
Pini – A Jini-Like Plug&Play Technology
for the KVM/CLDC

Dipl.-Inform. Steffen Deter and Dipl.-Inform. Karsten Sohr

University of Marburg
Department of Mathematics and Computer Science

deter,sohr@mathematik.uni-marburg.de

Abstract. The JiniTM technology provides an infrastructure for spon-
taneous networking of devices based on Java-classes and - interfaces.
With the help of Jini, small devices with minimal resources should be
able to join such infrastructures. Due to the fact that Jini is based upon
RMI (Remote Method Invocation) and is therefore on top of RMI, it is
impossible to Jini-enable these limited devices: the use of RMI by Jini
wastes resources which are not available in the aforementioned limited
devices. A potential approach to Jini-enable limited devices is to replace
the RMI-technology with the RPC-technology (Remote Procedure Call).
By means of this technology it is possible to provide an efficient mode
of communication for Jini components, i.e. services and their proxies.
However it is important to bear in mind, that this technology avoids the
major part of resource waste.
A revision of the implementation strategy for this reason and to adapt
the Jini technology to the KVM/CLDC is necessary. In the following
sections, the integration of an RPC-implementation into the Jini concept
and some revised structures of the Jini-implementation strategy will be
described.

1 Motivation

The Jini technology [1, 2] which is based upon Java-classes and interfaces [3], pro-
vides an infrastructure for spontaneous networking of devices. These devices can
be either a service provider or a service consumer. As mentioned in the abstract,
often only minimal resources are available for these devices. Yet in this particular
field Jini shows great problems: The necessary Jini core components provided by
the package “net.jini.core” have only limited functionality. The dynamic sponta-
neous networking may only be provided by the combination of this core package
with the Jini-extension packages. However these extension packages are major
resource consumers. Furthermore, the use of the RMI-technology [4] increases
the need of resources. Therefore the major goal is a small and efficient imple-
mentation of Jini. It is of great importance to avoid using the RMI-technology,
yet it is necessary to provide dynamic and efficient spontaneous networking for
limited devices.

To achieve this goal, we intend to provide a Jini-like technology – called Pini
– that runs on the KVM/CLDC [10].

T. Böhme and H. Unger (Eds.): IICS 2001, LNCS 2060, pp. 53–66, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



54 Steffen Deter and Karsten Sohr

The testing ground of this implementation will be the PABADIS project
(Plant Automation Based on Distributed Systems)[5]: The field of plant au-
tomation provides interesting case studies to demonstrate the effect of joining
network infrastructures by means of spontaneous networking and agent tech-
nology. On this testing ground often only limited devices and/or platforms are
available. The term “devices” refers to hardware, which often provides only lim-
ited resources in the sense of memory, storage, computational performance, etc.
Platform means the available Java platform, e.g., the available JDK version is
often less than the JDK 1.2, which is required by Jini [2].

The following sections provide a description of the Pini approach that enables
limited devices to use a Jini-like technology for joining networks in a spontaneous
manner.

2 Jini Key Components Adapted to Pini

This section provides an overview of some Jini components which have been re-
implemented and/or adapted to the Pini-context. Specifically, these components
are the discovery and join protocol, the Pini lookup service and its (Pini) lookup
service proxy.

2.1 The Pini-Discovery and the Pini-Join Protocol

To participate in a Jini community Jini services and clients have to discover
at least one lookup service in order to register themselves or to get informa-
tion about available services in that community (in case of both clients and
services). This discovery feature is provided by the discovery protocol. As result
of a successful discovery process the service or client performing discovery re-
ceives a lookup service proxy. In Sun’s lookup implementation this proxy object
is submitted as a RMI-marshalled object, and the proxy class will be loaded by
the RMI class loader[4]. In the Pini implementation the discovering service/client
does not receive a RMI-marshalled object (because RMI is not available), but re-
ceives a ServiceDescription (see Section “3.3 The Class ServiceDescription”) via
TCP/UDP, which contains all the necessary information to retrieve the proxy.
This essential information contains the URL of the proxy classes and the ini-
tial data for this proxy. Now the proxy classes will be loaded by the “Pini class
loader” (for details see Section “3.5 The Pini Class Loader”) and initialized with
the submitted initial data.

