Description Logics: a Nice Family of Logics — Automata-Based Decision Procedures —

Uli Sattler¹ Thomas Schneider²

¹School of Computer Science, University of Manchester, UK
²Department of Computer Science, University of Bremen, Germany

ESSLLI, 8 August 2012
Plan for today

Yesterday, we looked at tableau-based decision procedures:

- based on the simple idea of model construction
- yield the finite model property and the tree model property
- often require hard termination proofs
- often don’t yield tight upper complexity bounds

Today, we want to explore automata-based decision procedures:

- elegant and simple
- don’t require termination proofs
- yield tight EXPTIME upper bounds
- are difficult to implement

Thanks to Carsten Lutz for most of the material on these slides.
Plan for today

1. Automata basics
2. An EXPTIME upper bound for \mathcal{ALC}
3. Extensions
4. Final remarks
And now . . .

1. Automata basics

2. An \textsc{ExpTime} upper bound for \mathcal{ALC}

3. Extensions

4. Final remarks
Types of automata:

- Finite automata (DFA/NFA): work on finite words
- ω-automata: work on infinite words
- Automata on finite trees
- Automata on infinite trees
Trees

Infinite k-ary tree:

- Nodes $\in \{1, \ldots, k\}^*$:
 - $\varepsilon, 0, \ldots, k, 00, \ldots, kk, \ldots$
- ε denotes the root
- node n has successors n_1, \ldots, n_k (ordered!)
- e.g., node 12 is the 2$^{\text{nd}}$-left succ. of the 1$^{\text{st}}$-left succ. of the root

k-ary M-tree T:

- nodes labelled with elements from M
- e.g.: $T(12) = a$

Q: $T(22) = ?$
Idea for deciding satisfiability w.r.t. TBoxes:

1. Choose a DL that has the tree model property
 (infinite trees are ok)
2. For concept C_0 and TBox \mathcal{T}, define automaton $A(C_0, \mathcal{T})$
 that accepts precisely the tree models of C_0 and \mathcal{T}
3. Check whether the language recognised by $A(C_0, \mathcal{T})$ is empty
 (If you don’t have tree model property: try some tricks)

Establish ExpTime upper bound:

- Size of $A(C_0, \mathcal{T})$ is usually exponential in the size of C_0 and \mathcal{T}
- Emptiness can be decided in deterministic polynomial time
Looping tree automata

LTAs are tuples $\mathcal{A} = (S, M, I, \Delta)$ where:

- S is a finite set of states
- M is an alphabet
- $I \subseteq Q$ is a set of initial states
 - i.e., every run (= computation) of \mathcal{A} starts in a state from I
- $\Delta \subseteq S \times M \times S^k$ is a transition relation
 - i.e., Δ consists of tuples $(s_0, a, s_1, \ldots, s_k)$, meaning:
 - “if \mathcal{A} is in state s_0 and reads a in the current node’s label, \mathcal{A} next visits the k successor nodes in states s_1, \ldots, s_k, resp.”
 - non-deterministic choices:
 - several tuples starting with the same (s_0, a) are allowed

Language recognised by \mathcal{A}: a set of k-ary M-trees
Example automaton and its runs

Example: LTA \mathcal{A} on alphabet $\{a, b\}$

$$S = \{s_a, t\}$$ \hspace{1cm} $\Delta = \{(s_a, a, s_a, t),$

$$M = \{a, b\}$$ \hspace{1cm} $(s_a, a, t, s_a),$

$$l = \{s_a\}$$ \hspace{1cm} $(t, a, t, t),$

$$= \{(t, b, t, t)\}$$

Recognised language: all trees with infinite a-path starting at root
Definition of a run

Example: LTA on alphabet \{a, b\}

\[S = \{s_a, t\} \quad \Delta = \{(s_a, a, s_a, t), (s_a, a, t, s_a), (t, a, t, t), (t, b, t, t)\} \]

Definition: a run \(r \) of \(A \) on \(T \)
assigns to each node in \(T \) a state from \(S \) such that

- \(T \)'s root is labelled with a state from \(I \)
- \((r(n), T(n), r(n1), \ldots, r(nk)) \) \(\in \Delta \)

for all nodes \(n \in \{1, \ldots, k\}^* \)

Recognised language: \(L(A) = \{ T \mid \text{there is a run of } A \text{ on } T \} \)
And now . . .

