Which Kind of Module Should I Extract?

Uli Sattler1 \hspace{1cm} Thomas Schneider1 \hspace{1cm} Michael Zakharyaschev2

1School of Computer Science, University of Manchester
2Birkbeck College, London

DL, 28 July 2009
And now . . .

1. Motivation
2. Inseparability relations
3. Robustness properties
4. Conclusions
Why module extraction?

Reuse external ontologies: borrow knowledge about certain terms
Why module extraction?

Reuse external ontologies: borrow knowledge about certain terms

- Provides access to well-established knowledge
- Doesn’t require expertise in external disciplines
Why module extraction?

Reuse external ontologies: borrow knowledge about certain terms
Why module extraction?

Reuse external ontologies: borrow knowledge about certain terms

Animals

knowledge about “Bird” and “feedsOn”

Farm
Why module extraction?

Reuse external ontologies: borrow knowledge about certain terms

Animals

knowledge about “Bird” and “feedsOn”

Farm

How much of Animals do we need?
Why module extraction?

Reuse external ontologies: borrow knowledge about certain terms

{Bird, feedsOn}

knowledge about “Bird” and “feedsOn”

Animals

Farm

How much of Animals do we need?
Why module extraction?

Reuse external ontologies: borrow knowledge about certain terms

\{\text{Bird, feedsOn}\} \rightarrow \text{knowledge about “Bird” and “feedsOn”}

Coverage Import *everything* relevant for the chosen terms.

Economy Import *only* what’s relevant for them. Compute that module quickly.
Why module extraction?

Reuse external ontologies: borrow knowledge about certain terms

{Bird, feedsOn}

knowledge about “Bird” and “feedsOn”

Animals

Farm

Coverage Import *everything* relevant for the chosen terms.

Economy Import *only* what’s relevant for them.
Compute that module quickly.
Modules that provide coverage

Input
Ontology $\mathcal{O} —$ a set of axioms
Signature Σ (set of concept and role names from \mathcal{O})

Output
a Σ-module \mathcal{M} of \mathcal{O}:

- $\mathcal{M} \subseteq \mathcal{O}$
- \mathcal{M} and \mathcal{O} have the same Σ-entailments:
 For all axioms α using only terms from Σ,
 $\mathcal{O} \models \alpha$ iff $\mathcal{M} \models \alpha$
Modules that provide coverage

Input
Ontology \mathcal{O} — a set of axioms
Signature Σ (set of concept and role names from \mathcal{O})

Output
a Σ-module \mathcal{M} of \mathcal{O}:

- $\mathcal{M} \subseteq \mathcal{O}$
- \mathcal{M} and \mathcal{O} have the same Σ-entailments:
 For all axioms α using only terms from Σ,
 $\mathcal{O} \models \alpha$ iff $\mathcal{M} \models \alpha$

Coverage ✔
Motivation

Inseparability relations

Robustness properties

Conclusions

Modules that provide coverage

Input Ontology \(\mathcal{O} \) — a set of axioms
Signature \(\Sigma \) (set of concept and role names from \(\mathcal{O} \))

Output a \(\Sigma \)-module \(\mathcal{M} \) of \(\mathcal{O} \):

- \(\mathcal{M} \subseteq \mathcal{O} \)
- \(\mathcal{M} \) and \(\mathcal{O} \) have the same \(\Sigma \)-entailments:
 For all axioms \(\alpha \) using only terms from \(\Sigma \),
 \(\mathcal{O} \models \alpha \) iff \(\mathcal{M} \models \alpha \)

Coverage ✔

Economy Minimality \(\iff \) efficient computability
Modules that provide coverage

Input
- Ontology \mathcal{O} — a set of axioms
- Signature Σ (set of concept and role names from \mathcal{O})

Output
- A Σ-module \mathcal{M} of \mathcal{O}:
 - $\mathcal{M} \subseteq \mathcal{O}$
 - \mathcal{M} and \mathcal{O} have the same Σ-entailments:
 - For all axioms α using only terms from Σ, $\mathcal{O} \models \alpha$ iff $\mathcal{M} \models \alpha$

Coverage
- ✔️

Economy
- Minimality: conservativity-based modules
- Efficient computability: locality-based modules
Relevant module types

