

A Workflow Instance-based Model-checking Approach to Analysing

Organisational Controls in a Loan Origination Process1

1 The work of Andreas Schaad was sponsored under the EU FP6 IP project “R4eGov”.

The work of Karsten Sohr was sponsored under the BMBF funded project “ORKA”

Andreas Schaad

SAP Labs France, Security & Trust Group

805, Avenue du Dr Maurice Donat

06250 Mougins, FRANCE

andreas.schaad@sap.com

Karsten Sohr

Universität Bremen, Technologie-Zentrum Informatik

Bibliothekstraße 1

28359 Bremen, Germany

sohr@tzi.de

Abstract. Demonstrating the safety of a system

(ie. avoiding the undesired propagation of access

rights or indirect access through some other

granted resource) is one of the goals of access

control research, e.g. [1-4]. However, the

flexibility required from enterprise resource

management (ERP) systems may require the

implementation of seemingly contradictory

requirements (e.g. tight access control but at the

same time support for discretionary delegation of

workflow tasks and rights). To aid in the analysis

of safety problems in workflow-based ERP

systems, this paper presents a model-checking

based approach for automated analysis of

delegation and revocation functionalities. This is

done in the context of a real-world banking

workflow. We expand on some of our earlier work

reported in [44], which was restricted to single

workflow models and not arbitrary workflow

instances of one or several models. This initial

restriction to model-checking at the workflow

model level meant that we were not able to

analyse delegation and revocation of tasks and

access rights in the detail as required in some of

our earlier conceptual models [11, 12]. We

derived information about the workflow from

BPEL specifications and ERP business object

repositories. This was captured in a SMV

specification together with a definition of possible

delegation and revocation scenarios. Possibly

required separation of duty properties were

translated into a set of LTL-based constraints.

1 Introduction

Within some of our earlier research we focused on

modelling and achieving “organisational control” [5] by

integrating new and already existing work on workflow

based systems [6], the required access rights [7, 8], the

definition of separation of duty policies [9, 10] and the

delegation and revocation of access right/authorisations and

tasks/obligations [11, 12]. This led to the partial

implementation of such concepts in the SAP Research

workflow stack [13]. In particular, we implemented a

security enforcement point for a workflow tasklist manager,

automated support for delegation and revocation schemes

[14] and specification and enforcement of separation of

duty policies using the JESS and iLog rule systems. This

further confirmed our already obtained insights into the

possibly existing unwanted relationships between such

components.

In particular, we had already observed at a formal level

[5] that delegation and revocation features may be used to

“circumvent” separation of duty properties, thus providing

potentially undesired access to resources. However,

“Enterprise Resource Management” means providing

people with the ability to perform their work according to

economic principles. It is thus a partially contradictory aim

to build systems that provide flexibility (e.g. delegating

tasks and possibly required access rights) at the same time

aiming to strictly preserve safety. We believe that only a

mix of a well-designed access control system and a set of

(compensating) controls at configuration, deploy and run-

time can allow us to achieve an acceptable level of

organisational control and flexibility. Analysis tools at the

various stages and system levels are required to assist us

and our earlier work on model-checking access control in

workflow systems [44] was a first step into that direction.

Accordingly, this paper presents an extended model-

checking based approach for automated analysis of

delegation and revocation functionalities in the context of a

workflow requiring static and dynamic separation of duty

properties. Extended means that, instead of single models

only, we are now able to analyse behaviour within arbitrary

workflow instances of one or several models. The earlier

restriction to model-checking at the workflow model level

meant that we were not able to analyse delegation and

revocation of tasks and access rights in the detail of our

conceptual models established in [11, 12]. We derived

information about the workflow from BPEL specifications

and business object repositories. This was captured in a

SMV specification together with a definition of possible

delegation and revocation scenarios. The required

separation properties were translated into a set of LTL-

based constraints. However, we need to again stress that the

formalisms behind our approach have already been

published elsewhere [11, 12].

The scope of this paper is to give an overview of how

capture some of these formalisms within a model-checking

environment as well as instantiate and analyse them in the

context of real-world scenarios. The rest of the paper will

provide some more required background information

regarding the delegation and revocation of tasks and rights

(Section 2). We then instantiate such properties within the

context of a real-world loan origination process and

informally discuss constraints that need to be maintained

(Section 3). Then we give a formal role-based access

control model for workflows which serves as the basis for

the model checking process (Section 4). After a brief

summary of the current state of the art in the area of model-

checking (Section 5) we then specify the banking workflow

in SMV together with a defined subset of the constraints in

LTL (Section 6). We then discuss some results of our

analysis and provide some final conclusions and future

research directions (Sections 7).

1. Static Separation of Duties

• (Simple) Static Separation of Duties (SSSoD)

 A principal may not be a member of any two exclusive roles.

2. Dynamic Separation of Duties

• (Simple) Dynamic Separation of Duties (SDSoD)

A principal may be a member of any two exclusive roles

but must not activate them at the same time.

• Object-based Separation of Duties (ObjSoD)

A principal may be a member of any two exclusive roles

and may also activate them at the same time, but he must not

act upon the same object through both.

• Operational Separation of Duties (OpSoD)

A principal may be a member of some exclusive roles as

long as the set of authorisations acquired over these roles

does not cover an entire workflow.

• History-based Separation of Duties (HistSoD)

A principal may be a member of some exclusive roles and

the complete set of authorisations acquired over these roles

may cover an entire workflow, but a principal must not use

all authorisations on the same object(s).

Fig. 1. Separation Taxonomy (I)

2 Related Work

2.1 SoD - General Introduction and Overview

Separation controls are probably the so far best understood

type of application-level constraint, as indicated by the

variety of existing work. Specifically research in the areas

of role-based access control, e.g. [15] and distributed

systems management, e.g. [16] has led to the definition of

taxonomies and frameworks, that will be reviewed in the

course of this section. Although the origins of this principle

cannot be clearly identified, it is obvious that the

development of organisational theory, e.g. [17, 18], and

internal control and accountancy frameworks helped in

their definition and possible ways of implementation.

Application areas are the prevention of fraud due to the

misuse of powers and the preservation of integrity.

One classic example when talking about separation

controls is that of preventing fraud committed by the

purchasing officer in a company. If he could perform all the

necessary steps of creating and authorising an order,

recording the arrival of the item, recording the arrival of the

invoice and finally authorising the payment, it would be

easy for him to place an order with a fictitious company he

owns, record a non-existing arrival, pay to the company,

and add the non-existing goods to the books. Only the end-

of-the-year inventory would reveal the discrepancy

between the books and the physical stock. Enforcing a

separation control in this context may be to not let a

principal have all the necessary authorisations for each

required step in this process. A more relaxed variation may

be to not allow him to perform all the steps alone.