1. Automata basics

2. An EXPTIME upper bound for \mathcal{ALC}

3. Extensions

4. Final remarks
Roadmap

Goal: prove that \mathcal{ALC}-satisfiability w.r.t. TBoxes is in $\exp\text{TIme}$

2 steps:

1. Represent tree interpretations as **Hintikka trees**
 - Tree models have *labelled* edges (roles), automata trees don’t
 - Convenient to label nodes with *complex* concepts

2. Define automaton that accepts exactly those Hintikka trees that represent models for the input concept + TBox
 - This reduces sat. w.r.t. TBoxes to emptiness of the automaton
Hintikka sets

... are used as node labels in Hintikka trees (\(\sim\) constitute set \(M\))

Intuitively, a HS contains relevant concepts satisfied by some domain element

Definition: Let \(C_0, T\) be in NNF; \(\text{sub}(C_0, T) = \text{sub}(T \cup \{a: C_0\})\)

(i.e., \(\text{sub}(C_0, T)\) consists of all subconcepts of \(C\), in \(T\), and of \(\neg C \sqcup D\) for each \(C \sqsubseteq D \in T\))

A **Hintikka set** for \(C_0\) and \(T\) is a subset \(\mathcal{H} \subseteq \text{sub}(C_0, T)\) such that:

(H1) If \(C \sqcap D \in \mathcal{H}\), then \(C \in \mathcal{H}\) and \(D \in \mathcal{H}\).

(H2) If \(C \sqcup D \in \mathcal{H}\), then \(C \in \mathcal{H}\) or \(D \in \mathcal{H}\).

(H3) For all \(C \in \text{sub}(C_0, T)\), \(\mathcal{H}\) does not contain \(C\) and \(\neg C\) at the same time.

(H4) If \(C \sqsubseteq D \in T\), then \(\neg C \sqcup D \in \mathcal{H}\).

\(\mathcal{H}(C_0, T)\): set of all Hintikka sets for \(C_0\) and \(T\)
Excursion: Hintikka sets vs. 1-types

A Hintikka set

- contains **relevant** concepts satisfied by some domain element
- does not need to have “full knowledge” about that element
- in particular, can be empty

A 1-type (aka type) has stronger requirements:

- contains **all** concepts satisfied by some domain element
- thus has “full knowledge” about that domain element
- is a subset $t \subseteq \text{sub}(C_0, T)$ such that:

 (T1) $C \sqcap D \in t$ iff $C \in t$ and $D \in t$.

 (T2) $C \sqcup D \in t$ iff $C \in t$ or $D \in t$.

 (T3) For all $C \in \text{sub}(C_0, T)$, $C \in t$ iff $\neg C \notin t$.

 (T4) If $C \sqsubseteq D \in T$, then $\neg C \sqcup D \in t$.

Uli Sattler, Thomas Schneider
Hintikka trees

- Let k be the number of successors a domain element can be forced to have:

$$k = \# \{ D \in \text{sub}(C_0, \mathcal{T}) \mid D \text{ is of the form } \exists R.C \}$$

- Hintikka sets will be k-ary $\mathcal{H}(C_0, \mathcal{T})$-trees

How can we deal with the non-labelled edges?

- Intuitively, there is one potential successor for each $\exists R.C$

\hookrightarrow The connecting role for each successor is already fixed!

- Enumerate all concepts $\exists R.C$ using E_1, \ldots, E_k

- If $E_i = \exists R.C$ is . . .
 - in node n’s label, then the role between n and n_i is R
 - not in n’s label, then the connection btn. n, n_i is a “dummy”
Example

Let \(k = 2 \) \hspace{1cm} E_1 = \exists R.C \hspace{1cm} E_2 = \exists R.D \hspace{1cm} E_3 = \exists S.D

d = \text{dummy}
Hintikka Trees II

Next step: describe relationship between

- the Hintikka set of each node n and
- the Hintikka sets of n’s successors

Definition:

A $(k+1)$-tuple of Hintikka sets $\mathcal{H}, \mathcal{H}_1, \ldots, \mathcal{H}_k$ is **matching** if, for every $i = 1, \ldots, k$ with $E_i = \exists R.C \in \mathcal{H}$:

(M1) $C \in \mathcal{H}_i$ (for satisfying E_i, it suffices to consider i-th successor)

(M2) if $\forall R.D \in \mathcal{H}$, then $D \in \mathcal{H}_i$
Definition

A Hintikka tree for C_0 and T is a k-ary $\mathcal{H}(C_0, T)$-tree such that:

\begin{enumerate}[(T1)]
 \item $C_0 \in T(\varepsilon)$ – i.e., C_0 is in the root’s label
 \item For every node n,
 \begin{itemize}
 \item the tuple $\left(T(n), T(n1), \ldots, T(nk)\right)$ is matching.
 \end{itemize}
\end{enumerate}

Lemma

C_0 is satisfiable w.r.t. T iff there is a Hintikka tree for C_0 and T.
Basic idea:

- Use Hintikka sets as states and define Δ such that
 $$s_0 = \ell \text{ in all tuples } (s_0, \ell, s_1, \ldots, s_k) \in \Delta$$
 Recall: $\Delta \subseteq S \times M \times S^k$

 \leadsto If there is an accepting run, it will be identical to the tree

- Use initial states to ensure that $C_0 \in T(\varepsilon)$

- Check matching via transition relation, e.g.,
 whenever $(s_0, \ell, s_1, \ldots, s_k) \in \Delta$ and $E_i = \exists R.C \in s_0$, then:
 (M1) $C \in s_i$
 (M2) if $\forall R.D \in s_0$, then $D \in s_i$
Constructing automata II

Automaton for C_0 and T:
$$A(C_0, T) = (S, M, I, \Delta), \text{ where}$$

$$S = \mathcal{H}(C_0, T)$$
$$M = \mathcal{H}(C_0, T)$$
$$I = \{s \in S \mid C_0 \in s\}$$

and $(s_0, \ell, s_1, \ldots, s_k) \in \Delta$ iff
- $s_0 = \ell$ and
- the tuple (s_0, s_1, \ldots, s_k) is matching

Lemma
$$T \in L(A(C_0, T)) \text{ iff } T \text{ is a Hintikka tree for } C_0 \text{ and } T.$$
Results

Size of $\mathcal{A}(C_0, T)$: Let $|C_0, T| = |C_0| + |T|$.
Number of Hintikka sets exponential in $|C_0, T|$

$\Rightarrow |Q|, |I|, |M|$ exponential in $|C_0, T|$

$\Rightarrow |\Delta|$ exponential in $|C_0, T|$ since $|\Delta| = |M| \cdot |S|^{k+1}$

\Rightarrow Size of $\mathcal{A}(C_0, T)$ exponential in $|C_0, T|$

Decision procedure for \mathcal{ALC}-concept satisfiability w.r.t. TBoxes:

1. Given C_0, T, construct $\mathcal{A}(C_0, T)$ – in time exp. in $|C_0, T|$
2. Test emptiness of $\mathcal{A}(C_0, T)$ – in time polynomial in $|\mathcal{A}(C_0, T)|$

Theorem

\mathcal{ALC}-concept satisfiability w.r.t. TBoxes is in ExpTime.

Complexity bound is optimal: \mathcal{ALC} with TBoxes is ExpTime-hard.
Emptiness problem of looping automata

Determine in $|S|$ rounds the set of blocking states $B \subseteq S$:

- **Initialisation:**

 Set $B_0 \leftarrow \{ s \in S \mid \text{there is no } (s, a, s_1, \ldots, s_k) \in \Delta \}$

- **Round i:**

 Set $B_i \leftarrow B_{i-1} \cup \{ s \in S \mid \text{for all } (s, a, s_1, \ldots, s_k) \in \Delta \\
 \quad \text{there is } 1 \leq i \leq k \text{ with } s_i \in B_{i-1} \}$

- Set $B = B_{|S|}$

Lemma

$L(A) = \emptyset$ iff $I \subseteq B$.

