
The Architectural Security Tool Suite — ARCHSEC

Bernhard J. Berger
Software Engineering Group

University of Bremen, Germany
bernhard.berger@uni-bremen.de

Karsten Sohr
Technologie-Zentrum Informatik

und Informationstechnik, Germany
sohr@tzi.de

Rainer Koschke
Software Engineering Group

University of Bremen, Germany
koschke@uni-bremen.de

Abstract—Architectural risk analysis is a risk management
process for identifying security flaws at the level of software
architectures and is used by large software vendors, to secure
their products. We present our architectural security environ-
ment (ARCHSEC) that has been developed at our institute during
the past eight years in several research projects. ARCHSEC aims
to simplify architectural risk analysis, making it easier for small
and mid-sized companies to get started.

With ARCHSEC, it is possible to graphically model or to
reverse engineer software security architectures. The regained
software architectures can then be inspected manually or au-
tomatically analyzed w.r.t. security flaws, resulting in a threat
model, which serves as a base for discussion between software and
security experts to improve the overall security of the software
system in question, beyond the level of implementation bugs.

In the evaluation part of this paper, we demonstrate how we
use ARCHSEC in two of our current research projects to analyze
business applications. In the first project we use ARCHSEC
to identify security flaws in business process diagrams. In the
second project, ARCHSEC is integrated into an audit environment
for software security certification. ARCHSEC is used to identify
security flaws and to visualize software systems to improve the
effectiveness and efficiency of the certification process.

Index Terms—security, threat modeling, software architecture,
reverse engineering, architectural risk analysis

I. INTRODUCTION

Software security is a topic of growing importance in
today’s software development. The number of legal regula-
tions regarding security and especially privacy is growing.
The first step companies undertake is to employ security
bug finders that identify issues at the implementation-level.
These tools identify—depending on the analyzed program-
ming language—SQL injections, buffer overflows, or com-
mand injections. All these issues have in common that they
are related to missing input validation or the use of insecure
programming interfaces.

With the growing security-awareness of companies they face
the challenge of identifying architectural security flaws. These
flaws are of great importance since they can undermine the
whole security concept of an application. They are, however,
harder to identify since it requires more security knowledge
to find and understand the underlying architectural problem.
At this level, security experts look at authorization policies,

This work was supported by the German Federal Ministry of Education and
Research (BMBF) under the grants 16KIS0583 (PortSec project), 16KIS0069K
(ZertApps project) and 01IS10015B (ASKS project). Furthermore it was
supported by the German Federal Ministry for Economic Affairs and Energy
(BMWi) under the grant ZF4123903ED6 (CertifiedApplications).

processing of sensitive information, or the adequate use of
cryptography.

In our previous and recent research projects we worked with
various small and midsized enterprises (SMEs) that wanted
to start with architectural security analysis to improve their
applications’ security. They all were lacking security experts in
their development teams. A common solution to this problem
is to consult an external security expert with the idea that this
person is able to secure the software within a short period of
time. The software systems they have to audit are complex
and have been implemented over years comprising decades of
man-years of development effort. In many cases these experts
lack the time to take a closer look at the software and to extract
a comprehensive software architecture to conduct a proper
architectural risk analysis. Mostly these consultants focus
on analyzing design documents or development processes to
identify security pitfalls. Even for certifications, such as the
Common Criteria, it is very seldom that an auditor manages
to analyze at source code level.

These reasons were the motivation to develop an architec-
tural risk analysis environment that allows these companies to
start with architectural risk analysis more easily. We identified
several requirements that arose from discussions with our
application partners:

• Easy and extensible way to manually create software
architecture diagrams.

• Means to extract software architecture diagrams automat-
ically using static analysis.

• Query support for architecture diagrams to identify inter-
esting system parts.

• Knowledge base containing rules to identify architectural
flaws automatically.

Within this paper we present the ARCHSEC environment
that we started to develop in 2010. We describe the main
use cases of the environment and give a glance at imple-
mentation details. In the evaluation we describe how we
employ ARCHSEC in two of our current research projects.
In the first project we use it to check business processes
for architectural security flaws. In the second project we
integrate the ARCHSEC environment into an audit tool to
support auditors in understanding unknown software systems
and identifying security-relevant parts.



