
Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

1

Habilitation Presentation, March 17th, 2021

Dr. Karsten Sohr

TZI – University of Bremen

Center for Computing Technologies 

Architectural Risk Analysis for 
Android Applications



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

2

Software Security as an Own Discipline

 Usual security mechanisms such as firewalls, anti-virus software or 
intrusion detection systems are reactive

 Cause of many security problems: security holes in software

 McGraw: Trinity of trouble

1. Increasing complexity (Windows 8 up to 80 Mio. lines of code?)

2. Increasing connectivity (SOA, Internet of Things, industrial controllers…)

3. Extensibility of systems  (installation of apps, plugins for browsers)

 Tools and processes to improve software security
• Security development lifecycle (SDL)



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

3

Code Review through Static Code Analysis

 Security analysis of the source code of applications 
• Detection of common programming bugs, such as buffer overflows, SQL-

injection- and cross-site-scripting vulnerabilities

• Automated analysis

 Use of compiler-construction techniques
• Intermediate representation of the program e.g. by abstract syntax trees, 

static single assignment (SSA), System Dependence Graphs (SDGs) 

• Data- and control flow analyses

 False positives, false negatives
• Non-decidability 

 Commercial tools: Fortify SCA (for Java), IBM AppScan, 
Checkmarx, Veracode, Coverity Prevent (for C/C++ code)



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

4

Architectural Risk Analysis as Part of the SDL

 Security analysis of the software architecture
• At design time

• Detection of basic security problems (“flaws” vs. “bugs”)

• Example of flaws: Missing encryption;  only encryption, although integrity is 
required; authorization checks on client side; overprivilege; wrong usage of 
SW frameworks

 Several approaches, e.g.
• Threat Modeling/STRIDE from Microsoft

• Architectural risk analysis (ARA) from McGraw

 Core idea in such approaches: 

Discussion of basic security aspects with the help of diagrams 
(forest-level overview)



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

5

Threat Modeling with Dataflow Diagrams



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

6

Security Holes in Mobile Apps 

 Overprivileged apps

 Confused-deputy problems 

 Massive vulnerabilities in TLS-client implementation of apps

 Wrongly implemented encryption (e.g., insecure algorithms and 
crypto modes, insecure key generation)

 Injection of JavaScript code into apps with web functionality

 Faulty usage of software frameworks (Android framework)

 Weaknesses in systems consisting of a remote-control app and a 
backend



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

7

Insecure Usage of the Android Framework:
Telekom Online Manager

Intent localIntent1 = 

new

Intent("de.telekom.hotspot.intent.action.SMS_STATUS");

localIntent1.putExtra("status",

CredSmsStatusType.SMS_STATUS_CREDENTIALS_RECEIVED);

localIntent1.putExtra("username", str2);

localIntent1.putExtra("password", str3);

sendBroadcast(localIntent1);



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

8

Exported Content Provider: SAP Mobile 
Documents

<provider

android:name="com.sap.mcm.android.content.FileContentProvider" 

android:exported="true" 

android:authorities="com.sap.mcm.android.provider" /> 

public File getFile(Uri paramUri){

McmDocument localMcmDocument = getDocument(paramUri);

File localFile =  

new File(localMcmDocument.getUnencryptedPath());

return localFile;

}

private void decryptNextDocument() {

McmDocument localMcmDocument = 

(McmDocument)this.documents.get(this.nextDocumentIndex);

localMcmDocument.copyUnencrypted(this);



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

9

Siemens Alarm System and Smart Building 
Apps: TLS/SSL Client Insecurity

public void onReceivedSslError(WebView

paramWebView, SslErrorHandler

paramSslErrorHandler, SslError

paramSslError)

{

paramSslErrorHandler.proceed();

}



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

10

Problem Statement

We need cost-efficient analysis methods and 
evaluation processes that assure  that  
Android apps show an appropriate security 
level.



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

11

Research Project ZertApps

 BMBF-funded project ZertApps: Certified security for mobile applications

 Project partners: 

• Universität Bremen

• Fraunhofer SIT (Prof. Dr. Eric Bodden)

• TU Darmstadt (Prof. Dr. Melanie Volkamer)

• OTARIS Interactive Service GmbH

• datenschutz cert GmbH

• SAP SE (Prof. Dr. Achim Brucker)



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

12

Project Goals /1

 Development of precise static security analyses which support the 
Android Framework (using the Soot Java analysis framework)

 If necessary, dynamic analysis to improve static analysis

 Interaction of several apps (→ confused deputy problem)

 Consideration of hybrid apps (apps with Java and web parts)

• E.g., analysis of Cordova-based apps



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

13

Project Goals /2

 Comprehensible presentation of analysis results for different groups of 
users

• Security administrators, evaluators, developers, users?