To perform discovery on limited devices some modifications of the Jini dis-
covery protocol (as described in the Jini Specification) are necessary: Since it is
intended to run Pini on the KVM it is impossible to use multicast for discovery
(there is no multicast feature available on the KVM). However, to provide a
way for discovering lookup services without any knowledge or preconfiguration
the discovery protocol uses broadcast instead. The following figure describes the
discovery process again: The client/service starts the discovery process, so that
discovery requests are sent out (either via broadcast/multicast or unicast). The



Pini – A Jini-Like Plug&Play Technology for the KVM/CLDC 55

lookup service receives these requests and responds with the required informa-
tion, particularly the URL of the proxy classes and initial data. This information
is encapsulated within an object of type ServiceDescription (see Section “3.3 The
Class ServiceDescription”) which can be seen as a kind of “marshaled” (proxy)
object. After receiving the response, a discovery event is generated and delivered
to the waiting DiscoveryListeners.

Fig. 1. The (adapted) discovery process in Pini

With the help of the aforementioned lookup service proxies, the hosts (clients/
services) can communicate to the (discovered) lookup services, for instance, to
register services or to perform lookup for available services registered at these
lookup services. In Sun’s lookup service implementation the communication be-
tween lookups and their proxies is strongly based upon RMI and the lookup
service itself is registered as a RMI remote object at the RMI-Registry.

Such a registration at any registry is unnecessary in Pini, because every
(Pini-) lookup service proxy knows its “home”. The lookup service proxy only
has to know the IP-address of its lookup service and the appropriate port number
for the communication.

2.1.1 Lookup of Services
The process of looking up services is implemented by calling the lookup(..)-
methods of the lookup service proxy. Within the proxy implemented by Sun,
however, the remote lookup(..)-methods of the lookup service are called via
RMI, and the services found are returned as RMI-marshaled objects. After ex-
tracting the URL of the proxy classes from the marshalled object, the classes of
the found services are loaded via the RMI class loader.

In the Pini implementation the lookup service proxy also calls the remote
lookup(..)-methods of the lookup service, but not via RMI. The lookup ser-
vice proxy submits the search patterns via TCP/UDP to the lookup-service
(as a remote procedure call of the appropriate remote methods). After receiv-
ing this remote method call request, the lookup service searches for matching
services and resubmits the ServiceDescriptions of these found services back to
the requesting host. This host generates ServiceItem objects, and if the method
lookup(ServiceTemplate, int) was called, the generated ServiceItems are en-
capsulated in a ServiceMatches object. Now, the search result will be returned to



56 Steffen Deter and Karsten Sohr

the requesting client/service either as the service proxy of the found service (in
case of invocation of method lookup(ServiceTemplate)) or as a ServiceMatches
object (in case of invocation of method lookup(ServiceTemplate, int)).

Figure 2 depicts this process: A client/service calls a lookup(..)-method
at the lookup service proxy and provides the search patterns. The proxy sub-
mits this information to its lookup service as a remote method call request via
TCP/UDP. The search results are returned by the lookup service via TCP/UDP
back to the proxy, which generates either the service proxy or a ServiceMatches
object.

Fig. 2. Lookup for services

2.1.2 The Registration of Pini-Services at Pini-Lookups

To be available within a Jini community, services must be registered with lookup
services (at least with one) by calling the register(...)-method of the lookup
service proxy. Within Sun’s implementation of the lookup service proxy the
remote register(...)-method of the lookup service is called via RMI.

In Pini the registration data (ServiceID, ServiceDescription, attributes, lease
duration) are sent via TCP/UDP to the lookup service as a remote procedure
call. A further difference between Jini and Pini is: Instead of the ServiceItem
which is passed to the register(...)-method as a parameter, the member
fields of that ServiceItem are sent to the Pini lookup service. Strictly speaking, a
ServiceDescription containing all the aforementioned member fields and instead
of the service proxy the codebase URL, initial data, etc. will be sent to the
lookup. This ServiceDescription will be generated by the lookup service proxy
via the method generateDescription() during the register process. The lookup
service receives this registration data and registers the service. As the result of a
successful registration process, the lookup service returns the granted lease and
the ServiceID as a ServiceRegistration object back to the lookup service proxy
(via TCP/UDP). The proxy in turn returns it to the requesting service.

