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Abstract—Asset information obtained via infrastructure anal-
ysis is essential for developing and establishing risk manage-
ment. However, information about assets acquired by existing
infrastructure analysis processes is often incomplete or lacking
in detail, especially concerning their interconnected topology. In
this paper, we present the Interconnected-asset Ontology, IO,
as a step towards a standardized representation of detailed
asset information. The utilization of an asset ontology as a
machine-readable representation supports the automation of
risk management processes and the standardization of asset
information reduces redundant acquisition processes that are
often found in practice.
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I. INTRODUCTION

IT infrastructure analysis is a crucial part of every risk
management (RM) methodology [1], [2]. As a part of the
German IT-Grundschutz methodology, for example, structure
analysis provides the basis for additional procedures when
creating an organization’s security concept according to IT-
Grundschutz [3]. Unfortunately, an infrastructure analysis is
not only a complex and time-consuming task, but is often
performed redundantly to already existing asset management
(AM) processes. The typical focus of already implemented
AM processes, e.g. cost center and warranty terms, can result
in a lack of detail regarding information that is manda-
tory to introduce and support new RM processes. This ne-
cessitates further—a potential redundant or even manual—
information acquisition. Consequently, the increased amount
of information is often stored in separate databases because
integration in existing databases that support AM processes
is time consuming as well. While this solution is simple, it
introduces additional redundancies that, over time, can result
in discrepancies between databases.

To remedy this situation we propose IO—the
Interconnected-asset Ontology—as a step towards a
standardized format to store heterogeneous infrastructure
information including interconnected relationships for
application in the security domain. The contributions of IO
and its corresponding framework are: efficient provision of
a central knowledge base by utilizing the taxonomy of an
ontology, eliminating the need for redundant acquisition
procedures by defining a standardized and automated
information acquisition, and a high level of detail from which
more abstract subsets can be derived for specific applications.

An ontology [3], [4] was chosen as a structured rep-
resentation because recent work shows that security-related
ontologies can provide an appropriate, unified and formal
knowledge model to support security RM processes [5]. On-
tologies are also suitable for integrating information from
heterogeneous sources [6], and it is well understood how to
retrieve specialized views and infer context information from
them [7], [8], [9]. Furthermore, modern approaches to security
management, e.g. intelligent Security Information and Event
Management (SIEM) systems, are already utilizing domain
knowledge represented by ontologies (e.g. [10], [11]). Both
risk- and asset management are time- and resource-consuming
tasks, making the automation of these processes desirable [12].
Roughly a third of the controls defined in the information
security standard ISO 27001 [13] can be automated [14]. As
a part of asset management, the Inventory of Assets is one of
these controls.

IO is currently deployed to collect asset information in
a production network composed of approximately 400 cen-
tralized managed network components, 1500 decentralized
managed network components, 650 WLAN access points,
3500 VoIP endpoints and about 10k miscellaneous endpoints.
Raw information is automatically extracted from the cen-
tralized, managed production network components. Network
scans (e.g., nmap) and other active probing mechanisms (e.g.,
nessus) can be subsequently used to further extend the level
of information detail and to detect inconsistencies between
known asset configuration and actual asset behavior in an
interconnected network. Processed information includes static
configuration (e.g., virtual-lan-id associations or access lists)
and real-time information (e.g., neighborhood relationships
or known MAC addresses). Until now, most of IO’s basic
asset concepts are network related. This proves to be an
advantage, because almost every kind of asset information
can be acquired over the network directly or indirectly. Most
people employ networks to perform their work these days;
this makes networks a good starting point to model the assets
involved in their work.

IO began as part of the research project FIDeS [16] and
its development adopted some of the FIDeS requirements
in its initial stages. FIDeS employs a SIEM component as
a central hub for processing security alerts produced by
heterogeneous IT infrastructure, especially Intrusion Detection
Systems (IDS). In order to effectively assess the potential



Thing

ACL

is-a

ACLEntry

is-a

.. . Address

is-a

Forward

is-a

ForwardSe t

is-a

Interface

is-a

.. . Ne twork

is-a

NetworkComponent

is-a

.. .

. . .