II. BACKGROUND

The process of analyzing software architectures for security
flaws has been introduced by different parties. The term
architectural risk analysis has been prominently promoted
by Gary McGraw [1]. A similar concept was introduced by
Microsoft with their threat modeling approach [2] as part of
their Security Development Lifecycle [3].

An important part of these approaches is to create a software
architecture sketch and to discuss potential security flaws
with the help of this diagram. Both approaches are asset-
centric and try to protect these assets from illegal accesses.
Furthermore, they are attacker-centric and attempt to see the
software system not from the user point of view. Neither
architectural risk analysis nor threat modeling specify how
to write down software architectures. Microsoft suggests a
very lightweight and informal description formalism named
data flow diagrams. There are different reasons for not using
common description formalisms such as UML. First of all,
describing software systems with UML is highly complex and
secondly, they are not widely used in the security community.

The data flow diagrams used by Microsoft resemble di-
rected, labeled, and hierarchical graphs. The only difference
is the additional concept of trust boundaries. Trust boundaries
divide a software system into areas of different trust levels,
where elements can belong to (or not). Figure 1 shows an
exemplary data flow diagram, consisting of four elements, two
channels (data flows) and one trust area.

Trust Area

Process

Child ElementInteractor

Channel

Data Store

Channel

Fig. 1. Exemplary Data Flow Diagram

Dhillon stated that it was helpful to append attributes to the
different elements of a data flow diagram to add information to
them [4]. Berger et al. already defined extended data flow dia-
grams (EDFD) in a previously published paper [5]. Extended
data flow diagrams are additionally typed and attributed and
have data concepts. The attributes make it possible to attach
security objectives and existing mitigation strategies, such
as encryption, to EDFD elements. The data concepts allows
analysts to define assets of software systems. The types can
be associated with attributes that are implied by the type. An
example is a channel of type HTTPS Channel that implies the
attribute Transport Encryption. This way it is possible to allow
non-experts to create diagrams and the types automatically
add security information. The sum of all types of an extended
data flow diagram is called schema. A flexible schema allows
diagram authors to add new kinds of types and attributes at
runtime, enabling them to customize EDFDs to their needs.

III. RELATED WORK

Despite the number of static analysis approaches for soft-
ware security, little work has been done on the problem
of reconstructing and visualizing the security architecture of
software systems. One exception is the technique introduced
by Abi-Antoun and Barnes [6]. They annotate the source
code of an application to statically extract Ownership Object-
Graphs statically. Ownership Object-Graphs represent a hier-
archical runtime-architecture of the objects within a system.
Furthermore, they compare the extracted graph with a given
DFD to identify forbidden data flows. The approach has only
been tested for small and non-distributed applications (about
3,000 lines of code) [2]. Almorsy et al. [7] use UML models
and OCL signatures to pinpoint architectural security flaws.
They use reverse engineering to extract UML class diagrams
from code but do not employ static analysis techniques, such
as data flow analysis.

There is work that deals with architectural risk analysis
without taking the program code into account. Microsoft
provides a tool that supports the Threat Modeling process [2].
This tool makes available a catalog of questions, which an
analyst can apply to a given DFD. Schaad and Borozdin
applied Microsoft’s Threat Modeling to block diagrams and
identified possible threats and vulnerabilities introduced by the
usage of third-party standard software components [8].

Other works’ approaches use UML and related tools to
analyze security architectures [9], [10]. These UML-based
approaches let a software architect formulate security require-
ments that a software architecture must satisfy, e.g., authoriza-
tion or confidentiality requirements. UML and its constraint
language OCL were introduced to allow specification of posi-
tive system requirements rather than anti-requirements (things
that can go wrong). In contrast, we utilize security knowledge
about architectural software defects as, for example, listed in
the Common Weakness Enumeration (CWE). Hence, our tech-
nique complements UML-based approaches to architectural
risk analysis.