An exhaustive overview is provided in [44] as well as

[19 – 25] and we only summarise properties we modelled

in LTL in Figure 1.

2.2 Delegation of Tasks and Rights

Delegation may be used as a term for describing how duties

and the required authority propagate through an

organisation, usually in terms of the refinement of a high-

level organisational goal into manageable policies which

eventually lead to the execution of some task [30, 31]. This

is often referred to as decentralisation or Management by

Delegation [18] where delegation considers the passing of

policy objects from one principal to another with respect to

the performance of some activity and attainment of some

common organisational goal.

However, often the term delegation is also used to

describe how a principal passes some specific object on to

some other principal, because the current structure does not

allow the achievement of a goal one or both of these

principals have [17]. If such delegation activities occur

frequently, have a regular pattern or principals delegate

some object indefinitely, then this indicates that the current

organisational structure and procedures do not reflect the

goals of the involved principals.

An initially temporary and ad-hoc delegation must now

become part of the regular administrative delegation

activities shaping the formal organisational structure. There

may be different factors motivating such general

administrative delegation or ad-hoc delegation between

specific principals. We thus distinguish between two types

of delegation that need to be clarified: Administrative

delegation (administration) and ad-hoc delegation

(delegation).

This distinction is often not made clear, e.g. [32]. Both

cause some sort of policy object assignment to be changed,

where administration has a high degree of similarity,

regularity and repeatability, and conversely ad-hoc

delegation has a low degree of these. We argue that

delegation may be seen as distinct from administration.

Three characteristics can be used to support this distinction.

These are the representation of the authority to delegate;

the specific relation of a principal to an object; and the

duration of this relation.

In [11] we have provided formal models for the

delegation of tasks (obligations) and the required rights

(authorisations), based on the conceptual models provided

in [16]. We introduced the concepts of review and

supervision as obligations on delegated general and specific

obligations (tasks at the workflow model level and specific

task instances). The formalisation in a predicate logic also

showed that the delegation of authorisations, as well as

general and specific tasks can be based on one general

delegation function. This function will also maintain a

history of delegation and object access activities over a

sequence of states, recording properties such as multiple

delegations of an authorisation to the same principal by

different delegating principals or the dropping a delegated

task/obligation by a delegating principal.

We noted that an explicit distinction between delegating

tasks types and their instances needs to be made. For

example, a task instance may only be delegated to some

principal in a role associated with the corresponding task

type. Maintaining and modelling such information is

essential for providing revocation functionality as we will

later show in our LTL specification.

2.3 Revocation of Tasks and Rights

In general, revocation of an object is based on its previous

delegation and thus requires the following pieces of

information [1]: The principals involved in previous

delegation(s); the time of previous delegation(s); the object

subject to previous delegation(s).

Table 1. Revocation Taxonomy

Our SMV specification provides this information and

may thus support the various forms of revocation as

described in the revocation framework of [33]. In this

framework different revocation schemes for delegated

access rights are classified against the dimensions of

resilience, propagation and dominance. Since resilience is

based on negative permissions, we do not consider this

here, as there is no corresponding concept for the policy

objects in our model. The remaining two dimensions may

be informally summarised as follows:

1. Propagation distinguishes whether the decision to
revoke affects

• only the principal directly subject to a revocation
 (local); or

• also those principals the principal subject to the
revocation may have further delegated the object
 to be revoked to (global).

2. Dominance addresses conflicts that may arise when a
principal subject to a revocation

• has also been delegated the same object from other
 principals. If such other

• delegations are independent of the revoker then
this is outside the scope of revocation.

If, however, such other delegations have been performed

by principals who, at some earlier stage, received the object

to be revoked via a delegation path stemming from the

revoker, then the revoking principal may only revoke with

respect to his delegation (weak) or revoke all such other

delegations that stem from him (strong).

Based on these two dimensions, we work on the basis of

4 different revocation schemes which, due to the absence of

the resilience property, are a subset of those described by

[33], summarised in Table 1. A full formal treatment of

revoking delegated tasks and rights is part of [12] and we

will now investigate how far these schemes can be

expressed and integrated with respect to our banking

workflow.

3 Delegation and Revocation in Banking

Workflows

Figure 2 shows a typical loan origination process in the

banking domain, similar to that described in [34]. The

supporting Table 2 summarises some of the required roles,

the general service, the required access rights and

associated workflows steps and business objects as later

modelled in SMV.

The loan origination process describes a customer

wanting to buy a bundled product. If he is not an existing

customer, his master data and other identification-relevant

data need to be entered into the system. Several external

and internal ratings then need to be obtained by the

processing clerk in order to check the credit worthiness of

the client (e.g. based on sums of liabilities, sums of assets,

reasons for rating). The system will then propose a

preconfigured bundled product to the clerk and customer

(e.g. original price, customer segment special conditions,

customer company special conditions, asset limit for price).

The customer and Bank finally come to an agreement

expressed in the signature of the client and Bank

representative.

Within the context of this paper we can only provide a

high-level perspective and abstract the roles and access

rights required on some external backend-application (left

hand-side). Process-context information and the specific

business objects access to which requires to be controlled

are explicitly mentioned (right-hand side). Each of the

workflow steps in this process will in turn be realised

within several components (e.g. ABAP transactions) and

are mapped to system-level guided procedures and rules.

Based on the previous descriptions and delegation

properties there are now several questions we would like to

be able to ask and later formally specify for automated

verification by the model checker. One example would be

to check that a principal p1 can only delegate a task

instance to another principal p2 if p2 has the same role as

p1. In fact, our underlying formal model requires that a task

instance can only be assigned to a principal if the role of

that principal has been assigned to the corresponding task

type of the instance at the workflow model level.

Role Service Access Right Workflow

Step

Business

Object

Clerk

Preprocessor

Customer

Information

File

query ()

update ()

Input

Customer

Data

Customer

Data

Clerk

Preprocessor

Customer

Information

File

query () Customer

Identificati

on

Customer

Data

Clerk

Postprocessor

Credit

Bureau

prepare ()

release <100k

post ()

Check

Credit

Worthiness

Rating

Report

Supervisor Credit

Bureau

release >100k Check

Credit

Worthiness

Rating

Report

Clerk

Postprocessor

Internal

Rating

query () Check

rating

Rating

Report

Supervisor Internal

Rating

update () Bank signs

form

Rating

Report

Clerk

Postprocessor

Product

Database

query available

products ()

Choose

Bundled

Product

Product

Bundle

Clerk

Postprocessor

Pricing

Engine

modify ()

commit <100k

Price

Bundled

Product

Product

Bundle

Supervisor Pricing

Engine

commit >100k Price

Bundled

Product

Product

Bundle

Clerk

Postprocessor

Output

Manageme

nt System

post print

request ()

Print

Opening

Form

Contract

Customer - sign () Customer

signs form

Contract

Manager - sign ()

update ()

Bank

signs form

Contract

Clerk

Postprocessor

Account

Manageme

nt System

open () Open

Account

Account

Table 2. Assignments of rights, roles and tasks

.