Figure 3 shows the individual steps of the registration process:



Pini – A Jini-Like Plug&Play Technology for the KVM/CLDC 57

Fig. 3. Registration of a service at a Pini lookup service

2.2 The Pini-Lookup-Service

Lookup services are very important for Jini- and Pini infrastructures, therefore
it is necessary to have at least one lookup in every Jini/Pini community. Hence,
the resource restrictions of limited devices greatly influence such lookup services
also. Yet, the functionality must not be reduced.

A common way to reduce the resource consumption of lookup services is
to integrate the RPC-mechanism into the communication between lookups and
their proxies. Thus it is possible to avoid the use of RMI for that communication:
In Sun’s Jini implementation the communication between lookups and their
proxies is strongly based upon RMI. Therefore lookup services are registered as
RMI-remote objects at the RMI-registry.

By avoiding the use of RMI in the Pini approach, a (Pini-) lookup service need
not be registered at a registry like the RMI registry. The entire communication
between lookups and their proxies is based upon a Pini-RPC implementation.
For details about the protocol see Section “3.4 The Communicator-Package”.
Moreover, all necessary service-side functionality is described in Section “3.2
Pini-Services” in more detail.

This section only shows the overall integration of RPC into lookup services.
Therefore, figure 4 gives the concept of this integration: A lookup service proxy
sends a method call request to the lookup. It is then necessary for (lookup
service) proxies to know the IP address and the port number of the appropriate
lookup. The lookup services will receive the request via the RPC-implementation
of the communicator package. This request is decoded by the RPC-mechanism,
and the appropriate method within the lookup service will be invoked. The result
of such a method invocation is resubmitted to the method caller with the help
of the communicator package implementation (exactly: the class ResultDelivery
is responsible for resubmitting results back to clients).

Examples for communication between lookups and their proxies are: the pro-
cess of looking up services available in a community (Section “2.1.1 Lookup for
Services”) or the registration of a service at lookup services (see Section “2.1.2
The Registration of Pini-Service at Pini-Lookups”).

2.3 The Lookup-Service Proxy

The main functionality of lookup service proxies is provided by the ServiceReg-
istrar interface of the Jini-specification, however this functionality must not be



58 Steffen Deter and Karsten Sohr

Fig. 4. Communication between a (Pini) lookup service and a lookup service proxy via
RPC

reduced. Thus, the major concern here is to optimise the communication be-
tween lookup service and proxy. This means that the RPC-mechanism has to be
integrated into the communication instead of RMI.

Sun’s reference implementation of the lookup service proxy is strongly based
upon the RMI-technology. That means that remote methods are invoked via
RMI.

In the Pini implementation, however, remote method calls are realized via
RPC: the proxy sends out method call requests via TCP/UDP and listens for
return values based upon socket servers. These abilities are provided by the
communicator package, specifically by the class Communicator of this pack-
age. To resubmit the result to the requesting lookup service proxy, the lookup
service puts it into an object-array. Thus, it is the task of the lookup service
proxy to extract the correct return values from that array. An example of the
return values extraction from the received object-array is the generation of Ser-
viceItems/ServiceMatches within the lookup(..) methods of the lookup service
proxy (see Section “2.1.1 Lookup for Services”). Therefore the proxy reads the
items in the array, casts them into their appropriate types, generates the re-
turn values and delivers them to its client. Further details are described in Sec-
tion “3.1 Service-Proxies and the Class DefaultPiniProxy” and Section “3.4 The
Communicator-Package”.

Another important modification of the lookup service proxy structure is the
extension of the class DefaultPiniProxy. This is due to the fact that the proxy
needs to know the IP-address of its lookup service and its port for the (remote)
communication. By this extension the lookup service proxy inherits the following
member fields:

public String serviceAddress
public int servicePort
public String codebase
public Class[] interfaces

These fields must be initialized by the inherited method initialize(String,
int, String, Class[]) (See Section “3.1 Service-Proxies and the Class De-
faultPiniProxy”).



Pini – A Jini-Like Plug&Play Technology for the KVM/CLDC 59

3 New Components and Modified Jini Interfaces

This section describes components, that belong to Pini but not to Jini. Moreover,
a description of new features that (Pini-) services and proxies require in order to
provide the basics for communication via RPC are described. One of these new
features is the extension of the class DefaultPiniProxy by (Pini-) service-proxies
as described in the following section.