Layer2Addr.

is-a

Layer3Addr.

is-a

Layer4Addr.

is-a

MacAddr.

is-a

IPv4Addr.

is-a

IPv6Addr.

is-a

.. .

Layer1Int.

is-a

Layer2Int.

is-a

Layer3Int.

is-a

.. . EthernetInt .

is-a

IPv4Int.

is-a

IPv6Int.

is-a

ManagedNetworkComponent

is-a

Switch

is-a

Route r

is-a

Fig. 1. Excerpt of IO’s class taxonomy, a complete overview can be found at [15]

impact of e.g. a detected network-based attack on the infras-
tructure, context information has to be identified and retrieved.
Examples for typical context information about assets are:
placement of an asset in the interconnection topology of a
network, annotated zones based on the subnetting topology,
such as a Demilitarized Zone (DMZ), or layer-specific end-
to-end reachability.

The remainder of the paper is organized as follows. Section
II discusses related work, whereas Section III describes the
ontology design of IO. In Section IV, we present the IO-
Framework utilizing the ontological representation. The use
cases described in Section V provide the basis for the evalua-
tion in Section VI. Section VII concludes the paper and gives
an overview of future work.

II. RELATED WORK

Ontologies: A variety of security ontologies have been
proposed, which already include one or more concepts for
IT assets (e.g. [17], [18], [19]). Each version of these as-
set concepts has a very specific and slightly different use
in the corresponding ontological structured security domain
knowledge. Concepts representing assets are often in the
center of an object property chain, providing a link between
other security concepts. Prominent examples are: linking ac-
tual vulnerabilities to threats, threats to impacts or even to
security controls. There are cascading relationships which
can be resolved by a single asset individual, e.g. a local
security control, countering a vulnerabilty associated with an
asset. There are others, however, that need asset information
resulting from a topological interconnection of assets, e.g. an
external threat, exploiting a vulnerability associated with an
asset. Presenting their enhanced vulnerability ontology, Aime
et al. discuss this integral need for information not only about
assets, but also about their physical and logical interconnection
topology [20]. They describe a top-level view of an asset
ontology, which introduces two general communication con-
cepts between assets (messages and connections). While these
concepts are useful to represent interconnected relationships
between individual assets, they are already quite abstract,
considering the complexity of interconnected infrastructure
in a real network. Various configuration and neighborhood
information have to be acquired in detail before it is possible

to create appropriate individuals matching these concepts. The
IO framework (IO-F) in our approach has a strong focus on
the automatic acquisition of asset information with a high
level of detail. This level of detail is not only used to create
individuals according to abstract concepts, but preserved in
IO’s ontological representation in equivalent detail.

Asset Information: Syalim et al. show that major risk
analysis methods depend on the availability of asset informa-
tion [21]. In their comparison of risk analysis methods, they
also stress the fact that IT asset information is crucial for
the assessment of potential threats and impacts (magnitude of
harm) associated with a threats exercise of a vulnerable IT
asset. Ekelhart et al. highlight the dependency on this detailed
knowledge about the IT security domain, in a real production
environment [22]. They propose the AURUM methodology,
which implements a highly granular physical infrastructure
model. Their focus includes physical infrastructures hierar-
chies including buildings, areas, rooms or doors and related
target objects, similar to the ones defined in the German IT-
Grundschutz standard [23]. Related to their AURUM method-
ology, Ekelhart et al. introduce an intuitive inventory solution
to acquire IT asset information with a special focus on network
endpoints [24]. Host Inventory regarding network endpoints is
produced by host-based sensor agents and is then aggregated
in an XML structure. Further details acquired by nmap, ping
or ARPPing are merged into this information. This is also
often encountered in security audit methods [25], [26]. The
third kind of sources is potentially available software inven-
tory solutions that provide externally maintained infrastructure
information.

Generally, it is a good idea to include as many information
sources as are available in order to enhance the level of
detail of the current asset topology. Unfortunately, manually
maintained pools of information tend to become outdated
rapidly and may be incomplete, which results in a degradation
of quality regarding security processes such as risk manage-
ment [27]. Therefore, IO has a strong focus on updating the
derived topology periodically to keep up with changes in the
infrastructure.

