, for all $x \in \Delta^I$:

(C1) $x : D \in B_f$ implies $x \in D^I$

(C2) $C \subseteq D \in \mathcal{O}$ implies $C^I \subseteq D^I$

$\models \mathcal{I}$ is a model of (\mathcal{T}, B_f) (\mathcal{I} defines all role assertions by definition)

$\models \mathcal{I}$ is a model of $(\mathcal{T}, \mathcal{A})$ because $\mathcal{A} \subseteq B_f$

$\models \mathcal{O} = (\mathcal{T}, \mathcal{A})$ is consistent
3. Completeness: again, use model I of O and a mapping π to find a complete & clash-free ABox.

Corollary:
- Consistency of ALCI ontologies is decidable
- ALCI has the finite model property

It can be shown that
- pure ALCI-concept satisfiability (without TBoxes) is PSpace-complete, just like ALC
- these algorithms can be extended to ABoxes and thus ontology consistency; rather straightforward
Even more expressive DLs

Most reasoners support more expressive DLs, in particular with number restrictions (aka cardinality restrictions or counting quantifiers).

They generalize

- **existential restrictions** $\exists r.C$

 "there is at least one r-successor that is an instance of C"

 to **at-least restrictions** $(\geq n \ r.C)$

 "there are $\geq n$ r-successors that are instances of C", for a non-neg. integer n,

 e.g., Bike $\sqsubseteq (\geq 2 \text{hasPart}.\text{Wheel})$

- **universal restrictions** $\forall r.C$

 "there are zero r-successor that are instances of $\neg C$"

 to **at-most restrictions** $(\leq n \ r.D)$

 "there are at most n r-successors that are instances of D" for a non-neg. integer n,

 e.g., Bike $\sqsubseteq (\leq 2 \text{hasPart}.\text{Wheel})$
\textit{ALCQI} is the extension of \textit{ALCI} with cardinality restrictions, i.e., concepts are built like \textit{ALCI} concepts, plus $(\geq n\ r.C)$ and $(\geq n\ r.C)$, where C is an \textit{ALCQI} concept.

An interpretation \mathcal{I} has to satisfy, in addition:

$$(\geq n\ r.C)^\mathcal{I} = \{ x \in \Delta^\mathcal{I} \mid |\{ y \mid (x, y) \in r^\mathcal{I} \text{ and } y \in C^\mathcal{I} \}| \geq n \}$$

$$(\leq n\ r.C)^\mathcal{I} = \{ x \in \Delta^\mathcal{I} \mid |\{ y \mid (x, y) \in r^\mathcal{I} \text{ and } y \in C^\mathcal{I} \}| \leq n \}$$

TBoxes, ABoxes, and Ontologies are defined analogously.

Observation: \textit{ALCQI} ontologies do not enjoy the finite model property.

Example: for $\mathcal{T} = \{ A \sqsubseteq \exists r.A \sqcap (\leq 1\ r^-.\top) \}$, the concept $(\neg A \sqcap \exists r.A)$ is satisfiable w.r.t. \mathcal{T}, but only in infinite models.

Question: Is \textit{ALCQI} still decidable?
A Tableau algorithm for ALCQI

ALCQI is decidable (in ExpTime), but tableau algorithm goes beyond scope of this course.

Main changes to ALCI tableau required for handling cardinality restrictions:

- **blocking:**
 - ALC: subset blocking
 - ALCI: equality blocking
 - ALCQI: double equality blocking (between 2 pairs of individuals)

- **new rules:**
 - (obvious) \geq-rule that generates n r-neighbours in C for $(\geq n \ r.C)$
 - (obvious) \leq-rule that merges r-neighbours in C for $(\leq n \ r.C)$ in case there are more than n
 - $?$-rule to determine/guess, for $x: (\leq n \ r.C)$, which of x's r-successors are C's (and which are $\neg C$'s)
A Tableau algorithm for \texttt{ALCQI}

\texttt{ALCQI} is decidable (in ExpTime), but tableau algorithm goes beyond scope of this course.

Main changes to \texttt{ALCI} tableau required for handling cardinality restrictions:

- tableau algorithm is no longer \textbf{monotonic} (because \leq-rule merges individuals)
 \Rightarrow yo-yo effect might lead to non-termination
 \Rightarrow use explicit inequality relation on individuals, to avoid yo-yo-ing, e.g., when
 - $x : (\geq 3 \ r. \top)$ leads to generation of r-successors of x via \geq-rule
 in case there are less than 3 of them in r
 - $x : (\leq 2 \ r. \top)$ leads to merging of r-successors of x via \leq-rule
 if there are more than 2 of them
Thank you for your attention!