Lightweight Temporal Description Logics with Rigid Roles and Restricted TBoxes

Víctor Gutiérrez-Basulto Jean Christoph Jung Thomas Schneider

Dept of Mathematics and Computer Science, University of Bremen, Germany

IJCAI 30 July 2015
Motivation

Vision: Express temporal knowledge in a DL ontology

Applications: KR & reasoning over temporal conceptual data models ... in the medical domain

Example: ‘A patient who has diabetes now may develop certain disorders in the future’

Approach: Extend DLs with point-based temporal operators
\[\leadsto\] Temporal description logics (TDLs) [Schild ’93]
The TDL landscape

Previous work

$\mathcal{ALC/EL/DL-Lite} + \mathcal{LTL/CTL} \leadsto \mathcal{PTIME} \ldots \text{undecidable}$

Challenges

- Allow rigid roles to capture time-invariant relations

 e.g.: hasBloodGroup, hasGeneticDisease, ...

- With rigid roles, even $\mathcal{EL} + \Diamond$ and $\mathcal{EL} + E\Diamond$ are undecidable!

Goal

Indetify decidable (and tractable) fragments of $\mathcal{EL} + \mathcal{CTL}$
TDLs in a nutshell: syntax

TDLs are modal description logics – here \mathcal{EL} + CTL:

\[
C := \top \mid A \mid C \sqcap C \mid \exists r.C \mid E \Diamond C \mid E \Box C \mid \ldots
\]

\mathcal{EL}

\Box CTL operators

\mathcal{ALC} + CTL additionally allows \neg (and thus \sqcup, \forall)

Example: $\exists \text{hasDisease}.\text{Diabetes} \sqsubseteq E \Diamond \exists \text{hasDisease}.\text{Glaucoma}$

Design choices

- Temporal operators from CTL
- Temporal concepts
- Acyclic TBoxes *(NEW)*
TDLs in a nutshell: semantics

Temporal dimension: worlds + tree-shaped ‘future’ relation

DL dimension: one full DL interpretation per world

- Constant domain assumption
- Rigid roles allowed
TDLs in a nutshell: semantics

Temporal dimension: worlds + tree-shaped ‘future’ relation

DL dimension: one full DL interpretation per world

- Constant domain assumption
- Rigid roles allowed

![Diagram](image-url)
TDLs in a nutshell: semantics

Temporal dimension: worlds + tree-shaped ‘future’ relation

DL dimension: one full DL interpretation per world

- Constant domain assumption
- Rigid roles allowed

$$\begin{align*}
&\in \quad (A \sqcap E \diamond \exists r. B)^I \\
&(A \sqcap \exists r. E \diamond B)^I
\end{align*}$$
TDLs in a nutshell: semantics

Temporal dimension: worlds + tree-shaped ‘future’ relation

DL dimension: one full DL interpretation per world
- Constant domain assumption
- Rigid roles allowed

\[
\begin{align*}
&\in (A \sqcap E \diamond \exists r. B)^I \\
\equiv \\
& (A \sqcap \exists r. E \diamond B)^I
\end{align*}
\]
Contribution

We study decidability and complexity of subsumption

<table>
<thead>
<tr>
<th>Our results</th>
<th>[GJS KR’14]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{EL} + \ldots$ empty TBox</td>
<td>acyclic TBoxes</td>
</tr>
<tr>
<td>$\ldots E\bigcirc$ in PTime</td>
<td>in PTime</td>
</tr>
<tr>
<td>$\ldots E\lozenge$ in PTime</td>
<td>in PTime</td>
</tr>
<tr>
<td>$\ldots E\bigcirc, E\lozenge$ coNP-complete</td>
<td>in coNExpTime</td>
</tr>
<tr>
<td>$\ldots E\lozenge, A\Box$ in PSpace</td>
<td>PSpace-complete</td>
</tr>
<tr>
<td>$\mathcal{ALC} + \text{CTL}$</td>
<td>decidable but nonelementary</td>
</tr>
</tbody>
</table>

- First fragments of \mathcal{EL}-based TDLs with rigid roles with elementary (even polynomial) complexity
The 2 main results (out of 4)

Theorem

1. $\mathcal{EL} + E\Diamond$ and $\mathcal{EL} + E\bigcirc$ over acyclic TBoxes are in PTIME.
2. $\mathcal{EL} + \{E\Diamond, \ A\Box\}$ over acyclic TBoxes is PSPACE-complete.

Proof sketch

1. Build abstract representation of canonical model of input TBox, using 3-phase algorithm (thanks to acyclicity).

2. Upper bound:
 - abstract representation blows up \leadsto consider single traces
 - complete the traces one at a time (think tableaux)
 - polynomial size bound thanks to acyclicity

Lower bound: reduction from QBF
Conclusion

- Acyclic TBoxes can help design well-behaved \mathcal{EL}-based TDLs
- $\mathcal{EL} +$ CTL fragments of elementary (polynomial) complexity
- Byproduct: complexity results for positive fragments of product modal logics $K \times K$, $S4 \times K$

- More expressive fragments
e.g., $\mathcal{EL} + \{\text{E} \bigcirc, \text{E} \Diamond\}$ (non-convex) over acyclic TBoxes
- Cyclic TBoxes
- Change the temporal component: LTL, μ-calculus?
Acyclic TBoxes can help design well-behaved \mathcal{EL}-based TDLs
$\mathcal{EL} +$ CTL fragments of elementary (polynomial) complexity
Byproduct: complexity results for positive fragments of product modal logics $K \times K$, $S4 \times K$

- More expressive fragments
 e.g., $\mathcal{EL} + \{E\bigcirc, E\Diamond\}$ (non-convex) over acyclic TBoxes
- Cyclic TBoxes
- Change the temporal component: LTL, μ-calculus?

Thank you.