Security Automation: One objective of acquiring detailed
up-to-date asset information is to support the automation of
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IT-related security processes [28]. The National Institute of
Standards and Technology (NIST) in cooperation with the
Massachusetts Institute of Technology Research Establishment
(MITRE) provide the Security Content Automation Protocol
(SCAP), a multipurpose approach which enables e.g. auto-
mated vulnerability checking employing security configura-
tion checklists [29]. SCAP content benefits from multiple
sources, among them the National Vulnerability Database
(NVD) or the MITRE Open Vulnerability and Assessment
Language (OVAL) Database [30]. SCAP also defines the
Asset Identification (AI) specification [31]. Its primary use
is better correlation, assessment and management of every
asset-related piece of information (vulnerabilities, weaknesses,
alerts, system events). The top-level design goals therefore are
similar to IO’s, but are basically driven by a communities’
interest in better structuring known vulnerabilities. While this
aligns with our long term goal, the description in SCAP AI
is already abstract and generalized. This helps in matching
potential CVE entries to assets, but does not leave detailed
information to describe a topological interconnection of the
assets itself. The development of IO is aiming at a continuous
compatibility with the AI specification, so that AI-conforming
output can be inferred and retrieved as one application of IO.

An approach for automatic management of network security
policies was already introduced by Burns et al. in 2001 who
presented a Prolog prototype [32]. This required a topology
model; properties of such a model were summarized: formal
and machine-readable, allowing automated reasoning, compos-
ability of devices and vendor-independence. Since the aim
of our contribution is to support security automation with
machine-readable and machine-interpretable knowledge, we
adopted all of the properties introduced by Burns et al. into
the IO framework.

Typically, evaluation of automation takes place in small
networks [33] or randomly generated network topologies based
on specific assumptions [34]. Evaluation in large networks
is more difficult and rare, especially if manual annotation is

necessary. An approach evaluated in a network even larger than
ours is PRESTO [35]. The goal of this configuration manage-
ment system is to ease the deployment of a configuration in
large networks, by utilizing generalized configlets from which
a specialized configuration can be derived. Both PRESTO
and IO store detailed information, but PRESTO focuses on
its deployment not its acquisition. IO’s application aims at
institutions where configuration management is not obligatory.
In these cases, understanding the actual state of the network
is often the first step towards implementing further measures
such as configuration management.

Reachability: One primary application of IO in the context
of SIEM systems is the inference of end-to-end reachability
on layer 1 to layer 4. A similar goal is pursued by using
model checking methods applied on aggregated configuration
of managed network components. Al-Shaer et al. present an
approach that models the global end-to-end behavior of the
access control configurations of a network [34]. The network
is represented as a state machine; packet headers and their
location thereby define the state. By checking future and
past states of the packets in the network, reachability can
be verified. This is very fast but is restricted to layer 3 and
higher. Noel and Jajodia present a method to pinpoint optimal
placements for Intrusion Detection Systems (IDS) in a network
[36]: A minimal number of IDS sensors have to cover every
possible communication path (end-to-end reachability). The
goal of their Topological Vulnerability Analysis (TVA) is to
improve the assessment of IDS alerts by taking into account
the actual network configuration, vulnerabilities, and thereby
potential mission impact of a recognized attack signature. The
TVA is based on a network-specific attack graph including
asset information and is comparable to the attack graphs
produced by NetSPA [37].

III. THE INTERCONNECTED ASSET ONTOLOGY IO

The basis of our approach is the Interconnected-Asset On-
tology, IO. The ontology design is influenced by the Network
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Model White Paper of the Distributed Management Task
Force (DMTF) Common Information Model v2.7 [38] not
unlike the security ontology presented in [26]. We adopted the
intuitive layout of local ProtocolEndpoint relationships and
the corresponding principles of logical and physical device
modeling. The development of the ontology is based on an
artifact-building research approach [39] and was affected by
its practical application in the production network and by
adherence to the design principles proposed in [40], [41] and
[42]

To give an overview, Fig. 1 shows a simplified taxonomy
of basic concepts in the IO (the complete TBox can be found
at [15]). The taxonomic structure of basic concepts allows
retrieving abstract information about a group or a category of
individuals from IO, which e.g. satisfies requirements coming
from the SIEM domain. Fig. 2 highlights common object prop-
erties used to represent a managed network component. The
IO is modeled in W3C’s OWL [43] with the help of Protégé,
a widely used ontology development platform for which an
OWL plugin is available [44]. For productive application, we
use the Pellet OWL-DL Reasoner [45], which is open source
and has proven to be fast applied in realistic ontologies [9].