Process and Information FlowBackend-
Applications /

Service-Provider

Input Customer Master

Data

Customer

Identification

Check Credit

Worthiness

Check Rating

Choose bundled

product

Print Opening Form

Customer

signs form

Start
Process Context

Customer

Information File

End

Credit Bureau

(external)

Internal Rating

Application

Pricing Engine

Output Management

System

Customer

Collaterals

Type

Value

Segment

Product Bundle

Name

ID

Price

Details

Changes

Contract

Contract ID

Signature

Customer Data

Tax ID

Passport No.

Name

Address

Account Management

Systemxyz

L
o

o
p

L
o

o
p

Price bundled

product

Open Account

in System xyz

Preprocessing

Clerk

Postprocessing

 Clerk

Customer

Supervisor

Manager

 Bank

signs form

Rating Report

Overall Result

Collateral Rating

Fig. 2. Loan Origination Workflow

Another example of properties we would like to check

for is that a revocation of a task instance requires a prior

delegation of the same instance.

The general safety question considers whether given an

initial state sx (with an assignment of access rights and

tasks) a defined state sy can be reached.

We would thus like to be able to check whether a

principal can obtain a specific right at some stage; whether

he can exercise this right on some object; and whether a

desired authorisation state (at reference monitor evaluation

time) cannot be reached due the initial authority state (ie.

initial access control matrix setting). We thus group the

safety properties to be verified according to the following

three groups as informally summarised in Figure 3.

We would also like to be able to perform some "critical"

state analysis, e.g. during run-time of the system a state

occurs that is alarming but not critical if there is a set of

possible future paths that introduce a mitigating factor or

demonstrate that an object is not accessed. In a similar

fashion we would like to be able to perform some reverse

trace analysis to determine what initial configurations and

possible paths exist given any of the above properties and

some undesired state x? This is similar to work performed

in the area of safety critical systems analysis [36].

1. SoD-based Safety: Given a set of static and dynamic

separation of duty policies, are these maintained over a

finite sequence of states?

- Can a desired state x not be reached due to these

policies?

- Can an explicitly excluded state be reached?

2. Delegation and Revocation-based Safety: Given the

ability to delegate and revoke, can a principal obtain a

certain right at some state?

- What is the valid initial authority state to prevent a

principal p obtaining a right?

- Can a principal always revoke what he delegated?

(Without blocking, e.g. an existing SoD property)

3. Task-based Safety: Given a set of tasks requiring

access rights, will a principal be able to perform these

tasks?

- What is the valid initial authority state to allow a

principal to perform his tasks?

- Is it possible to have an "optimal" / least privilege

system?

- What is the valid initial authority state (with respect

to assignment of the right to delegate) to allow a

principal to perform his tasks? (So he could get the

right from a colleague?)

Fig. 3. General Safety Properties

4 A Role-based Access Control Model for

Workflows

In this section, we present our role-based access control

model for workflows. Then, we show in later sections how

to translate this model into finite state machines (so-called

Kripke structures), which will serve as input to a model

checker. The access control model is as general as possible

and is independent of a specific workflow such in contrast

to the approach described in [44].

We use first-order linear temporal logic (LTL) [42] in

order to formally specify our role-based access control

model for workflows. We use LTL because a workflow

system can be considered as a reactive system. Specifically,

the role-based security policies for workflows can be

regarded as dynamic. For example, dynamic SoD

properties are often required in the context of workflows

and furthermore, due to task delegation and revocation the

task assignment may vary on runtime. In addition, LTL

allows for talking about things such as the execution

history or order of executions, as in [26], while still being

much simpler than [26]. Finally, LTL is often used by

standard model checkers such as SPIN [45] and NuSMV

[38] to express properties to be checked.

Customer tailored Process Product Bundling

Possible SoD property Type

(as defined in

Figure 1)

Possible required

 Contextual information

No person may be assigned

to the two exclusive roles

pre/post processor

SSSoD Role Directory vs. User

Dictory

A person may be assigned to

the two excusive roles

pre/post processor but must

not activate them

SDSoD This would mean to check for

two things: a) they are not

activated at any state, b) they

have not been activated one

after the other

If customer is industrial

customer, master data must

be verified by independent

clerk

Application

specific

This property would

require the existence of a rule

linked to the type of a

customer account. Secondly, a

notion of workflow is required

to trigger the independent

verification.

If credit bureau rating is

negative then internal rating

must be performed by

another clerk

Application

specific

This is a rule that would need

to be attached to the workflow

step of receiving the result.

If internal rating is negative,

then case must be confirmed

by supervisor.

Application

specific

This is a rule that would need

to be attached to the workflow

step of receiving the result.

Clerk may only price

bundled product if he did not

perform operation “modify

()” wrt to the specific offer

ObjSoD This is an example of a

dynamic separation of duty

property that requires

contextual information about

the execution path of a

workflow and the specific

business object (bundled

product) that was manipulated.

If this is an industrial

customer, then a clerk may

perform tasks 1.-9. or 10 but

not both for the same

customer

OpSoD This is an example of a

dynamic separation of duty

property that requires

contextual information about

the execution path of a

workflow and the specific case

(customer) that was

manipulated.

A principal may be a

member of the two exclusive

roles pre/post processor and

the complete set of

authorisations acquired over

these roles may cover a

critical authorisation set, but

a principal must not use all

authorisations on the same

object(s).

HistSoD This is like ObjSoD and

OpSoD together. We require to

check the execution path and

object access versus the critical

authorisation set.

A principal p1 may be

assigned to the two

exclusive roles post

processor and supervisor. He

may also activate them but

not use them on the same

object (Product Bundle).

(Compare in detail with

Section 5.3)

ObjSoD +

Application

specific

We should interpret this as two

exclusive roles not having the

same rights on a Business

Object Type (not a particular

instance).

If we check for the

property then we should get

two traces: a) at step 6 the

pricing was done for less then

100k – this is ok no violation

of property as supervisor is not

involved. b) at step 6 the

pricing was done for more then

100k – this is ok only if not p1

in the supervisor role does

commit operation

Table 3. SoD properties in a loan origination process

A temporal first-order signature consists of a set of sorts,

a set of function symbols and a set of predicate symbols

(each symbol coming with a string of argument sorts and,

for function symbols, a result sort). Predicate symbols are

partitioned into rigid and flexible symbols: the former do

not change over time, while the latter may vary. Models

live over discrete time, indexed by the natural numbers as

time steps. They interpret the sorts with (time-independent)

carrier sets, function and rigid predicate symbols with time-

independent functions and predicates of appropriate types,

and flexible predicate symbols with families of functions

and predicates, where the families are indexed by natural

numbers.

