The Modular Structure of an Ontology: Atomic Decomposition

Chiara Del Vescovo¹ Bijan Parsia¹
Uli Sattler¹ Thomas Schneider²

¹The University of Manchester, UK
²Universität Bremen, Germany
Ontologies & Modules

- **An ontology** is a finite set of axioms in a (description) logic

- A **module** $M(\Sigma, O) \subseteq O$ encapsulates knowledge w.r.t. a signature Σ: $M \equiv^c_\Sigma O$

 i.e., for all $C \subseteq D$ with $\text{sig}(C \subseteq D) \subseteq \Sigma$:

 $O \models C \subseteq D$ iff $M(\Sigma, O) \models C \subseteq D$

$M(\{\text{part}\}, \text{Mereology.owl}) = \{\text{Trans: part, part InverseOf: PartOf, Trans: partOf}\}$
Modular Structure

- Modules are great...if you know your (seed) signature...
 - and for “module local” tasks such as reuse
- Single module extraction does *not* help if you
 - do *not* know the *right* seed signature
 - want to understand *other* modules
 - want to understand *axiom dependency structure*
- To analyse the *modular structure* of the ontology:
 - *significant* modules
 - *significant* relations between modules
 - ...which reveals logical dependence between axioms
Are all modules significant?

To understand M, one must
- understand the dependency structure of M_1
- understand the dependency structure of M_2
- nothing else: M_1 and M_2 have no further dependencies

M is **not** significant: it is a **fake** module
- Thus, M_1 and M_2 may be “significant”
- knowing that M is “only” a union is important
Are all modules significant?

- To understand M, one must
 - understand the dependency structure of M_1
 - understand the dependency structure of M_2
 - nothing else: M_1 and M_2 have no further dependencies

 - M is not significant: it is a **fake** module
 - Thus, M_1 and M_2 may be “significant”
 - knowing that M is “only” a union is important
Are all modules significant?

- Consider a module M that is **not fake**
- To understand M, one has to understand M as a whole
 - all axioms in M logically interact
 - in different ways – but interact
- Not fake implies significant: **genuine**
Ratio of Fake to Genuine

- Given a set of genuine modules
 - unions lead to fake modules,
 - the space of fake modules is large (exponential)
 - but not every union of genuine modules is a module
- The cardinality of the set of all modules can and does grow exponentially in the size of O
 - See D., P., S., S., KR 2010 & WoMO 2010
- *Is module growth primarily due to trivial combinations?*
 - are most modules **fake**?
Theorem 1: Each genuine module is the smallest module for some axiom $\alpha \in O$.

- The family of genuine modules is linear in $|O|$
- Most modules are fake!
- Proof exploits properties of modules
 - uniqueness, monotonicity, self-containedness, …
 - which are satisfied by all locality-based modules
Relations between Modules

▪ Genuine modules may overlap
▪ This exposes significant logical dependence between axioms:
 ▪ axioms in $M_1 \setminus M_2$ depend on axioms in $M_1 \cap M_2$
Relations between Modules

- Genuine modules may overlap
- This exposes significant logical dependence between axioms:
 - axioms in $M_1 \setminus M_2$ depend on axioms in $M_1 \cap M_2$
Atoms

- \(\hat{A} \subseteq O \) is an **atom** if it is a maximal set s.t., for each module \(M \), either \(\hat{A} \subseteq M \) or \(\hat{A} \cap M = \emptyset \).
- The smallest module for an axiom \(\alpha \) contains the whole atom to which \(\alpha \) belongs!
- Axioms in an atom are logically interdependent
- Any two atoms are disjoint
- The family of atoms is a partition of the ontology
 - Only linearly many atoms
- Each GM is a disjoint union of atoms

Proposition: There is a 1-1 correspondence between genuine modules and atoms.
Atomic Decomposition

- Dependence between atoms:
 - $\hat{A} \succeq \hat{C}$ if, for each M: $\hat{A} \subseteq M$ implies $\hat{C} \subseteq M$
 - Axioms in \hat{A} logically depend on axioms in \hat{C}

Theorem 2: The relation \succeq is reflexive, antisymmetric, and transitive.

- a Hasse diagram exposes 2 logical dependencies amongst axioms in atoms & between atoms
Mereology Ontology

42 axioms
1952 modules
17 atoms/GMs
Can we compute all genuine modules?
- and all atoms
- with their dependencies?
- ...without computing all modules?!
Yes!

- Remember:

Theorem 1: Each genuine module is the smallest module for some axiom \(\alpha \in O \).

- extract \(M(\text{sig}(\alpha), O) \)
 - \(\leq \) linearly many module extractions
- AD induced by the comparison of GMs
 - quadratic procedure
In Reality?

- We have decomposed 181 OWL ontologies from NCBO BioPortal
- Decomposability: average
 - nr. axioms/atom: 1.73
 - max nr. axioms/atom: 86
 - nr. axioms/GM: 66
 - max nr. axioms/GM: 143
Future Work

- More on dependency of axioms
 - between atoms and \textit{sets} of atoms
- Labels for atoms
 - different labels for different tasks
- Applications
 - All Module Count
 - Fast Module Extraction
 - Topicality for Ontology Comprehension: see ICCS 2011
- ...
Thank you! – Questions?
Decomposability Issues

<table>
<thead>
<tr>
<th>Ontology O (ID in BioPortal)</th>
<th>#O</th>
<th>#max Atom</th>
<th>#Eq. axs.</th>
<th>#Disj. axs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoparticle Ontology (1083)</td>
<td>16,267</td>
<td>6,425</td>
<td>42</td>
<td>6,106</td>
</tr>
<tr>
<td>Breast Tissue Cell Lines Ontology (1438)</td>
<td>2,734</td>
<td>2,201</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>IMGT Ontology (1491)</td>
<td>1,112</td>
<td>729</td>
<td>38</td>
<td>594</td>
</tr>
<tr>
<td>SNP Ontology (1058)</td>
<td>3,481</td>
<td>598</td>
<td>30</td>
<td>210</td>
</tr>
<tr>
<td>Amino Acid Ontology (1054)</td>
<td>477</td>
<td>445</td>
<td>8</td>
<td>190</td>
</tr>
<tr>
<td>Comparative Data Analysis (1128)</td>
<td>804</td>
<td>434</td>
<td>8</td>
<td>190</td>
</tr>
<tr>
<td>Family Health History (1126)</td>
<td>1,091</td>
<td>378</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Neural Electromagnetic Ontologies (1321)</td>
<td>2,286</td>
<td>259</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>Computer-based Patient Record Ontology (1059)</td>
<td>1,454</td>
<td>238</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Basic Formal Ontology (1332)</td>
<td>95</td>
<td>89</td>
<td>13</td>
<td>41</td>
</tr>
<tr>
<td>Ontology of Medically-related Social Entities (1565)</td>
<td>138</td>
<td>100</td>
<td>17</td>
<td>41</td>
</tr>
<tr>
<td>Ontology for General Medical Science (1414)</td>
<td>194</td>
<td>102</td>
<td>17</td>
<td>41</td>
</tr>
<tr>
<td>Cancer Research and Mgmt Acgt Master (1130)</td>
<td>5,435</td>
<td>3,796</td>
<td>16</td>
<td>42</td>
</tr>
</tbody>
</table>