The new components include the communicator package
“pabadis.kvm.pini.communicator” and the class loader in
“pabadis.kvm.pini.util”.

3.1 Service-Proxies and the Class DefaultPiniProxy

Service proxies provide their services to clients. The provision of services to
clients occurs either with or without communication between the proxies and
their services. It is noteworthy to mention, that this communication often occurs
via RMI. In Pini the use of RMI technology shall be avoided so that the nec-
essary abilities are provided by the package “pabadis.kvm.pini.communicator”.
For remote method calls, the method callMethod(..) is provided by the class
Communicator. As parameters this method expects the name of the (remote)
method to be called, represented as a string, and an object array containing the
appropriate (remote) method parameters. Therefore a method call from a proxy
to a service looks as follows:

Communicator com = new Communicator(String,int);
Object[] result=com.callMethod(String, Object[]);

As the result of the method invocation, the Communicator returns an object ar-
ray containing the necessary information to generate the correct return value(s).
The proxy then reads the items from the array, casts them to their appropri-
ate types and generates the expected return value. To obtain the correct value,
the communication partners need an appropriate communication scheme. This
means that the object in the array should be ordered in a well-known fashion,
so both the proxy and the service are able to interpret the value for the method
call request. Furthermore, the generation of the appropriate return value from
the returned object array must be done by the service proxy; it does not happen
automatically!

Another new feature is that all service proxies have to extend the class
DefaultPiniProxy. Hence all service proxies inherit the following fields:

public String serviceAddress
public int servicePort
public String codebase
public Class[] interfaces



60 Steffen Deter and Karsten Sohr

These fields must initialized by the inherited method initialize(String, int,
String, Class[]). Through the first String parameter, the IP-address of the
appropriate service is provided to the service proxy. By means of the int pa-
rameter, the port number will be provided to the service proxy. The second
String parameter represents the codebase URL of the proxy class file. Finally,
the Class-array contains the appropriate interfaces, that this proxy implements.
To ensure that the array does not contain interfaces, which the proxy does not
implement, the lookup service proxy checks this array during the register pro-
cess. Remember, these array items will be compared to the type values of a given
ServiceTemplate during the lookup process.

One may be inclined to inquire, why this is. On the one hand, the extension of
the class DefaultPiniProxy by Pini service proxies provides a common interface
for initializing the downloaded proxy classes, or more concisely, the instance of
this particular proxy class. On the other hand, the inherited fields provide the
necessary information for using the RPC-protocol, for downloading the class
files and for performing lookup. Therefore, this means that the “main” proxy
class needs to extend the DefaultPiniProxy class, yet not other additional proxy-
classes.

3.2 Pini-Services

This section describes the necessary service-side features for the communication
between services and their (remote) proxies. If “unlimited” resources are avail-
able, the use of RMI is a favourable way to enable remote communication. In
the case of limited devices however RMI is not the best solution due to the fact
that it is a huge resource consumer.

In Pini an RMI-like registration (at the RMI-registry for example) is unnec-
essary. To provide remote communication the service must merely ensure that
its service proxy knows the IP-address and the port number for communication.
This necessary information is put into the ServiceDescription of that service.
Upon registering the service with lookup services, the ServiceDescription is sent
to the lookup instead of the whole service proxy. Hence, if clients download
the ServiceDescription, they obtain all necessary information to load the proxy
classes, to initialize the proxy and to communicate back to the service via the
proxy. (For ServiceDescription see Section “3.3 The Class ServiceDescription”,
for service registration see Section “2.1.2 The Registration of Pini-Services at
Pini-Lookups”).

The communication between services and proxies is based upon TCP/UDP.
An appropriate mechanism must therefore be provided for such communication.
Since the major part of the remote communication between services and proxies
is the invocation of remote methods, the following explanation only refers to
this interesting field: Specifically, this section describes the necessary service-side
conditions for using the (Pini-) RPC-implementation. The integration of RPC
into services containing the reception and processing mechanism for method call
requests, the method invocation and the resubmitting of the results back to the
clients will be highlighted in this section.