Sentences are the usual first-order sentences built from

equations, predicate applications and logical connectives

and quantifiers ∀, ∃. Additionally, we have the modalities,

G (“globally in the future”), F (“sometimes in the future”),

X (in the next step), and U (“until”). Often the

corresponding past modalities H (“historically”), O (“once

in the past“), Y (“one step before”), and S (“since”) also

exist. Satisfaction is defined inductively for a given time

step, where the modalities allow for referring to other time

steps. A sentence is satisfied in a model if it is satisfied in

the time step zero.
Figure 4 now gives an overview of the relevant sets,

predicates, and axioms needed for describing our role-

based access control model for workflows. In particular, we

assume a CASL-style formalization as used in [41]. In

Table 4 and Table 5, the meaning of the sets and the

predicates which are used in the formal specification from

Figure 4 can be found.

We assume that all sets are finite, which is essential for

the model checking process described later (cf. Section 5).

Moreover, we assume an RBAC96-style role-based model

for workflows [15]. However, we omitted the session

concept and introduced a predicate __Active_for__

instead. r__Active_for__u indicates that role r has

been activated by user u.

Further sorts Sort1, …, Sortn and predicates P1,

…, Pm may also be necessary which are used to express

workflow dependencies. These sorts and predicates are

clearly workflow-specific. In a certain banking business

process, for example, we may discriminate between private

and industrial customers. Thus, we may introduce the sort

Customer and a predicate isIndustrial:

Customer. Depending on whether that predicate is

evaluated to true or false different tasks may be executed in

the workflow, i.e., different paths are chosen.

There are several axioms defined in the

RoleBasedWorkflow specification. For example, it is

stated that a role can only be activated if the appropriate

user assignment has been done before and that a user may

only perform an operation on an object if she gains the

appropriate permission from a role. Moreover, from the

axiom Exec(u,op,o) ∧ Exec(u’,op’,o’) ⇒

u=u’ follows that per time step only one user may execute

access rights.

SPEC RoleBasedWorkflow

sorts U, R, T, TT, Op, Obj , Sort1, …, Sortn ;

flexible preds

• UA: U × R;

• PA: Op × Obj × R;

• __Active_for__: U × R;

• UT: U × T;

• TTA: TT × R;

• Exec: U × Op × Obj;

• ExecT: U × T;

• If required, further predicates P1, …, Pm that express workflow

dependencies
rigid preds

• __IsTaskTypeOf__: TT× T;

forall u:U, r:R, t:T,tt,tt’T, op,op’:Op,

o,o’:Obj;

• u __Active_for__ r ⇒ UA(u,r)2

• Exec(u,op,o) ⇒ ∃ r:R.(r__Active_for__u ∧

PA(op, o, r))

• Exec(u,op,o) ∧ Exec(u’,op’,o’) ⇒ u=u’

• tt __IsTaskTypeOf__ t ∧ tt’ __IsTaskTypeOf__ t

⇒ tt=tt’

• ExecT(u,t) ∧ tt __IsTaskTypeOf__ t ⇒ ∃

r:R.(r__Active_for__u ∧ TTA(tt,r))

• ExecT(u,t) ⇒ UT(u,t)

SPEC RoleBasedWorkflowWithDelegation=

RoleBasedWorkflow then

flexible preds

• ExecDelR: U × R × U;

• ExecDelT: U × T × U;

• ExecRevWeakLocalR: U × R × U;

• ExecRevWeakLocalT: U × T × U;

forall u,u’:U, r:R, t:T;

• ExecDelT(u,t,u’)⇒ X(UT(u’,t) ∧ ¬UT(u,t)) ∧

UT(u,t) ∧ ∃ r:R.(UA(u’,r) ∧ TTA(tt,r))

• ExecDelR(u,r,u’)⇒ X(UA(u’,r) ∧ ¬UA(u,r)) ∧

UT(u,r)

• ExecRevWeakLocalT(u,t,u’)⇒ X(¬UT(u’,t) ∧

UT(u,t)) ∧ O ExecDelT(u,t,u’)

• G ((ExecDelT(u,t,u’) &

¬ExecRevWeakLocalT(u,t,u’) &

F ExecRevWeakLocalT(u,t,u’)) ⇒

(¬ExecRevWeakLocalT(u,t,u’)

U ExecRevWeakLocalT(u,t,u’))

• similar axioms for ExecRevWeakLocalR

Fig. 4. Role-based access control model for workflows,

specified in a CASL style notation

2 Strictly speaking, we ought to introduce here the modality G, but

due to the Necessitation axiom this is not necessary [42].

Set Meaning

U Users

R Roles

Obj Objects

Op Operations

T Task (instances)

TT Task types

Table 4. The sets involved in the access control model for

workflows and their meanings

Predicate Meaning

UA(u,r) Assignment of user u to role r

PA(op, o,r) Assignment of the permission (op,o) to

role r

r __Active_for__ u: Role r is active for user u

UT(u,t) Assignment of user u to task t

TTA(tt,r) Assignment of task type tt to role r

tt __IsTaskTypeOf__ t: tt is the task type of task instance t

Exec(u,op,o) User u executes operation op on object o

ExecT(u,t) User u executes task t

ExecDelR(u,r,u’) User u delegates role r to user u’

ExecDelT(u,t,u’) User u delegates task r to user u’

ExecRevWeakLocalR(u,r,u’) User u revokes role r from user u’

ExecRevWeakLocalT(u,t,u’) User u revokes task t from user u’

Table 5. The predicates defined for the role-based access

control model for workflows and their meanings

As pointed out elsewhere [46], the task concept is

fundamental to workflow models. Hence, we introduce a

task set T and several task-related predicates. Specifically,

the predicate UT means that user u is obliged to execute

task t and ExecT(u,t) means that user u executes task

t. Nevertheless, we also model the execution of single

access rights with the help of the Exec predicate in order

make available a finer granularity. This way, our model

allows one to specify SoD properties on access rights and

not only on tasks or roles.

As discussed above, our model also comprises the notion

of task types. This is reflected by the TT sort and the

predicate isTaskTypeOf. The axiom tt

__IsTaskTypeOf__ t ∧ tt’

__IsTaskTypeOf__ t ⇒ tt=tt’ states that the

task type of a task instance is always unique. Note that we

define this predicate as rigid, i.e., the predicate does not

vary over time. This correlates to the practical assumption

that a task type of a task instance may not change and is

known in advance. The other predicates, however, are

flexible. For example, the __Active_for__ predicate

may vary over time because roles may be activated or

deactivated at the discretion of users and may not be

statically activated by an administrator.