- dCE
- deductive conservativity
- intractable...undecidable
Relevant module types

\[x \text{-module}(\mathcal{O}, \Sigma) \subseteq y \text{-module}(\mathcal{O}, \Sigma) \]

- intractable...undecidable
Relevant module types

- dCE: deductive conservativity
- mCE: model cons.
- Δ: semantic locality

x-module(\mathcal{O}, Σ) \subseteq y-module(\mathcal{O}, Σ)

- intractable...undecidable
- as difficult as reasoning
Relevant module types

- dCE: deductive conservativity
- mCE: model cons.
- ∅: semantic locality
- ⊤: syntactic locality

\[x - \delta - y \quad x\text{-module}(O, \Sigma) \subseteq y\text{-module}(O, \Sigma) \]

- Intractable...Undecidable
- As difficult as reasoning
- Tractable
Relevant module types

- dCE: deductive conservativity
- mCE: model conservativity
- ∅: semantic locality
- ⊤: syntactic locality

\(x \rightarrow y \) \(x\text{-module}(\mathcal{O}, \Sigma) \subseteq y\text{-module}(\mathcal{O}, \Sigma) \)

- intractable . . . undecidable
- as difficult as reasoning
- tractable
Relevant module types

- dCE: deductive conservativity
- mCE: model cons.
- ∅: semantic locality
- ⊤*: syntactic locality

\[x \sim y \Rightarrow x\text{-module}(\mathcal{O}, \Sigma) \subseteq y\text{-module}(\mathcal{O}, \Sigma) \]

- Pink: intractable...undecidable
- Yellow: as difficult as reasoning
- Green: tractable
Goals

- General framework for comparing module notions that provide coverage
- Identify relevant properties
- Application to conservativity-based and locality-based modules
And now . . .

1. Motivation

2. Inseparability relations

3. Robustness properties

4. Conclusions
Intuitions

- \mathcal{O}_1 and \mathcal{O}_2 are inseparable w.r.t. Σ:
 The knowledge about Σ in \mathcal{O}_1 and \mathcal{O}_2 can’t be distinguished

- Different degrees of distinguishability
Intuitions

- \mathcal{O}_1 and \mathcal{O}_2 are inseparable w.r.t. Σ:
 The knowledge about Σ in \mathcal{O}_1 and \mathcal{O}_2 can’t be distinguished

- Different degrees of distinguishability

- Notation: $\mathcal{O}_1 \equiv^S_{\Sigma} \mathcal{O}_2$

- \equiv^S_{Σ} is an equivalence relation
Intuitions

- \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \) are inseparable w.r.t. \(\Sigma \):
 The knowledge about \(\Sigma \) in \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \) can’t be distinguished
- Different degrees of distinguishability
- Notation: \(\mathcal{O}_1 \equiv^S \Sigma \mathcal{O}_2 \)
- \(\equiv^S \Sigma \) is an equivalence relation
- Inseparability relation: \(S = \{ \equiv^S \Sigma \mid \Sigma \text{ is a signature} \} \)
Different inseparability relations

- $\mathcal{O}_1 \equiv_{\Sigma} \mathcal{O}_2$ if:
 \mathcal{O}_1 and \mathcal{O}_2 entail the same Σ-concept subsumptions
Different inseparability relations

- $\mathcal{O}_1 \equiv^{\text{dCE}}_{\Sigma} \mathcal{O}_2$ if:
 \mathcal{O}_1 and \mathcal{O}_2 entail the same Σ-concept subsumptions

- $\mathcal{O}_1 \equiv^{\text{mCE}}_{\Sigma} \mathcal{O}_2$ if:
 \mathcal{O}_1 and \mathcal{O}_2 have the same models w.r.t. Σ
Different inseparability relations

- $O_1 \equiv^{dCE}_\Sigma O_2$ if:
 O_1 and O_2 entail the same Σ-concept subsumptions

- $O_1 \equiv^{mCE}_\Sigma O_2$ if:
 O_1 and O_2 have the same models w.r.t. Σ

- $O_1 \equiv^{\perp}_\Sigma O_2$ if:
 O_1 and O_2 have the same \perp-module w.r.t. Σ
Different inseparability relations