Pini – A Jini-Like Plug&Play Technology for the KVM/CLDC 61

As described in Section “2.2 The Pini-Lookup Service”, the reception and
processing of the requests are provided by the classes of the communicator-
package: An instance of class MethodCallListener listens for incoming requests
and generates MethodCallEvents. These events are delivered to a MethodCall-
EventHandler instance. Within this event handler instance the events are pro-
cessed and the appropriate methods are called. The results of these method
invocations are resubmitted to the clients via class ResultDelivery.

Note, that the implementation of the MethodCallEventHandler must be done
by the programmer. All other necessary features are provided by the pack-
age “pabadis.kvm.pini.communicator” (For more details about this package see
Chapter “3.4 The Communicator Package”)

3.3 The Class ServiceDescription

This class contains not only all necessary information to register the proxy at
Pini lookup services, but also information necessary to load and initialize the
proxy-object on the client side. In particular, this information includes the service
address (IP-address), the service port number, the URL of the proxy classes, the
ServiceID of the service, the name of the main proxy class, initial data and an
array of interfaces that the proxy implements.

The data on the lookup service side are used to find matching services when
a lookup(..)-method call occurs. Therefore, these data are the initial base for
comparison.

On the client side, these data are conversely necessary in order to retrieve
the proxy object: The proxy classes are therefore loaded from the URL. The
class will then be initialised with the initial data. This action occurs within
method getServiceItem() which returns a ServiceItem object, which contains
the proxy-object.

3.4 The Communicator Package

The communicator package provides all necessary classes for the RPC-commu-
nication between Pini-services and their proxies. As described in the aforemen-
tioned sections, there is a demand for mechanisms to exchange method call re-
quests, and to receive the results. These data exchanges contain the receiving and
sending data at both the service proxy side and the service side based upon TCP
or UDP. However, there are different mechanisms for services and proxies: The
class “Communicator” provides all necessary functionality for sending method
call requests and receiving the results (generally speaking at proxy side). Mean-
while, the classesMethodCallListener,MethodCallEvent, ResultDelivery, and the
interface MethodCallEventHandler provide all necessary functionality for receiv-
ing method call requests and sending the results of those method invocations:

3.4.1 The Class Communicator
As previously mentioned, this class provides all necessary functionality for RPC-
communication of proxies to their services. This refers to the sending of method



62 Steffen Deter and Karsten Sohr

Fig. 5. Overview over the communicator-package

call requests and receiving of results. Only the constructor of the class
Communicator(String, int) and the method Object[] callMethod(String,
Object[]) exhibit a public interface. For the initialization of this class, the above
constructor expects a string representation of the service’s IP-address and the
appropriate port. On invocation of the method callMethod(..) this information
is used to establish the communication connection. As parameters the method
callMethod(String, Object[]) expects a string representation of the method
identifier and an object array containing the parameters of the method to be
called. Within the method callMethod(..) a thread will be created that is re-
sponsible for receiving the result of the method call request. As the next step, a
communication connection to the service will be created (to the listening socket
server at service side within a MethodCallListener instance) based upon the
above information (IP-address and port). With the help of this connection the
method identifier, the return port (on which the above thread listens for the re-
sult), the length of the parameter array and then the parameters are sent to the
service. After receiving the result (through the above thread) it will be returned
to the client as an object array. The client is then responsible for generating the
appropriate return value from this information. (see Section “3.1 Service Proxies
and Class DefaultPiniProxy”).

3.4.2 The Class MethodCallListener

The class MethodCallListener is used on the service side to receive remote
method call requests. This means that data is received via TCP/UDP-con-
nections. For this reason the class MethodCallListener has a thread that listens
for incoming method call requests (see previous section), which are buffered in
a queue. Thus, the further reception of incoming requests will not be blocked
by the processing of such received requests. Processing the buffered requests
is done by another thread, named the ParserThread. The ParserThread deter-
mines the source IP-address (for return of results) of the request, reads the
return port number (of the listening thread at client side), the method iden-
tifier, the number of the parameters and the parameters as objects. With this
information a MethodCallEvent is generated and passed to the instance of the
MethodCallEventHandler (which is passed to the MethodCallListener as a con-
structor parameter). After the result is retrieved from the event handler, it is
passed to an instance of class ResultDelivery, and the results are sent back to
requesting client. (Hence every method call request is sent in a “secure” manner
because every method call request has a result. If not, the method caller will be
informed via a RemoteException!)