In our model, tasks can only be executed if the task

instance in question and the (unique) task type of this task

instance are assigned to the user. This is reflected by the

axioms

ExecT(u,t) ⇒ UT(u,t) and

ExecT(u,t) ∧ tt __IsTaskTypeOf__ t ⇒

∃ r:R.(r__Active_for__u ∧ TTA(tt,r)).
The second part of the specification in Figure 1

comprises several delegation- and revocation-related

predicates. We support two types of delegation at the

moment, namely delegation of task instances and

delegation of roles. We could have also defined the

delegation of task types. However, this is already covered

by the delegation of roles because in our model task types

are assigned to roles and not to users directly. In case of

task delegation, we explicitly demand that the user u’ who

receives the task instance must be assigned to a role r with

the appropriate task type. Otherwise, the task instance

could not be executed by u’ later.

 After a successful delegation step, the relations UT (in

case of task delegation) and UA (in case of role delegation)

are changed appropriately. Clearly, we demand as a

prerequisite that the delegating user possesses the task/role

at the delegation step. In addition, we demand that only that

person may revoke a task/role who has delegated the

task/role in question before. Both aforementioned

properties are summarised in the axiom
ExecRevWeakLocalT(u,t,u’)⇒

X(¬UT(u’,t) ∧ UT(u,t)) ∧ O ExecDelT(u,t,u’).

The last axiom in the delegation section of Figure 4 says

that no further revocation may occur between a delegation

step and a revocation step. For reasons of simplicity, we

describe only weak and local revocation (cf. Section 2) here

at the moment.

5 Model Checking

In order to aid in the automated analysis of complex

systems and properties as described in the previous sections

we apply model-checking techniques [37]. Such techniques

have already been used and refined in other domains such

as safety-critical systems analysis, e.g., to verify the

correctness of railway control systems or aircraft

controllers. Model checking is a technique for the

automated verification of finite state-based (concurrent)

systems. The proof of a property is entirely carried out by

the machine. In case the property does not hold, the model

checker will construct a counter-example suitable for

failure diagnosis.

In mathematical terms, the considered (finite) systems

are represented as finite state-based transition graphs

(Finite State Machine, FSM). A Finite State Machine (also

called Kripke structure) consists of a finite set of states; a

set of initial states (a subset of the set of states); a total

transition relation (states are accessible from the current

state and for all states, at least one successor state exists); a

function mapping each state to the atomic propositions

holding in this state.

The aim of model checking is to automatically verify

that the Kripke structure in question satisfies certain

properties. Often those properties can be formulated in

propositional LTL such that the dynamic behaviour of the

system can be investigated.

Table 6. Predicate applications and the corresponding

NuSMV variables

Various model checking tools exist. For a reference see

[37]. In the following section, we discuss the NuSMV

model checker which will be later employed for the

verification of workflow SoD properties.

5.1 The Model Checker NuSMV

The NuSMV [38] is a symbolic model checker, which is

an extension of McMillan’s SMV system [39]. Beyond

SMV’s BDD-based model checking NuSMV now supports

also model checking techniques based upon propositional

satisfiability. This way Bounded Model Checking (BMC)

[40] can also be supported. BMC is an optimisation such

that the search is restricted to a finite time interval instead

of searching the whole time bar.

The Kripke structure can be specified by an intuitive

input language. Since it is intended to describe FSMs, the

only data types are finite ones, namely Booleans, scalars,

and fixed arrays. In addition, reusable components can be

specified by modules. The primary purpose of NuSMV’s

input language is to describe the transition relation of the

Kripke structure in question. For this purpose, next

expressions can be used. For example, if we have specified

next(b):=1; for a Boolean state variable b, this means

that in the following state b is true.

Moreover, with the help of the init function, we can

also define initial values for state variables (remember that

a Kripke structure has a set of initial states). It is also

possible to define variables which do not change over time

and variables which are completely unrestricted. The

unrestricted variables are called input variables (keyword

IVAR) and can change arbitrarily.

In order to specify asynchronous systems (e.g.,

distributed systems or hardware circuits), a process

statement can be used. Due to the fact that we do not need

this statement in our current workflow model, we do not

describe it here. If, however, we intend to consider multiple

workflow instances as intended in future work, the

process statement might be helpful.

5.2 LTL Model Checking with NuSMV

As pointed out above, we can specify the Kripke

structure with the help of the SMV input language.

However, we also need a way to specify the properties

which the Kripke structure should satisfy. NuSMV offers

two formalisms for this purpose, namely CTL (computation

tree logic) and propositional LTL. In the following, we will

use propositional LTL (in contrast to first-order LTL as

introduced in Section 4) for the specification of dynamic

SoD properties. As pointed out in [41], LTL is well-suited

to specifying dynamic access control policies.

NuSMV makes available the modalities mentioned in

Section 4 such as G, F and X. So we do not need to repeat

the details here.

LTL characterises each linear path induced by a Kripke

structure. NuSMV allows for specifying temporal

properties in an extra section called LTLSPEC. It is

possible to define several LTL properties for a Kripke

structure at the same time.

6 Model Checking Role-based Workflows

As indicated earlier in this paper, we often must deal

with dynamic security policies in the context of workflows.

One example are the various kinds of dynamic SoD

policies as those described in the context of the loan

origination workflow. Due to delegation and revocation the

access rights and tasks available to a user may change over

time. Since workflows (for example, due to loops and

branches) can be quite complex, an automated analysis of

such policies is desirable. For example, the question arises

whether a particular workflow instance satisfies dynamic

SoD policies or certain access rights leak to unauthorised

users. Specifically, due to delegation and revocation,

unwanted security properties may arise such as the

violation of dynamic SoD. Hence, model checking tools

like the NuSMV may give the policy designer the

opportunity to detect such as undesirable properties and to

change the policy appropriately.

There are other model-checking based approaches for

the verification of access control policies such as [43].

However, our approach is tailored towards SoD, delegation

and revocation policies, specifically in the context of

workflows. Due to the fact that we would like to directly

map the workflow access control policies to a Kripke

structure we decided to use a model checker that allows one

to directly encode the workflow. The RW language

described in [43] is not primarily designed towards such

needs.