OWL uses RFC 3987 Internationalized Resource Identifiers
(IRI), which must be unique. The difficulties with acquiring
unique identifiers from assets are highlighted in [46]. The nam-
ing policy in our approach differentiates between identifiers
for higher and lower level individuals. Higher level identifiers
can include a DNS (or host) name: e.g., a switch interface
identifier includes the DNS name of its parent switch. In
case of insufficient information or lower level individuals (e.g.
access list entries), uuids (RFC 4122) are generated. Associ-
ated information from any source, such as version and serial
numbers, addresses, host and fully qualified domain names

are aggregated as data and object properties (attributes and
relationships, respectively) in the identified unique individuals
(objects).

IV. THE IO FRAMEWORK

Currently, IO uses three components: the universal collec-
tion framework IO-C, the network ontology writer IO-W and
the ontology query module IO-Q. The whole framework is
written in Ruby 1.9 to facilitate deployment and provide high
flexibility as well as long-term continuity in development. The
only non-Ruby part is the internal API for handling OWL
ontologies or a SPARQL query engine, provided by Jena [47].

IO-Collect: IO-C’s sole function is to collect and aggregate
raw asset information employing standardized acquisition pro-
cedures. Raw asset information are very heterogeneous, e.g. a
configuration dump, an output of a SOAP real-time informa-
tion service or a text file containing static associations between
layer-2 and layer-3 addresses. IO-C provides a discovery inter-
face (DI) to locate managed network components as an initial
source of information, potentially cascading the acquisition
process in further steps by making use of discovery methods
available on initially accessed assets. The interface can be
freely adapted to domain specific characteristics: for example,
the evaluation of appropriate fully qualified domain names by
DNS zone transfer or simply the manual insertion of manage-
ment interface addresses. A modular collector interface (CI)
can acquire asset information using many available protocols
such as SNMP, telnet, SSH or SOAP. Other approaches, such
as network based inventory-tools [25] or simply nmap, can
also be used to acquire additional information.

IO-Write: IO-W processes raw information aggregated by
the IO-C and then stores it in IO. Although named Writer,
IO-W also parses the raw input. This task is executed by
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Fig. 4. Abstraction of connections between ManagedNetworkComponents

modules connected through a generic parsing interface (PI).
The selection of parsing modules can be commenced specifi-
cally by IO-C or can be performed automatically if IO-W is
able to detect certain features in the raw asset information
(e.g. vendor-specific strings). Multiple PI modules can be
necessary for a single vendor due to format variations. While
the vendor-specific network topology configuration tends to
be homogeneous in its representation, raw information to
uniquely identify an asset (such as device type or stepping)
can be very heterogeneous. The selection of a specific parsing
module implicitly provides context information, which is used
by IO-W to map identified data to appropriate classes in the
IO.

The IO-W is aware of all domains, ranges and data types
as defined by IO (in OWL): Every concept in the IO is
represented by a corresponding class in IO-W. While this
necessitates a fundamental understanding of IO, it supports
strictly formalized acquisition procedures for adding or updat-
ing individuals and ensures consistency even without using a
reasoner, which might consume a significant amount of time.
Hence, being able to omit the use of a reasoner provides an
additional benefit; especially if the consistency of the whole
ontology with all its individuals has to be checked repetitively
during update procedures.

Depending on the parsing module selected in the parsing
interface, a corresponding class is identified by the ontology
interface (OI). Up to now, usage of the ontology interface
initiates a two-step process. First, the taxonomy of related
individuals of an asset is added in the IO recursively. In
the second step, all neighborhood relationships are added.
This includes partial information about individuals relating to
other assets, such as a corresponding physical switch port on
another managed network component (which may not already
be added).