Additionally, work has been done on software visualization
and program comprehension. Bauhaus is a tool suite that has
been developed some years ago for extracting and visualizing
resource flow graphs. Resource flow graphs are typed and
attributed graphs that contain the entities, such as methods and
classes, and their static dependencies [11], [12]. The approach
was used by Berger et al. to conduct a security assessment for
some aspects of Android’s security concepts [13].

The presented ARCHSEC tool is based on the principles of
our earlier work [5], [14]–[16]. While the first approaches were
explicitly developed for analyzing Android apps, we signifi-
cantly extended and redesigned it over the years. ARCHSEC is
now split into core concepts, such as the data flow diagrams,
corresponding textual and graphical editors, a knowledge
base format, a rule checking engine, a reverse engineering
framework, and the threat model editor. Some of the new parts
are visible in Figure 3. All framwork- or language-specific
code was extracted into additional plugins to make the core



more flexible and robust.

IV. IMPLEMENTATION

A binary release, in the form of an Eclipse update site,
can be found on the ARCHSEC website [17]. An overview of
ARCHSEC’s use cases is depicted in the use case diagram
in Figure 2, which concentrates on the use cases that are
interesting for an auditor during an assessment. An auditor
wants to analyze a software system; therefore, she creates an
extended data flow diagram. She first selects a schema for the
resulting EDFD and then has the possibility to either create
the EDFD by hand or to convert an existing software system
into an EDFD. After creating an EDFD the auditor applies a
knowledge base in order to create a threat model. Depending
on the rules to be checked she either applies built-in rules or
software specific ones, which she has to define first. Now, she
can inspect the resulting threat model.

ArchSec
Auditor

analyze software

convert software into EDFD

create EDFD

«extend»

edit EDFD

«extend»

create EDFD schema

«include»

convert Android app

«extend»

convert JavaEE application

«extend»

view EDFD

«include»

«include»

view threat model

«include»

apply knowledgebase
«include»

builtin knowledgebase

«extend»

software-specific knowledgebase

«extend»

define software-specific knowledgebase

«include»

Fig. 2. UML Use Case Diagram of ARCHSEC

The ARCHSEC environment is integrated into the Eclipse
platform. It uses of the model-driven software development
paradigm and is based on the Eclipse modeling framework. We
are using models for our intermediate representations, to im-
plement domain-specific languages, model-to-text and model-
to-model transformations. Furthermore, there are libraries for
developing visualizations and editors based on these models.

For all the aforementioned use cases there is tool support in
ARCHSEC. In the following, we highlight some of them. Our
reverse engineering pipeline for extracting EDFDs benefits of a
framework we wrote by allowing us to switch between locally
or remotely executing the analysis through a simple change in
the configuration setting. If the analysis is to be conducted
remotely, the analysis input as well as the analysis description
are written to a database. Several analysis nodes frequently

poll this database for new analysis tasks. Unprocessed tasks are
then fetched and executed by installing the according analysis
from our analysis repository. The results are written back
to the database where from the user interface can fetch the
results. This approach allows us to prepare evaluations with
a larger number of analyses by simply pushing them to our
analysis database and let different analysis nodes process them
in parallel. The local execution simply creates a new analysis
process that calculates the results.

Our analyses for extracting security and architecture facts
are implemented as a set of plug-ins for the Soot analysis
framework [18]. Soot is a major framework for Java and
Android. It works on Java and Android bytecode, making
it possible to analyse software systems without requiring
access to their source code. This is especially helpful with
commercial partners that are reluctant about handing over their
source code due to security reasons. Soot has a large ecosystem
of additional libraries, allowing one to implement intra- and
inter-procedural analyses. However, ARCHSEC’s infrastructure
could be used for other analysis frameworks as well and they
could be used to enrich EDFDs.

For viewing and editing extended data flow diagrams,
we implemented a flexible graph editor based on Eclipse’s
Graphiti framework. The framework allows one to store the
visualization of a model and the model itself into separate
files and is well-suited for creating a graphical depiction of
models. The editor allows a user to view and manipulate all
information present in an extended data flow diagram.