In summary, our model checking-based approach for

policy verification works as follows: The workflow access

control policies (e.g. user-role assignments), the task

execution as well as the delegation and revocation steps are

specified by means of a Kripke structure, and then the

properties to be verified are specified in LTL. In the

following, this approach is discussed in more detail, in

NuSMV variable Predicate application

isIndustrialCustomer_c,

greater100k_credit, …

IsIndustrialCustomer(c),

Greater100k(credit)

UA_u_r UA(u,r)

PA_p_r PA(p,r)

TTA_tt_r TTA(tt,r)

UT_u_t UT(u,t)

activefor_u_r r_Active_for__u

exec_u_op_o Exec(u,op,o)

exec_u_t ExecT(u,t)

exec_delR_u1_r_u2 ExecDelR(u1,r,u2)

exec_revR_u1_r_u2 ExecRevWeakLocalR(u1,r,u2)

exec_delT_u1_t_u2 ExecDelT(u1,t,u2)

exec_revT_u1_r_u2 ExecRevWeakLocalT(u1,t,u2)

isTaskTypeOf_tt_t tt __IsTaskTypeOf__ t

s N/A (current task execution,

delegation or revocation step)

next(s):=

case

…

s=s4& exec_u2_checkcreditworthiness:s5;

s=s5 & exec_u2_checkrating:s6;

s=s6 & exec_u2_choosebundledproduct &

!greater100k_credit:s7;

s=s6 & exec_u2_choosebundledproduct &

greater100k_credit:s8;

…

particular it is shown how a role-based workflow is

translated into a Kripke structure.

6.1 Modeling the Workflow in SMV

Owing to the fact that workflows may include branches and

loops we model the workflow directly as a Kripke

structure. Note that in our access control model for

workflows all sets are finite and all predicates work on

those finite sets. Finite sets and predicates are essential for

the model checking process [37].

For all the predicates defined in Figure 4, we now

introduce corresponding state variables as shown in Table

6. More exactly speaking, a state variable

pred_x1_x2_…_xn is added for every relevant predicate

application pred(x1, …, xn). In the following, we give

some examples of the state variables we have introduced in

order to describe role-based access control policies for

workflows:

• For each user-role assignment, we introduece a

variable UA_u_r. UA_u_r is true iff the predicate

UA(u,r) is true for a user u and role r.

• Similar state variables are introduced for

permission assignment, i.e., PA_op_o_r is true iff

PA(op,o,r) is true.

• For each role activation r __Active_for__ u,

we define a state variable Activefor_u_r.

• As proposed in [41], we also express the fact that

user u actually performs operation op on object o

with a state variable Exec_u_op_o.

• Similarly, we define a variable Exec_u_t for

every user performing a task, i.e., iff ExecT(u,t)

is true.

Note that a task may consist of more than one operation

to be performed. For example, the Input Customer

Data task of our loan origination process consists of the

query and update operation on the business object

Customer Data (cf. Table 2). Thus, our model presented

in Section 4 supports the two predicates Exec und ExecT

for execution. Correspondingly, we introduced two kinds of

variables Exec_u_op_o and Exec_u_t. In our example,

we may then have the variables

exec_u_inputcustomerdata as well as

exec_u_query_customerdata and

exec_u_update_customerdata, respectively.

Furthermore, we introduced an additional scalar state

variable s with values s1,…, sn, success,

failure. This variable indicates the current workflow step

(state). The special values success and failure are

introduced because the transition relation must be total

according to the aforementioned definition of Kripke

structures. Totality means in this context that for all states

there must exist a successor state. In order to guarantee this

condition, we define failure as a default case if there is

no successor task execution, delegation or revocation step,

i.e., if the workflow blocks at a certain time step. However,

if we have successfully finished the workflow instance, we

jump to the success state. If then the special states

success and failure are reached, we stay in those states

forever.

Beyond the RBAC-related and the step variables, we

define control flow variables which govern the execution

flow and correspond to the additional predicates P1, …,

Pm of our workflow access control model. For example, we

have introduced a Boolean variable

greater100k_credit indicating that we deal with a

credit exceeding the 100k threshold. Due to the fact that we

do not want to restrict this variable in advance and that on

the other hand the variable should be constant during the

whole workflow instance, we use the following trick of

specifying
next(greater100k_credit):=greater100k_credit

without initialization. This means we can choose the value

of greater100k_credit for the workflow at random, but

once chosen, the value does not change any more.
To obtain a better understanding of the resulting Kripke

structure, we give an excerpt of the loan origination

workflow in Figure 5 showing how the steps 3 to 5 from

Figure 2 have been mapped to the Kripke structure.

Fig. 5. Excerpt of the NuSMV specification of the loan

origination workflow.

6.2 Modelling Delegation and Revocation in SMV

We have also modeled delegation and revocation

policies as discussed in Section 2. Specifically, we can

handle two kinds of delegation: task instance delegation

and role delegation.

Similarly to the exec_u_op_o or exec_u_t state

variables, we introduce the variables

exec_delR_u1_r_u2 and exec_delT_u1_t_u2 to

express both types of delegation. Similarly, we have the

variables exec_revR_u1_r_u2 and

exec_revT_u1_t_u2 to represent the corresponding

revocation steps in our Kripke structure.

As mentioned above, delegation and revocation are

regarded as a single step within the workflow. For example,

if u1 delegates the task Input Customer Data in step

s3 of the workflow, we can specify this in the NuSMV

input language as follows:

next(s):=

case

 …

 s=s3 &

 exec_delT_u1_inputcustomerdata_u2:s4;

 …
esac;

If the delegation has been performed successfully, the UT

relation must be adapted appropriately, e.g.:
next(UT_u2_inputcustomerdata):=

case

 exec_delT_u1_updatecustomerdata_u2:1;

 1:03;

esac;

Hence, UT is a dynamic relation changing on certain

points of time as mentioned before.

6.3 Model Checking Workflows

Having outlined the Kripke structure for the role-based

access control policies of workflows, we demonstrate now

how various properties can be checked by NuSMV.

Specifically, we can handle the following three kinds of

questions:

• Are the axioms we defined for our role-based

access control model fulfilled (cf. Figure 4)?

• Are certain SoD properties violated?

• What are the consequences of delegation and

revocation steps (e.g., regarding SoD policies)?

Subsequently, we discuss these three aspects in more

detail. We also show how a critical-state analysis can be

carried out by NuSMV.

6.3.1. Verification of Axioms

In Figure 4, we gave several axioms that our role-based

access control model for workflows must satisfy. For

example, a task can only be executed by a user if that user

is assigned to the appropriate task type (through a role). We

could check now if our Kripke structure adheres to those

axioms. Alternatively, we could assume that the Kripke

structure has been constructed in a way that satisfies all the

axioms. Then, there would be no need to check the axioms

in question by means of the model checker.

In order to demonstrate how to check such properties by

NuSMV, we take the following axiom as an example:

Exec(u,t) ∧ tt __IsTaskTypeOf__ t ⇒

∃ r:R.(r__Active_for__u ∧ TTA(tt,r)).