IO-Query: The IO-Q provides the general query interface
(QI) which is used, for example, by our basic command line
interface implemented in an interactive Ruby (IRB) shell. Its
primary task is not only to handle SPARQL queries, but
also to maintain a number of pre-computed lookup tables
(indexes), which speed up recurring or cascading queries. In a
productive application such as providing context information
for a SIEM system, one needs to retrieve context information
fast. We use, for example, lookup tables which contain the
association of every known internal IPv4 address with its
subnet (pre-calculated with bit-shifting), or every known layer-
3 subnet attributed to layer-2 interfaces (inferred by virtual-
lan-id association). Specifically, the retrieval performance of
reachability information is significantly increased by using a

LISTING 1: Layer-3 reachability between two ManagedNetworkComponents
1: sa ← Source ip address
2: da ← Destination ip address
3: sn ← get_ip_subnet(sa)
4: dn ← get_ip_subnet(da)
5: si ← get_component_interface(sa)
6: di ← get_component_interface(da)
7: ss ← get_switch_interface(si)
8: ds ← get_switch_interface(di)
9: sr ← get_router_interface(sn)

10: dr ← get_router_interface(dn)
11: sv ← get_vlans(si, ss, sr)
12: dv ← get_vlans(di, ds, dr)
13: routing ← ((sv ∪ dv) = ∅) ∧ sn 6= dn
14: path← get_path(si, ss, sr, dr, ds, di)
15: acls← new(Array)
16: for p in path do
17: acls.append(get_acl(p)
18: end
19: pass← TRUE
20: for a in acls do
21: pass← pass ∧ eval_acl(sa, sn, si, da, dn, di)
22: end
23: if pass then
24: print(Reachabilty from sa to da)
25: else
26: print(No reachabilty from sa to da)
27: end

lookup table containing neighborhood information inferred by
the reasoner beforehand. Lookup tables are registered by the
task interface (TI). Modules for the task interface retrieve
information via the query interface or from the defined pool of
lookup tables. Most of the time, basic information is retrieved
from lookup tables to support more complex SPARQL queries
to the QI. Lookup tables are generated on demand or (more
preferably) automatically when IO-Q is triggered by IO-W
after a successful IO update.

V. IO USE CASES

We selected four current applications of IO to be presented
as use cases in this paper. The goal is to give an impression
about the scope of applications an interconnected asset ontol-
ogy can already be used for. Selected characteristics of the
presented use cases will provide the basis for the evaluation
scenario in Sect. VI. The evaluation is based on an artifact-
evaluating research approach [39]. To enhance readability
pseudo-code is used to better visualize selected information
retrieval procedures.

Use case 1: Automatically generated security alerts are often
false alarms (false positives). Usually, IDS sensors are placed
at vital points in the network [36]. A potentially harmful
signature detected in a packet stream, which cannot reach
its destination from the vital point where the packet was
detected, has a significantly reduced likelihood of succeeding
in exploiting a given vulnerability [21]. Reachability could
be foiled, for example, by a lack of routing between subnets
or due to packet filter policies defined in an access list
(ACL). To retrieve the information whether a packet stream
can traverse a certain path towards a destination, we need to
take into account: physical cabling, virtual-lan (VLAN) ids,
subnet configuration, routing tables, ACLs and relationships
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LISTING 2: SPARQL-Query for neighborhood retrieval
SELECT ?sw2 ?i1 ?i2 WHERE {
?sw2 a io:Switch
. io:node io:hasLayer1Connection ?sw2
. io:node io:hasLayer1Interface ?i1
. ?sw2 io:hasLayer1Interface ?i2
. ?i1 io:isConnectedTo ?i2 }

LISTING 3: Identify VoIP-switches
1: vlans← new(Array)
2: switches← new(Array)
3: vlans.append(get_voice_vlans_on_phones)
4: vlans.append(get_voice_vlans_on_switches)
5: vlans.sort
6: vlans.unique
7: for v in vlans do
8: switches.append(get_switches_in_vlan(v))
9: end

10: switches.sort
11: switches.unique

such as neighborhood. To speed up retrieval, IO-Q uses two
lookup tables: One for “managed network components and all
their neighbors” inferred by Pellet and one for “all pair shortest
paths in the network” computed by a breadth first search (bfs).
In our network, routing is only restricted by ACLs, so we
omit creating a routing lookup table. Listing 1 summarizes
the procedure in pseudo-code.