We use Xtext [19], a framework for creating domain-specific
languages, to implement Cypher, a graph query language [20],
which we use for describing knowledge base rules,. Each
knowledge base rule consists of a cypher query describing
a security anti-pattern, a situation where the security require-
ments of an application are violated. Furthermore, it contains
queries describing a possible mitigation of the security flaw.
These patterns correspond to security patterns that allow the
system to fulfil the security requirements.

The knowledge base itself can be created with the help of a
form-based editor. This editor allows security experts who are
used to extended data flow diagrams to create software-specific
knowledge base rules on their own. These application-specific
rules are important to easily support domain-specific security
requirements. When a knowledge base is applied to an EDFD,
the rules found in the knowledge base are evaluated for the
EDFD; every match results in a threat model entry. Currently,
we do not employ a graph database, such as Neo4J, to find
matches since it would make it necessary to serialize our
models into a database to query it. Therefore, we implemented
our own Cypher evaluator within ARCHSEC.

Figure 3 shows a screen shot of the ARCHSEC environment.
The knowledge base editor is visible in the upper left corner. It
is used to edit a mitigation pattern, consisting of a description
and the pattern itself. The description of rule or mitigation is
used to generate an explanatory text for the threat model and is
customized with the concrete element names or attribute values
of a finding. On the upper right corner an EDFD is opened



Fig. 3. Screen Shot of ARCHSEC

for editing. The graph is on the left hand side— whereas the
palette is located on the right hand side containing all available
types. At the bottom left of the depiction a threat model is
opened for further inspection. At the lower right side there
is an interactive cypher console, allowing to evaluate cypher
queries for opened EDFDs.

V. USE CASES

Currently, we employ ARCHSEC in two different funded
research projects dealing with enterprise software. In the
PortSec project, we analyze a port community system, the
central data exchange platform of a port. In the CertifiedAp-
plications project we integrate ARCHSEC into an environment
for security audits to analyze Java Enterprise software and
Android applications.

A. Port Community System

The goal of the PortSec project is to understand and
improve information security of international ports. In a single
port, many different participants exist, such as shipowners,
customs, forwarders, and terminals. All the participants have
to work together to discharge a ship. Therefore, the individual
participant’s systems are highly interconnected and exchange
much information. Most of the time this information is critical
to security. Manipulating or revealing this information may
lead to serious damage, ranging from financial consequences
to physical damages.

We are automatically transforming business process dia-
grams, present in the OMG’s business process and notations
standard, into data flow diagrams to identify security flaws.
The main concepts of business process diagrams are activities
(tasks that are executed), gateways (decision nodes), swim
lanes (different actors of a system), and connections (flow of
control). Within the transformation, tasks and gateways are
mapped to elements and connections are mapped to channels.

Therefore, we extended the built-in schema with new element
types for tasks and gateways. This extension takes a very
limited amount of time (half an hour, including the search
for icons). In the second step, we added the messages that
are transmitted along the control flow and classified them
according to their security requirements. Afterwards, we set
the type of the channels according to their characteristics.
Therefore, we used existing channel types, such as intra-
process communication, http connection, https connection, and
e-mail traffic, but also defined new ones like FTAM, a file
transfer protocol we did not know so far. The adaptation of
the diagram with approximately 150 communication channels
took about one hour.

Applying our existing knowledge base identified a large
number of locations where sensitive data were transferred
using insecure channels and therefore exposed to potential
attackers. After discussing the results with system experts we
found out that some of the systems run within the same ISO
27001 certified data center and therefore can be considered
trustworthy. Since it is our goal to focus on external attackers
and the data center is trustworthy with regards to that, these
findings are false positives. We then extended our transfor-
mation to take the swim lanes into account. Furthermore,
the software vendor defined a security policy specifying the
trustworthiness of trust areas with regard to specific data. We
used a model-to-text transformation to automatically generate
a system-specific knowledge base that represents the security
policy. With the help of the resulting extended data flow
diagrams and the system-specific knowledge base, we were
able to identify four communication channels within the port
community system where data could be eavesdropped on or
manipulated by attackers. These findings were real issues that
needed to be fixed.