- $O_1 \equiv_{dCE}^\Sigma O_2$ if:
 - O_1 and O_2 entail the same Σ-concept subsumptions

- $O_1 \equiv_{mCE}^\Sigma O_2$ if:
 - O_1 and O_2 have the same models w.r.t. Σ

- $O_1 \equiv_{\bot}^\Sigma O_2$ if:
 - O_1 and O_2 have the same \bot-module w.r.t. Σ

Analogous definition for

- \equiv_0^Σ
- \equiv_Δ^Σ
- \equiv_T^Σ
- $\equiv_{\bot T}^\Sigma$
Inseparability relations induce modules

Let S be an inseparability relation, Σ a signature and $M \subseteq O$.

M is called if

\[
\begin{array}{c|c|c}
\text{an } S_{\Sigma}-\text{module of } O & \text{if} & \text{see} \\
M \equiv_{S_{\Sigma}} O & 1 \\
\end{array}
\]

Example: $S = dCE$, $\Sigma = \{\text{Bird, feedsOn}\}$, M contains Grass.

\[O \models \text{Bird} \sqsubseteq \exists \text{feedsOn}.T \quad \text{iff} \quad M \models \text{Bird} \sqsubseteq \exists \text{feedsOn}.T\]
Inseparability relations induce modules

Let S be an inseparability relation, Σ a signature and $\mathcal{M} \subseteq \mathcal{O}$.

<table>
<thead>
<tr>
<th>\mathcal{M} is called</th>
<th>if</th>
<th>see</th>
</tr>
</thead>
<tbody>
<tr>
<td>an S_Σ-module of \mathcal{O}</td>
<td>$\mathcal{M} \equiv S_\Sigma \mathcal{O}$</td>
<td>1</td>
</tr>
<tr>
<td>a self-contained S_Σ-module of \mathcal{O}</td>
<td>$\mathcal{M} \equiv S_\Sigma \cup \text{sig}(\mathcal{M}) \mathcal{O}$</td>
<td>2</td>
</tr>
</tbody>
</table>

Example: $S = \text{dCE}$, $\Sigma = \{\text{Bird}, \text{feedsOn}\}$, \mathcal{M} contains Grass.

1 $\mathcal{O} \models \text{Bird} \sqsubseteq \exists \text{feedsOn}.T$ \iff $\mathcal{M} \models \text{Bird} \sqsubseteq \exists \text{feedsOn}.T$

2 $\mathcal{O} \models \text{Bird} \sqsubseteq \exists \text{feedsOn}.\text{Grass}$ \iff $\mathcal{M} \models \text{Bird} \sqsubseteq \exists \text{feedsOn}.\text{Grass}$
Inseparability relations induce modules

Let S be an inseparability relation, Σ a signature and $\mathcal{M} \subseteq \mathcal{O}$.

<table>
<thead>
<tr>
<th>\mathcal{M} is called</th>
<th>if \mathcal{M} is called</th>
<th>see</th>
</tr>
</thead>
<tbody>
<tr>
<td>an S_Σ-module of \mathcal{O}</td>
<td>$\mathcal{M} \equiv S_\Sigma \mathcal{O}$</td>
<td>1</td>
</tr>
<tr>
<td>a self-contained S_Σ-module of \mathcal{O}</td>
<td>$\mathcal{M} \equiv S_{\Sigma \cup \text{sig}(\mathcal{M})} \mathcal{O}$</td>
<td>2</td>
</tr>
<tr>
<td>a depleting S_Σ-module of \mathcal{O}</td>
<td>$\emptyset \equiv S_{\Sigma \cup \text{sig}(\mathcal{M})} \mathcal{O} \setminus \mathcal{M}$</td>
<td>3</td>
</tr>
</tbody>
</table>

Example: $S = \text{dCE}, \Sigma = \{\text{Bird, feedsOn}\}$, \mathcal{M} contains Grass.

1. $\mathcal{O} \models \text{Bird} \sqsubseteq \exists \text{feedsOn.T}$ iff $\mathcal{M} \models \text{Bird} \sqsubseteq \exists \text{feedsOn.T}$
2. $\mathcal{O} \models \text{Bird} \sqsubseteq \exists \text{feedsOn.Grass}$ iff $\mathcal{M} \models \text{Bird} \sqsubseteq \exists \text{feedsOn.Grass}$
3. $\mathcal{O} \setminus \mathcal{M}$ entails only tautologies w.r.t. $\{\text{Bird, feedsOn, Grass}\}$.
And now . . .