Use case 2: It is desirable to have abstract or specialized
overviews about the current network configuration. Creating a
visual representation of the connections between switches and
routers is a common step in any structure analysis process.
Topological interconnection represented by formal graphs is
also often necessary for research in the domains of network
modeling [32], [48] or attack graph generation [49], [37]. “A
connection” between two switches, for example, is represented
as a property chain between two individuals of the managed
network component concept in the IO (see Listing 2). A
more abstract relationship can be inferred automatically by
the definition of a corresponding property chain (see Fig. 4).

Use case 3: One important step in the IT-Grundschutz
methodology [23] is the differentiation of categories of de-
vice types (target objects) as part of the structure analysis.
Categories are implicitly defined by the BSI modules (bun-
dles of security controls) associated with them. E.g., privacy
compliance may require knowing whether a managed network
component can come in contact with sensitive VoIP packet
streams. Essentially, this is a two-step process: To retrieve
all managed network components which could be involved
in a VoIP communication, first every VLAN id to which
a VoIP device is connected has to be inferred. Secondly,
every managed network component associated with this set of
VLAN ids can be retrieved. Listing 3 represents the procedure
in pseudo-code.

Use case 4: Aime et al. describe a situation in which
an assessment of a risk to the IT infrastructure depends on
the interaction of other assets [20]: “botnet’s slaves may
compromise unprotected communication across their hosting
subnet”. Every host and its corresponding physical switch port

TABLE I
PERFORMANCE DATA FOR ACQUISITION AND STORAGE OF INFORMATION

Information acquisition or storage procedure Runtime (s)
Acquisition of raw asset information (CI): 933.02
Parsing of raw asset information (PI) 33.39
Initial adding of individuals to the IO (OI) 264.41
Updating individuals in the IO (OI) 218.32
Initializing reasoner & committing a simple sanity-check
query (OI)

85.30

can be inferred by first retrieving every VLAN id related to the
subnet with the attacker in question and then using the reasoner
to collect the appropriate switch ports and their known MAC
and IP addresses. Resulting hosts might be at a higher risk of
being added to a botnet and temporary ACLs can be brought
in place with high precision.

VI. EVALUATION

IO is currently deployed and evaluated in a live network.
In this section, we describe the evaluation environment and
present an evaluation scenario based on currently implemented
SIEM processes. After that, we present performance results of
various benchmarks that show that our approach is working
(proof of concept). The benchmarks are based on formal com-
petency questions addressed at IO-Q using the Pellet Reasoner.
Due to the large number of individuals in IO, a comparative
evaluation utilizing the Protégé OWL API had to be omitted.
Finally, we show additional benefits and improvements which
arose with the deployment of the IO framework in a live
network environment.

The IO framework is deployed on a Sun Fire X4150 with 8
physical cores and 16GB RAM. One focus of our evaluation
scenario is the processing of security alerts as a common task
for SIEM systems. We pre-recorded roughly 1 M IDS alerts
containing about 18 k unique tuples of source and destination
IP addresses in these alerts. The alerts are produced by a Snort
IDS in version 2.1.9.2 including the open emerging threats
rule set. Alerts are generated from traffic in 24 /24 subnets
relayed by a monitoring session directly out of the production
network (/16). Alerts are post-processed in a manner that
mimics the information available to SIEM systems. The usage
scenario does not include a real SIEM system, to better isolate
the performance of the IO framework. All given performance
values are averages of 240 hourly module executions.

Acquisition & Update (see Table I): Asset information is
obtained from 370 initially accessed managed network com-
ponents via SSH. An update of the IO iterates the complete
acquisition process. The resulting IO contains on average:
242,354 individuals, 242,983 object properties and 400,182
data properties and takes up about 120 MB written in OWL
format.