 Conception of a lightweight certification process / scheme

• Low cost

• Graded certification concept

 Tool-support for certification



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

14

Our Contribution: Architectural Risk Analysis

 Extraction and security analysis of the software architectures of apps (or 
parts of the architectures)

 Reverse engineering of dataflow diagrams (DFDs) or extended dataflow 
diagrams (EDFDs) with the help of static analysis (with the help of Soot)

 Automated analysis of these extracted (E)DFDs  against known 
architectural weaknesses (e.g., CWE entries)

 Conception and implementation within in the context of a dissertation at 
the AG Softwaretechnik (Bernhard Berger)



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

15

Procedure: Android App to EDFD

Android App

EDFDAndroid Model



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

16

Static Analysis Steps

Android app

Android model

Component detection

Entry point detection

Detection of exit points

Identification of intra-component flows

Identification of inter-component flows

Determination of external communications

Usage of shared preferences

Usage of encryption

A Service

Activity

Identification of security mechanisms



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

17

An Example Dataflow Diagram



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

18

Another Dataflow Diagram: Hybrid App



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

19

Procedure: Creating Risk Models

Android app

Android model

Pattern catalog

EDFD Risk model

Security rules



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

20

Checking Security Rules

MATCH (source : Element) 

-[flow : Channel *]->

(target : Element)

WHERE flow.data.IsConfidential

and not flow.IsEncrypted



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

21

Further Directions of this Work /1

 Applying this approach to Java/JEE applications and integrating it into a 
software certification platform

• Project: CertifiedApplications (BMWi-funded, with datenschutz cert GmbH)

• Paper: B. Berger, K. Sohr, R. Koschke. The Architectural Security Tool Suite 
ArchSec, 19th IEEE International Working Conference on Source Code 
Analysis and Manipulation, Cleveland, Ohio, 2019.

 Combined analysis: Android app and backend application

• Constructing a common DFD (Android app + backend DFD)

• Connection by using the external interface of the sever (e.g., SAP Mobile 
Documents app and its underlying content management system)

 Analysis of Android apps containing native code

• Analysis supporting Java as well as C/C++ code

• E.g., Java-based Android app with Qt parts (e.g., AusweisApp2 for Android)



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

22

Further Directions of this Work /2

 Applying this approach to other Java-based software framework: E.g., 
Spring, Apache Shiro

 Applying this approach to other programming languages

• C/C++:

IoT applications or apps with C/C++ parts 

Basic analysis infrastructure: LLVM compiler infrastructure (similar to Soot 
and WALA, but for C/C+)

• Microsoft C#: 

.NET framework, in practice often used, well-documented and clearly

defined API  

Missing basic analysis infrastructure for C# (maybe, Bauhaus tool-suite)



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

23

Other Approaches: Slicing-Based Code Review

 Backward Slicing: Static program analysis technique that calculates all 
statements influencing a given seed statement (via control and data 
dependency): Which statements influence the seed?

 Idea: Use security-critical API calls as slicing seed statements and 
calculate backward slice from them

 Analysts can use these slices within code review tasks

 Using the WALA program analysis framework for this purpose

 Paper:  Mustafa, T., Sohr, K. Understanding the implemented access 
control policy of Android system services with slicing and extended static 
checking. Int. J. Inf. Secur. 14, 347–366 (2015).



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

24

Application of the Slicing-Based Approach

 Android System Services (part of the Android platform)

• Automated extraction of the implemented access control policy of Android 
system services by slicing

• Seeds: E.g., checkCallingPermission, checkPermission

 JEE applications, programmatic access control: isCallerInRole

 Java crypto as wells as Java communications security (e.g., Cipher.doFinal, 
URLConnection.connect)

• Has the crypto code been implemented correctly? 

• Have communications been secured appropriately?

 To improve results of data dependencies: Specific pointer analyses had to be 
implemented (or available points-to information had to be used)

 Slicing-based analysis tool available:

https://github.com/BitFlipp3r/AndroidSlicer-Evaluation

https://github.com/BitFlipp3r/AndroidSlicer-Evaluation


Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

25

Slicing-Tool for Android: User Interface





Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

26

Other Approaches: Extracting Security Patterns 
from Java Code

 Use static program analysis for extracting implemented security patterns 
from Java code

 Informally: Security patterns counterparts to design patterns

 Examples of security patterns:

• Secure Channel

• Secure Storage

• Authenticator

 Idea: Represent manifestations of security patterns in code as Connected 
Object Process Graphs (COPGs)

• Underlying observation: Security patterns are often represented in code by 
connected Java objects, e.g. Cipher, SecretKey, SecretKeySpec objects

 Paper: Bunke, M., Sohr, K. Towards supporting software assurance 
assessments by detecting security patterns. Software Quality Journal 28, 
1711–1753 (2020)



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

27

An Example COPG



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

28

User Studies

 Still missing for all approaches: User studies

 Who are the addressed users of such tools?

• Security analysts and evaluators

• Architects

• Developers

 Find adequate user groups and users (not that easy)

 Define user experiments

• Controlled experiments

• Baseline: Manual code review, bug finders for review

 Not necessary to come up with a complete tool

• Demonstrate that representations help (or not)



Empowering Digital Media
Dr. Karsten Sohr,  sohr@tzi.de

29

Summary & Outlook

 Software security becomes more relevant

• Mobile apps, Internet of Things, industrial controllers, …

 Systematic and cost-efficient processes for software security 
are needed

 Especially relevant: security of apps

 Tool support

 Static (and dynamic) code analyses for the extraction and 
validation of the implemented security architecture

 Comprehensive user experiments/studies necessary to 
demonstrate efficacy/usability of the developed static 
analysis tools