Pini – A Jini-Like Plug&Play Technology for the KVM/CLDC 63

Specifically, the class MethodCallListener has only two public methods/
constructors: the method int getPortNumber() to retrieve the port number (on
which the MethodCallListener listens for incoming method call requests). The
second is the constructor MethodCallListener(MethodCallEvent-Handler).
The single argument of the constructor is the event handler that processes the
generatedMethodCallEvents. For an overview of the functionality of theMethod-
CallListener see the figure below:

Fig. 6. Overview over the MethodCallListener-class and its functionality

3.4.3 The Class MethodCallEvent

A MethodCallEvent contains all necessary information pertaining to a method
call request. In particular, the class contains the following member fields:

public class MethodCallEvent{
private String methodName;
private Object[] parameters;
public String getMethodName();
public Object[] getParameters();
public MethodCallEvent(String, Object[]);

}

It is important to note that this class is not an extension of class java.util.Event-
Object, because this package may not be available on limited devices. However,
the basics for event processing in the Pini-concept are the same as in the Java
event model.

It is not necessary to look at the member fields in detail. As mentioned before,
those MethodCallEvents are generated within the ParserThread of class Method-
CallListener and passed to the MethodCallEventHandler. This event handler is
the subject of the next section.

3.4.4 The Interface MethodCallEventHandler

The major task of the MethodCallEventHandler is the processing of MethodCall-
Events that are generated by the ParserThread of the MethodCallEventListener.



64 Steffen Deter and Karsten Sohr

For this event processing the interface contains only a single method: Object[]
parseEvent (MethodCallEvent). However, the implementation of this method
is up to the service programmer. Hence the information within the event must be
interpreted, and the appropriate actions must be implemented: the determina-
tion of the method to be called and which parameters this method expects. The
parameters are provided by method Object[] getParameters() of the class
MethodCallEvent. After a type cast to the appropriate type the parameters can
be passed to the method that has to be invoked. In order to return the result
to the client, an object array will be generated and passed to the ResultDelivery
class. This class is responsible for sending back the result array to the method
caller.

3.4.5 The Class ResultDelivery

The primary task of this class is to send the results of a remote method invocation
back to the appropriate client. Since the resubmission of results is independent
from any other action, the ResultDelivery class is an extension of class Thread.
Due to this, the processing of furtherMethodCallEvents by theMethodCallEvent-
Handler is not blocked by the resubmitting of those results. As mentioned in
Section “3.4.2 The Class MethodCallListener”, the result of the method call will
be passed to the ResultDelivery instance and sent to the appropriate client.

Therefore, a communication connection is established via TCP or UDP, which
is based upon the IP-address and the port number passed to the constructor
ResultDelivery(String, int) of this class. The result array is sent to the ap-
propriate client through this connection. After that the thread can be destroyed.

3.5 The Pini Class Loader

Class loaders dynamically load classes if necessary. URL class loaders in par-
ticular download classes from a specified URL. The Pini class loader also func-
tions in this manner: In particular, the Pini class loader has to download the
class files and write them to a temporary classpath. After that, the appropriate
Class-object will be created via Class.forName(name). Thus, the PiniURL-
ClassLoader is akin to a class FILE loader.

Implementing such a class loader is necessary because the KVM does not
provide user defined class loaders, however proxy classes must be downloaded
from their codebase. When the client shuts down or starts up the computer, all
classes in the temporary classpath are deleted.

4 State of the Art and Results

This section descibes the current state of the art of the Pini technology and some
results in comparison to Jini.

At the time of writing this paper the following features are available. The
lookup service is implemented and works fine. Services and clients can perform



Pini – A Jini-Like Plug&Play Technology for the KVM/CLDC 65

Table 1.

Jini core 32 kB
Jini extension 230 kB
Lookup Service 501 kB
RMI 401 kB
Summary 1167 kB

discovery and lookup. Services can register themselves with lookup services,
leases will be granted by the lookup service for service and remote event reg-
istration. Additionally, the mechanisms for using attributes and adminstration
are currently in development.

Table 1 shows the Jini disk space cosumption. In comparision to Jini it is
noteworthy that the memory consumption of Pini is much lower: currently Pini
needs about 250 kB and there are no other features necessary.