Retrieval (see Table II): Retrieval procedures are accel-
erated by generating lookup tables every time the IO is
initialized or updated. More complex queries are composed
of lookup table and SPARQL queries. All use case queries
are conducted by modules registered at the TI.
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TABLE II
PERFORMANCE DATA FOR RETRIEVING INFORMATION FROM THE

ONTOLOGY

Information retrieval procedure Runtime (s)
Listing IPv4 subnets 0.04
Listing managed network components 0.05
Mapping IPv4 addresses to IPv4 subnets 8.38
Mapping IPv4 addresses to physical ports 2.62
Mapping IPv4 subnets to physical ports 2.34
Mapping MAC addresses to physical ports 4.56
Mapping managed network components to all neighbors 68.31
Listing “all pair shortest paths” by bfs (use case 1) 1.63
Listing all switches, neighboring switches and paths (use
case 2): Selecting 406 switches and routers connected by
895 edges

74.11

Listing “VLAN id with VoIP phones” (use case 3, step 1) 1.44
Listing “VoIP managed network components” (use case 3,
step 2)

77.52

Listing all MAC & IPv4 addresses threatened at switch
ports with VLAN id of source port (use case 4)

5.35

TABLE III
PERFORMANCE DATA FOR ANNOTATING IDS ALERTS (IN ALERTS/S)

Set Annotation w/o result caching Annotation with result caching
I 569.95 14,346.79
II 552.08 14,105.20
III 145.62 4,301.61

Annotation of IDS alerts (see Table III): In the following
evaluation, we annotate the alerts generated by the generic
IDS Snort with information that enables assessing the impact
of the alert in our specific network. Annotation set I retrieves
the associated VLAN id, the subnet and its gateway address.
Set II adds a path of managed network components the attack
packets would traverse. Set III adds all ACLs placed on the
managed network components of the inferred path (to support
further potential actions in an escalation process). In the attack
mix we see that the performance can be improved drastically
by grouping alerts with respect to source and destination
addresses (result caching).

Verification of consistency: The use of IO has additional
benefits. Raw asset information being parsed and then mapped
to concepts in IO is rejected by the ontology interface (some-
times even in the parser interface) if there are inconsistencies
to the modeled concept layout. We were able to identify and
eliminate several minor violations in the production network,
including: DNS names violating a naming policy, discrepan-
cies between DNS name and host name, misconfigured round
robin DNS entries, redundant DNS names for IP addresses,
violations of configuration policies, VoIP phones without voice
VLAN on the switch interface and VoIP phones with broken
CDP name propagation.

VII. CONCLUSION & FUTURE WORK

We have shown that IO is able to provide knowledge in
support of tasks performed in the IT-Grundschutz and SIEM
domain, while eliminating the need for further information
acqusition. Performance regarding the information acquisition
and retrieval procedures is already in a scope that makes
a productive use feasible. The design of the IO framework

entails a standardized information acquisition according to the
concept- and relationship-layout in IO. This approach enables
asset information acquisition with a high level of detail across
different vendors or configuration formats.

In a future project, a fully deployed configuration man-
agement system in the benchmark network will enable IO
to differentiate between assets with configuration changes
from assets without. Event dispatcher mechanisms in managed
network components that can push changes regarding real-
time information, such as neighborhood relationships, will
reduce the need of polling mechanisms in IO-C. This again
will enable incremental updates of the ontology and thereby
reduce acquisition runtime. For now, IO was developed and
deployed in the benchmark network only. To continue with
the generalizing of concepts, we will deploy IO in additional
networks of similar and greater size. Future development will
include representation for asymmetric routing and intention-
ally redundant routes (e.g., as part of load balancing).

By including Information Securtiy Management System
(ISMS) concept hierarchies for ISO 27001 controls and IT-
Grundschutz countermeasure modules or protection require-
ments we will be able to infer the importance of IT as-
sets and match IT-Grundschutz modules to appropriate assets
automatically (analogously to use case 3). Adding context
information about a telephone infrastructure, such as VoIP-
server configuration (acquired via SOAP) and phone location
(acquired by LDAP), is already in first stage of testing in the
current network. In general, we plan to add more concepts
related to the lifecycle of IT assets, e.g. the relocation history
of VoIP phones or the availability history of WLAN access
points. To provide better performance, for e.g. computation of
reachability, IO could be used to infer a network model used
to build a state machine as presented in [34].

Our final observation is: While we try to provide a bigger
picture about the security implications of an interconnected
asset topology and identify existing threats [50], new threats
are introduced by the possibility of theft or malicious ma-
nipulation of IO itself. In any case, the framework design
must continue to incorporate sophisticated measures to ensure
availability, integrity, and confidentiality to be useful in a
production environment.
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