Assume that we have a user u and that the task type

InputCustomerDataType is assigned to the role

Clerk Preprocessor. Then, we have the following

LTL property against which our Kripke structure could be

checked:
G (exec_u_t &

isTaskTypeOf_inputcustomerdatatype_

3 The label 1 represents in the NuSMV input language the default

case, i.e., UT_u2_inputcustomerdata is false in that

default case.

inputcustomerdata

-> activefor_u_clerkpreproc &

TTA_inputcustdatatype_inputcustdata);

Similarly, we can check if a user has the adequate access

rights to perform a task assigned to her. Once again, let us

take the task Input Customer Data as an example.

This task consists of the query and update operations

which are executed on object Customer Data. Thus, we

have the condition
G(exec_u_inputcustomerdata ->

exec_u_query_customerdata &

exec_u_update_customerdata);

Moreover, it must be checked whether u has the

adequate permission to execute update and query. For

example, we must verify the following condition in case of

the update operation
G (exec_u_update_customerdata) ->

(PA_clerkpreproc &

activefor_u_clerkpreproc);

Concerning the revocation of tasks, we can also

demonstrate that the user who revokes a task must have

delegated that task before. We obtain the following

NuSMV specification for this property:
G (exec_revT_u1_t_u2->

 O exec_delT_u1_t_u2)

6.3.2. Verification of SoD properties

First, we demonstrate how general SoD properties can be

specified in LTL. The Kripke structure describing the

access control policy of the workflow can then be checked

against these properties. Subsequently, we discuss SoD

properties, arising in the context of the loan origination

workflow as defined in Figure 2 and formulate them in

propositional LTL. Due to space limitations, we give only

three examples for SoD properties.

Simple Dynamic SoD (SDSoD):
A principal may be a member of any two exclusive roles

but must not activate them at the same time:
G(!(activefor_clerkpreproc_u &

activefor_clerkpostproc_u));

There is a loophole with this property: The exclusive

roles could be activated one after another. Hence, a better

version for SDSoD would be, for example:

G((activefor_u_clerkpreproc ->

! F activefor_ clerkpostproc_u));

Task-based Dynamic Separation of Duties (TSoD):

Botha and Eloff introduced in [19] the concept of task-

based dynamic SoD stating that a user must not execute

two conflicting tasks within a workflow instance. Due to

the fact that we added the concept of task instances to our

role-based access control model for workflows we can now

easily specify such properties. For example, the tasked-

based SoD property “If customer is an industrial customer,

master data must be verified by an independent clerk.” can

be formulated as follows

G (isIndustrialCustomer_c

->!(exec_u_verifycustomerdata &

Y exec_u_inputcustomerdata));

Note that an additional task Verify Customer Data

has been introduced.

Other SoD Rules of the Loan Origination Process:

Similar to the previous examples, the SoD rules not

mapped to the taxonomy, e.g., given in [9] have been

specified and checked by the NuSMV system. For example,

consider the rule “If credit bureau rating is negative, then

internal rating must be performed by different clerk.”

Assuming we have introduced a flow variable

isRatingOKCB_Customer, indicating whether the rating

is positive, we can express this in LTL:
G(!isRatingOKCB_customer ->

(exec_u_post_querycreditbureau

& ! X exec_u_query_ratingreport));

6.3.3. Critical-state Analysis of SoD properties
By means of NuSMV, we can also carry out a critical-

state analysis of SoD properties. To take an example, let us

consider the two mutually exclusive roles Clerk

Postprocessor and Supervisor with an SDSoD

constraint. Let us further assume that no user may execute

both the update product bundle and commit

product bundle operations within a workflow instance.

Rather this latter SoD property matters in this scenario than

the fact that both the aforementioned roles are mutually

exclusive. Thus, we can allow a user to violate the SDSoD

constraint as long as the second SoD property still holds.

We can formulate this less restrictive property in LTL as

follows:
G (activefor_u_clerkpostproc &

F activefor_u_supervisor ->

exec_u_update_productbundle &

!F exec_u_commit_productbundle).

The first part of this specification represents the negated

SDSoD property. The second part states that after

executing the update product bundle operation,

commit product bundle must not be performed by a

user u.

If the model checker does not find any path through the

Kripke structure that violates the aforementioned property,

one can conclude that the violation of the SDSoD property

might be alarming but not critical. Therefore, we might

allow user u to activate both the Clerk Postprocessor

and Supervisor roles. In contrast, if this property does

not hold, we forbid the activation of both roles within a

workflow instance.

6.3.4. Delegation and SoD properties
In this subsection, we sketch how delegation and SoD

can interfere with each other. For this purpose, we take the

aforementioned TSoD property. To maintain this property,

we must consider the task access history and not the object

access history as in the case of object-based SoD [24]. If a

certain task t1 has been performed within a workflow

instance, a conflicting task t2 must not be executed

thereafter. Clearly, this may have effects on the delegation

and revocation of tasks. Assume that we have the two

conflicting tasks Input Customer Data and Verify

Customer Data. Let us further assume that user u1 has

already executed Input Customer Data and user u2 is

obliged to perform Verify Customer Data. If now u2

falsely delegates her task to u1 in case of an industrial

customer, then obviously either this task could not be

executed by u1 or the TSoD property would be violated.

With the help of NuSMV one can construct such a Kripke

structure and can then easily check this Kripke structure

against the TSoD property in question.

7 Summary and Conclusion

This paper has presented a model-checking based approach

for automated analysis of delegation and revocation

functionalities. This was done in the context of a real-world

banking workflow requiring static and dynamic separation

of duty properties.

We expanded on some of our earlier work reported in

[44], which was restricted to single workflow models and

not arbitrary workflow instances of one or over several

models. This initial restriction to model-checking at the

workflow model level only meant that we were not able to

analyse delegation and revocation of tasks and access rights

in the detail as required in some of our earlier conceptual

models [11, 12].

Based on a formal framework, we are now in a position

that allows us to pose a variety of security related questions

with respect to and over arbitrary instances of complex

workflow models.

Future work will focus on a more structured and in depth

analysis of possible security / safety properties that need to

be maintained as well as the automated translation of

workflow (BPEL) and organisational structure (LDAP)

models into a specification fit for model-checking.

8 References

1. Samarati, P. and S. Vimercati, Access Control:

Polcies, Models and Mechanisms, in Foundations of

Security Analysis and Design, R. Focardi and R.

Gorrieri, Editors. 2001, Springer Lecture Notes 2171.

p. 137-196.

2. Harrison, M., W. Ruzzo, and J. Ullman, Protection in

Operating Systems. Communications of the ACM,

1976. 19(8): p. 461-471.

3. Jaeger, T. and J. Tidswell, Practical safety in flexible

access control models. ACM Transactions on

Information and System Security (TISSEC), 2001.

4(2).

4. Crampton, J. A reference monitor for workflow systems

with constrained task execution. . in 10th ACM

Symposium on Access Control Models and

Technologies. 2005.