B. Certification of Java Enterprise Systems and Android Apps

The main objective of the CertifiedApplications project is
to define a lightweight software certification process. Security
certifications often follow a similar pattern: the software
vendor prepares a self-assessment, in which she describes the
assets, the functions as well as the input and the output of the
system. Furthermore, she describes the security properties that
she wants to certify and the circumstances under which these
properties should hold. Then, the certification company checks
the self-assessment for consistency and passes it to a testing
laboratory where an auditor has the task to check the software
against. Depending on the certification level the accuracy of
these checks may differ.

One of our project partners—a company from software
certification business—defined a new software security certi-
fication process according to different international standards.
Within the definition of the process, they focused on a more
lightweight certification approach to reduce costs. One way
to achieve this goal is to use static analysis-assisted matching
of the self-assessment and the implementation and the use of
extracted data flow diagrams.

In this use case, ARCHSEC helps to improve the effec-
tiveness and efficiency of the certification process as part
of a greater audit environment. It allows auditors to more
easily identify the software parts that are of interest and to
automatically search for architectural security flaws.

VI. CONCLUSIONS

The security community and many SMEs benefit from
automated architectural risk analysis since it simplifies the
applicability. Furthermore, it allows an analyst to check the
implemented security architecture instead of the planned one.
In the following, we give an overview of the lessons we
learned, the limitations we found and present our future plans
for ARCHSEC. We are going to focus on those facts that are
of interest for the reverse engineering community.

A. Lessons Learned

One problem we were facing during analyzing current
software systems is the large extent of software frameworks
that are used. Starting with component-based frameworks,
such as Android and JavaEE, where there is no single entry
point to the application and the executing container follows
a defined component lifecycle. Similar problems arise from
dependency injection frameworks, since they hide the creation
and wiring of instances. Thus, it is hard to calculate pointer
information, precise call graphs, and inter-procedural data
flows. For all these reasons, it is complicated to create analyses
for software systems employing these frameworks. It would be
really helpful if static-analysis tools provided means to support
such frameworks and thus would be able to create call graphs.

Component-based frameworks are often configurable. These
configurations can have a major impact on the results of
both static and security analyzes, if taken into account. Here,
for example, the dependency injection instance used can be
uniquely defined, constants can be set in the program code,

configured security protocols can be configured, or security
providers can be selected. Taking this information into account
in the analysis helps us to produce more accurate results.

In the beginning of ARCHSEC we employed OCL to de-
scribe matching conditions of security flaws and mitigations
(see [5]). After experimenting with a larger set of rules we
learned that complex flow-based rules became very compli-
cated to write down and some rules were not expressible in
standard OCL. For this reason we switched to an alternative
language that was tailored towards queries on graphs.

On employing ARCHSEC we had several discussions about
the ease of using it. Many security experts or quality managers
do not have the time to learn the usage of complex command
line tools. They rather expect production-like quality of the
software, integrated into a graphical user interface that works
as easy as a push-button tool. This expectation is one reason
why we spent a great amount of effort into automating the
static analysis, where one can extract an extended data flow
diagram by simply right clicking on a software artifact.

Productive systems often use external components to pro-
vide security. For example, an application firewall that protects
against denial-of-service attacks or an HTTPS proxy that cen-
trally encrypts incoming and outgoing Web server traffic. Such
organizational measures are often sources of false positives, as
they can not be identified by code analysis. For this it would
be necessary to perform dynamic network analyzes in order
to incorporate this information.

B. Limitations

In ARCHSEC there is still plenty of implementation work
to be done. While the core components are getting more
and more stable, there are many possible framework-specific
analysis extensions that have not been implemented so far due
to the amount of necessary engineering effort.

Additionally, ARCHSEC shows some known limitations.
First of all, the process of architectural risk analysis can be
aided by reverse engineering. Nevertheless, full automation
of this approach is not possible, since with the help of the
knowledge database only standardized security flaws can be
identified, which usually do not consider the peculiarities of
the specific software to be examined. An automated analysis,
for instance, cannot decide on its own which data are sensitive
or whether a file on disk of a used remote system is secure.