The run time memory consumption of Pini should be determined in the
next few months. The comparision of this memory consumption to Jini will be
explained in further publications.

5 Related Work

As mentioned in the sections before, the major resource consumer within Jini
is the RMI-technology. Therefore, our major goal was to avoid this resource
waste and thus to prevent the use of RMI. However, there are several attempts
to provide so-called RMI-light technologies, e.g., [8]. Hence, on the one hand it
may be possible to replace Sun’s RMI technology used within Jini with such a
RMI-light technology in order to Jini-enable limited devices. On the other hand,
these aforementioned technologies sometimes use Java features that are often
not available on limited devices.

An attempt to provide a Jini-like technology for limited devices is described
in [6]. But unfortunately, this technology also uses features that are mostly not
available on limited devices.

Sun has realized that it is impossible to Jini-enable limited devices. Therefore
they recommend their “Surrogate Architecture”[9]. However, this technology
cannot be used as a stand-alone Plug&Play technology: It expects a proxy host
(the so-called “surrogate host”), which connects the device to the “Jini world”.

A very similar technology to Pini is the TINI technology, which was presented
on the “Fifth Jini Community Meeting” in December 2000 [7]. The advantage
of this technology over the aforementioned technologies is that TINI works as
a stand-alone technology and is available for the KVM/CDC (Kilo Virtual Ma-
chine with the Connected Device Configuration). However, in comparison to this
Pini is available for the KVM/CLDC (Kilo Virtual Machine with the Connected
Limited Device Configuration), which has a much more limited functionality
than the KVM/CDC.



66 Steffen Deter and Karsten Sohr

6 Conclusion and Future Work

This paper demonstrates the possibility of implementing a Jini-like technology
that is simple, small and uses RPC instead of RMI. Moreover, spontaneous
networking of limited devices may be possible with such a technology. The com-
municator package provides a simple and efficient way for remote method calls
and hence, efficient communication between services and their proxies. In addi-
tion, the network traffic can be reduced by submitting only ServiceDescriptions
instead of full service proxy objects to the clients.

Another measure which would provide more comfort in using Pini, is the
development of a compiler, which is able to generate classes like RMI-stubs and
skeletons in order to use the object-oriented programming model in the remote
context.

Furthermore, we want to make a tool available to connect the Pini technology
to the Jini technology. This means, that we will provide a technology, which
makes it possible to use Jini services within a Pini community, but also to use
Pini services within a Jini community.

References

1. W. Keith Edwards; 1999: Core Jini; Prentice Hall PTR; ISBN 0-13-014469-X
2. K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, A. Wollrath; 1999: The

JiniTM Specification; Addison Wesley; ISBN 0-201-61634-3
3. J. Gosling, B. Joy, G. Steele, G. Bracha; 2000: The JavaTM Language Specifi-

cation; Addison-Wesley; ISBN: 0201310082
4. Sun Microsystems: JavaTM Remote Method Invocation (RMI) Specifica-

tion
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html

5. Pabadis Consortium: http://www.pabadis.org
6. Stephan Preuß; University of Rostock; 2000: NetObjects Dynamische Proxy-

Architektur für Jini in “NetObjectDays 2000” work proceedings
7. Alan Kaminsky, Rochester Institute of Technology, 2000: Running Jini Net-

work Technology in Small Place, presentation on the “Fifth Jini Community
Meeting” http://www.jini.org/jini5/slides/Small Places/sld001.htm

8. Ch. Nester, M. Philippsen, B. Haumacher; University of Karlsruhe: Effizients
RMI für Java JIT’99 Java-Informations-Tage 1999; Springer-Verlag ISBN 3-540-
66464-5

9. Sun Mircosystems: JiniTM Technology Surrogate Architecture Specifica-
tion (Version 0.4)

10. Sun Microsystems: Connected Limited Device Configuration, Version 1.0


	Motivation
	Jini Key Components Adapted to Pini
	The Pini-Discovery and the Pini-Join Protocol
	The Pini-Lookup-Service
	The Lookup-Service Proxy

	New Components and Modified Jini Interfaces
	Service-Proxies and the Class DefaultPiniProxy
	Pini-Services
	The Class ServiceDescription
	The Communicator Package
	The Pini Class Loader

	State of the Art and Results
	Related Work
	Conclusion and Future Work
	References