5. Schaad, A., A Framework for Organisational Control

Principles, PhD Thesis, in Department of Computer

Science. 2003, University of York.

6. Atluri, V. and W. Huang, An Authorization Model for

Workflows. Lecture Notes in Computer Science, 1996.

1146: p. 44-64.

7. Rits, A., B. deBoe, and A. Schaad. XacT: A bridge

between resource management and access control in

multi-layered applications. in Software Engineering

for Secure Systems – Building Trustworthy

Applications (SESS’05). 2005. St. Louis, MO, USA.

8. Sohr, K., L. Migge, and G. Ahn. Articulating and

enforcing authorisation policies with UML and OCL.

in Software Engineering for Secure Systems - Building

Trustworthy Applications (SESS’05). 2005. St. Louis,

MO, USA.

9. Simon, R. and M. Zurko. Separation of Duty in Role-

Based Environments. in Computer Security

Foundations Workshop X. 1997. Rockport,

Massachusetts.

10. Ahn, G. and R. Sandhu, Role-based authorization

constraints specification. Information and System

Security Journal, 2000. 3(4): p. 207-226.

11. Schaad, A. An Extended Analysis of Delegating

Obligations. in IFIP DBSec 2004.

12. Schaad, A. Revocation of Obligation and

Authorisation Policy Objects. in IFIP DBSec 2005.

2005.

13. Schulz, K. and M. Orlowska, Facilitating cross-

organisational workflows with a workflow view

approach. Data Knowl. Eng. , 2004. 51(1): p. 109-147.

14. Frossard, A., Delegation of Tasks in Workflow

Management Systems, in School of Computer and

Communication Sciences (IC). 2005, Ecole

Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland.

15. Sandhu, R., et al., Role-based access control models.

IEEE Computer, 1996. 29(2): p. 38-47.

16. Damianou, N., et al. The Ponder Policy Specification

Language. in Policies for Distributed Systems and

Networks. 2001. Bristol: Springer Lecture Notes in

Computer Science.

17. Pugh, D., Organization Theory: Selected Readings. 4th

ed. Penguin Business. 1997: Penguin Books.

18. Mintzberg, H., The structuring of organizations, ed. E.

Cliffs. 1979, NJ: Prentice-Hall.

19. Botha, Separation of duties for access control

enforcement in workflow environments. IBM

SYSTEMS JOURNAL, 2001. 40(3).

20. Saltzer, J. and M. Schroeder. The protection of

Information in Computer Systems. in IEEE. 1975.

21. Clark, D. and D. Wilson. A Comparison of

Commercial and Military Security Policies. in IEEE

Symposium on Security and Privacy. 1987. Oakland,

California.

22. Sandhu, R. Transaction Control Expressions for

Separation of Duties. in 4th Aerospace Computer

Security Conference. 1988. Arizona.

23. Sandhu, R. Separation of Duties in Computerized

Information Systems. in IFIP WG11.3 Workshop on

Database Security. 1990. Halifax, UK.

24. Nash, M. and K. Poland. Some Conundrums

Concerning Separation of Duty. in IEEE Symposium

on Security and Privacy. 1990. Oakland, CA.

25. Baldwin, R. Naming and Grouping Privileges to

Simplify Security Management in Large Databases. in

IEEE Symposium on Security and Privacy. 1990.

Oakland.

26. Gligor, V., S. Gavrila, and D. Ferraiolo. On the Formal

Definition of Separation-of-Duty Policies and their

Composition. in IEEE Symposium on Security and

Privacy. 1998. Oakland, CA.

27. Ferraiolo, D., J. Cugini, and D. Kuhn. Role-Based

Access Control (RBAC): Features and Motivations. in

Computer Security Applications. 1995.

28. Kuhn, R. Mutual exclusion of roles as a means of

implementing separation of duty in role-based access

control systems. in Proceedings of the second ACM

workshop on Role-based access control. 1997.

29. Nyanchama, M. and S. Osborn, The role graph model

and conflict of interest. Transactions on Information

Systems Security, 1999. 2(1): p. Pages 3 - 33.

30. Muller, J., Delegation and Management. British

Journal of Administrative Management, 1981. 31(7): p.

218-224.

31. Moffett, J.D., Delegation of Authority Using Domain

Based Access Rules, in Dept of Computing. 1990,

Imperial College, University of London.

32. Zhang, L., G. Ahn, and C. B. A Rule-based Framework

for Role-Based Delegation. in 6th ACM Symposium on

Access Control Models and Technologies. 2001.

Chantilly, VA, USA.

33. Hagstrom, A., et al. Revocations - A Categorization. in

Computer Security Foundations Workshop. 2001:

IEEE.

34. Schaad, A. and J. Moffett. Separation, review and

supervision controls in the context of a credit

application process: a case study of organisational

control principles. in ACM SAC 2004.

35. Janssen, W., et al., Model Checking for Managers.

Lecture Notes in Computer Science, 1999. 1680.

36. Loer, K. and M. Harrison. Towards Usable and

Relevant Model Checking Techniques for the Analysis

of Dependable Interactive Systems. in ASE. 2002.

37. Clarke, E., O. Grumberg, and D. Peled, Model

Checking. 2000: The MIT Press.

38. Cimatti, A., et al. NuSMV2: an Open Source Tool for

Symbolic Model Checking in QA075 Electronic

computers. Computer Science

http://eprints.biblio.unitn.it/archive/00000085. 2002.

39. McMillan, K., The SMV system, Symbolic Model

Checking - an approach 1992, Carnegie Mellon

University CMU-CS-92-131.

40. Biere, A., A. Cimatti, and Y. Zhu, eds. Symbolic model

checking without BDDs. Tools and Algorithms for the

construction and analysis of systems Vol. 1579. 1999,

Springer LNCS.

41. Mossakowski, T., M. Drouineaud, and K. Sohr. A

temporal-logic extension of role-based access control

covering dynamic separation of duties. in TIME-ICTL.

2003. Cairns, Queensland, Australia.

42. Goldblatt, R., Logics of Time and Computation, 2
nd

Edition, Revised and Expanded. CSLI Lecture Notes,

1992. 7.

43. Zhang, N., M. Ryan, and D. Guelev. Evaluating Access

Control Policies Through Model Checking. in ISC.

2005.

44. Schaad, A., Sohr, K., Lotz, V. Model-checking

Separation

of Duty properties in a Loan Origination Workflow

ACM SACMAT 2006, Lake Tahoe

45. Holzmann, G.-J: The Model Checker SPIN. IEEE

Trans. Software Eng. 23(5): 279-295 (1997)

46. Kang, M.H., J.S. Park, J.N. Froscher: Access control

mechanisms for inter-organizational workflow. ACM

SACMAT2001:66-74