Since the flaw identification is a subgraph-isomorphism
problem, the runtime of this step can become quite large in the
worst case. This has not yet become a problem in the previous
experiments, since the possibilities of matching are greatly
limited by the typing of the nodes and edges. In addition,
circles in the graph are only considered once by our evaluation
engine, which also reduces the number of matches.

C. Outlook

Currently, we are finishing our first stable release of the
framework-independent core part. The current build of ARCH-
SEC is available on our homepage. Nevertheless, there are
many possibilities for improvements.



Automatic Graph Layouts Currently the automatic layout
possibilities for extended data flow diagrams are very rudi-
mentary. It is desirable to implement automatic graph layouts
to make extracted diagrams clearer at the beginning. For this
purpose, we plan to integrate the Kieler framework [21].

Extensible Static Analysis Configuration We want to
create a common configuration mechanism for all our re-
verse engineering pipelines, such as Java Enterprise, Java, or
Android. At the moment, each reverse engineering pipeline
has its own configuration, but it showed that there are many
similarities, which can be unified.

Supporting Architectural Views The IEEE standard
42010:2011 suggests to use architectural views to address
different architectural concerns [22]. Our experience supports
this conjecture because using a single view for all security
aspects (e.g., authorization, information flow, cryptographic
mechanisms), in form of an extended data flow diagram, can
be confusing. Therefore, we plan to add support for extracting
different extended data flow diagrams that focus on a specific
security topic (as an architectural view).

Object Traces At the moment, we are integrating a static
analysis that allows us to extract static object process graphs
for specific Java APIs. Object process graphs show the API
usage of concrete objects during a program run [23]. We use
this approach to extract the usage of widely-used security
APIs, such as the Java Cryptography Architecture, and to add
the results to extended data flow diagrams to allow security
experts to check whether these interactions are secure.

Source Code Integration Currently, navigation is not pos-
sible between our extended data flow diagrams and the actual
implementation of a software system. One of our next steps
will be to add the possibility to jump to the source code for
those diagram elements that have a source code counterpart.
This will make it easier for security experts to use extended
data flow diagrams as a starting point for security assessments.

REFERENCES

[1] G. McGraw, Software Security: Building Security In. Addison-Wesley
Professional, 2006.

[2] A. Shostack, Threat Modeling: Designing for Security, 1st ed. Wiley
Publishing, 2014.

[3] M. Howard and S. Lipner, The Security Development Lifecycle. Red-
mond, WA, USA: Microsoft Press, 2006.

[4] D. Dhillon, “Developer-driven threat modeling: Lessons learned in the
trenches,” IEEE Security & Privacy, vol. 9, no. 4, pp. 41–47, 2011.

[5] B. J. Berger, K. Sohr, and R. Koschke, “Extracting and analyzing the
implemented security architecture of business applications,” in 17th
European Conference on Software Maintenance and Reengineering,
CSMR 2013, Genova, Italy, March 5-8, 2013, A. Cleve, F. Ricca, and
M. Cerioli, Eds. IEEE Computer Society, 2013, pp. 285–294.

[6] M. Abi-Antoun and J. M. Barnes, “Analyzing Security Architectures,”
in Proceedings of the IEEE/ACM Int. Conf. on Automated Software
Engineering, ser. ASE ’10. New York, NY, USA: ACM, 2010, pp.
3–12.

[7] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated software
architecture security risk analysis using formalized signatures,” in 2013
35th International Conference on Software Engineering (ICSE), May
2013, pp. 662–671.

[8] A. Schaad and M. Borozdin, “Tam2: Automated threat analysis,” in Proc.
of the 27th Annual ACM Symposium on Applied Computing, 2012, pp.
1103–1108.

[9] J. Jürjens and P. Shabalin, “Automated verification of UMLsec models
for security requirements,” in Proc. of UML 2004 - The Unified Modeling
Language: Modeling Languages and Applications, ser. LNCS, vol. 3273.
Springer, 2004, pp. 365–379.