1 Motivation
2 Inseparability relations
3 Robustness properties
4 Conclusions
Robustness properties (1)

S is robust under vocabulary restrictions:

If $O_1 \equiv^S \Sigma O_2$ and $\Sigma' \subseteq \Sigma$, then $O_1 \equiv^S_{\Sigma'} O_2$.

Consequences:

If M is a Σ-module of O and $\Sigma' \subseteq \Sigma$, then M is a Σ'-module of O.

On restricting the signature, no new import is necessary.
Robustness properties (1)

S is robust under vocabulary restrictions:

If $O_1 \equiv^S_{\Sigma} O_2$ and $\Sigma' \subseteq \Sigma$, then $O_1 \equiv^S_{\Sigma'} O_2$.

Consequences:

If M is a Σ-module of O and $\Sigma' \subseteq \Sigma$, then M is a Σ'-module of O.

\sim On restricting the signature, no new import is necessary.
Robustness properties (2)

- Vocabulary extensions

 If \mathcal{M} is a Σ-module of \mathcal{O} and $(\Sigma' \setminus \Sigma) \cap \text{sig}(\mathcal{O}) = \emptyset$, then \mathcal{M} is a Σ'-module of \mathcal{O}.

 → On extending the signature with terms outside \mathcal{O}, no new import is necessary.
Robustness properties (2)

- **Vocabulary extensions**

 If \mathcal{M} is a Σ-module of \mathcal{O} and $(\Sigma' \setminus \Sigma) \cap \text{sig}(\mathcal{O}) = \emptyset$, then \mathcal{M} is a Σ'-module of \mathcal{O}.

 \sim On extending the signature with terms outside \mathcal{O}, no new import is necessary.

- **Replacement**

 If \mathcal{M} is a Σ-module of \mathcal{O} and $(\text{sig}(\mathcal{O'}) \setminus \Sigma) \cap \text{sig}(\mathcal{O}) = \emptyset$, then $\mathcal{M} \cup \mathcal{O'}$ is a Σ-module of $\mathcal{O} \cup \mathcal{O'}$.

 \sim The module relation is compatible with imports.
Robustness properties (2)

- **Vocabulary extensions**

 If \(M \) is a \(\Sigma \)-module of \(O \) and \((\Sigma' \setminus \Sigma) \cap \text{sig}(O) = \emptyset\), then \(M \) is a \(\Sigma' \)-module of \(O \).

 \(\leadsto \) On extending the signature with terms outside \(O \), no new import is necessary.

- **Replacement**

 If \(M \) is a \(\Sigma \)-module of \(O \) and \((\text{sig}(O') \setminus \Sigma) \cap \text{sig}(O) = \emptyset\), then \(M \cup O' \) is a \(\Sigma \)-module of \(O \cup O' \).

 \(\leadsto \) The module relation is compatible with imports.

- **Joins**

 If we have two indistinguishable ontologies, it suffices to import one of them.
Overview of properties

Inseparability rel. (IR)

<table>
<thead>
<tr>
<th>Property</th>
<th>\equiv_{Σ}</th>
<th>\equiv_{Σ}</th>
<th>\equiv_{Σ}</th>
<th>\equiv_{Σ}</th>
<th>\equiv_{Σ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules are induced ...</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>modules</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>self-contained modules</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>depleting modules</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>IR is robust under ...</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>vocab. restrictions</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>vocab. extensions</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>replacement</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>joins</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
</tbody>
</table>
And now . . .

1. Motivation
2. Inseparability relations
3. Robustness properties
4. Conclusions
mCE-based and (most) locality-based modules are very robust.

dCE-based modules are not robust.

Locality-based modules can be extracted efficiently.

\[\sim \text{Intermediate step for extracting mCE-based modules} \]
Conclusions

- mCE-based and (most) locality-based modules are very robust.
- dCE-based modules are not robust.
- Locality-based modules can be extracted efficiently.
 \leadsto Intermediate step for extracting mCE-based modules

Thank you.