[10] D. Basin, M. Clavel, J. Doser, and M. Egea, “Automated analysis of
security-design models,” Information and Software Technology, vol. 51,
pp. 815–831, 2009.

[11] J. Czeranski, T. Eisenbarth, H. M. Kienle, R. Koschke, and D. Simon,
“Analyzing xfig using the bauhaus tools,” in Proceedings of the Seventh
Working Conference on Reverse Engineering, WCRE’00, Brisbane,
Australia, November 23-25, 2000. IEEE Computer Society, 2000, pp.
197–199.

[12] A. Raza, G. Vogel, and E. Plödereder, “Bauhaus - A tool suite for
program analysis and reverse engineering,” in Reliable Software Tech-
nologies - Ada-Europe 2006, 11th Ada-Europe International Conference
on Reliable Software Technologies, Porto, Portugal, June 5-9, 2006,
Proceedings, ser. Lecture Notes in Computer Science, L. M. Pinho and
M. G. Harbour, Eds., vol. 4006. Springer, 2006, pp. 71–82.

[13] B. J. Berger, M. Bunke, and K. Sohr, “An android security case study
with bauhaus,” in 18th Working Conference on Reverse Engineering,
WCRE 2011, Limerick, Ireland, October 17-20, 2011, M. Pinzger,
D. Poshyvanyk, and J. Buckley, Eds. IEEE Computer Society, 2011,
pp. 179–183.

[14] K. Sohr and B. Berger, “Idea: Towards architecture-centric security anal-
ysis of software,” in Proceedings of the Second International Symposium
on Engineering Secure Software and Systems, ser. Lecture Notes in
Computer Science, F. Massacci, D. S. Wallach, and N. Zannone, Eds.,
vol. 5965. Springer, 2010.

[15] B. J. Berger, K. Sohr, and U. H. Kalinna, “Architekturelle sicherheit-
sanalyse für android,” in DACH Security 2014: Bestandsaufnahme -
Konzepte - Anwendungen - Perspektiven, P. Horster, Ed. Peter Schartner
and Peter Lipp, 2014, pp. 287–298.

[16] B. J. Berger, K. Sohr, and R. Koschke, “Automatically extracting threats
from extended data flow diagrams,” in Engineering Secure Software and
Systems, J. Caballero, E. Bodden, and E. Athanasopoulos, Eds. Cham:
Springer International Publishing, 2016, pp. 56–71.

[17] U. of Bremen. (2019) ArchSec—The Architectural Security Tool Suite.
[Online]. Available: https://archsec.informatik.uni-bremen.de

[18] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundare-
san, “Soot - a java bytecode optimization framework,” in Proceedings of
the 1999 conference of the Centre for Advanced Studies on Collaborative
Research, November 8-11, 1999, Mississauga, Ontario, Canada, S. A.
MacKay and J. H. Johnson, Eds. IBM, 1999, p. 13.

[19] M. Eysholdt and H. Behrens, “Xtext: implement your language faster
than the quick and dirty way,” in Companion to the 25th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, SPLASH/OOPSLA 2010, October 17-21,
2010, Reno/Tahoe, Nevada, USA, W. R. Cook, S. Clarke, and M. C.
Rinard, Eds. ACM, 2010, pp. 307–309.

[20] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker,
V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor,
“Cypher: An evolving query language for property graphs,” in Proceed-
ings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018,
G. Das, C. M. Jermaine, and P. A. Bernstein, Eds. ACM, 2018, pp.
1433–1445.

[21] C. D. Schulze, M. Spönemann, and R. von Hanxleden, “Drawing layered
graphs with port constraints,” J. Vis. Lang. Comput., vol. 25, no. 2, pp.
89–106, 2014.

[22] ISO/IEC/IEEE, “Systems and Software Engineering – Architecture
Description,” ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), pp. 1–46, 1 2011.

[23] J. Quante and R. Koschke, “Dynamic object process graphs,” Journal
of Systems and Software, vol. 81, no. 4, pp. 481–501, 2008.