Computation of B is clearly in polynomial time.
And now . . .

1. Automata basics
2. An \textsc{ExpTime} upper bound for \mathcal{ALC}
3. Extensions
4. Final remarks
Transfer to the other standard reasoning problems

The procedure shown can be applied to decide . . .

TBox Consistency. These are equivalent:

- \mathcal{T} is consistent
- some fresh\(^1\) C_0 is satisfiable w.r.t. \mathcal{T}

Consistency of ontologies. Transform $(\mathcal{T}, \mathcal{A})$ into $(\mathcal{T}', \mathcal{A}')$, where

- \mathcal{A}' consists of a single concept assertion $a : C_0$
- but \mathcal{T}' is in $ALCIF_{\text{reg}}$

Then test satisfiability of (C_0, \mathcal{T}') with the decision procedure extended to $ALCIF_{\text{reg}}$

Other reasoning problems: as shown on Tuesday

\(^1\)i.e., C_0 or r doesn’t occur in \mathcal{T}
Extension to \textit{ALCI}

\textbf{Recall:} \textit{ALCI} = \textit{ALC} + inverse roles: $\exists R^.C$ and $\forall R^.C$

\textbf{Question:} what do we need to change in the

- definition of a Hintikka set?
- definition of a Hintikka tree?
- construction of the automaton?
- elsewhere?

\textbf{Answer:} only

- the matching condition for Hintikka trees
- and its “encoding” in the automaton’s transition function

From now on, R denotes a role or its inverse.
Adapting Hintikka Trees to ALCI

Remember: they describe relationship between

- the Hintikka set of each node n and
- the Hintikka sets of n’s successors

![Diagram of Hintikka sets with existential assertion](image)

Definition:

A $(k+1)$-tuple of Hintikka sets $\mathcal{H}, \mathcal{H}_1, \ldots, \mathcal{H}_k$ is **matching** if, for every $i = 1, \ldots, k$ with $E_i = \exists R.C \in \mathcal{H}$:

(M1) $C \in \mathcal{H}_i$ (for satisfying E_i, it suffices to consider i-th successor)

(M2) if $\forall R.D \in \mathcal{H}$, then $D \in \mathcal{H}_i$

(M3) if $\forall \text{Inv}(R).D \in \mathcal{H}_i$, then $D \in \mathcal{H}$

$\text{Inv}(P) = P^-, \text{Inv}(P^-) = P$
Adapting the automata construction to \mathcal{ALCI}

Remember – basic idea:

- Use Hintikka sets as states and define Δ such that
 \[s_0 = \ell \quad \text{in all tuples} \quad (s_0, \ell, s_1, \ldots, s_k) \in \Delta \]
 Recall: $\Delta \subseteq S \times M \times S^k$

 \leadsto If there is an accepting run, it will be identical to the tree

- Use initial states to ensure that $C_0 \in T(\varepsilon)$

- Check **matching** via transition relation, e.g.,
 whenever $(s_0, \ell, s_1, \ldots, s_k) \in \Delta$ and $E_i = \exists R. C \in s_0$, then:

 (M1) $C \in s_i$

 (M2) if $\forall R. D \in s_0$, then $D \in s_i$

 (M3) if $\forall \text{Inv}(R). D \in s_i$, then $D \in s_0$
And now . . .

1 Automata basics

2 An EXP\textsc{TIME} upper bound for \textit{ALC}

3 Extensions

4 Final remarks
What we haven’t covered

- More expressive DLs \leadsto more complex automata models
 - Büchi tree automata for eventualities (trans. closure of roles)
 - and variants thereof

- Alternative approach to \textsc{ExpTime}-decision procedures: \textbf{alternating automata}
 - States are formulas, not sets of formulas
 - Size of automaton is polynomial in $|C_0, T|$}
 - Emptiness check is in \textsc{ExpTime}

\leadsto avoid the problem of constructing an exp. large automaton
Automata versus tableaux: complexity

Tableau algorithms

- usually don’t yield tight upper bounds (e.g., EXPSpace for ALC)
 - are usually not worst-case optimal
- but can be optimised in many ways
 - are efficient in many cases

Automata-based algorithms

- often yield tight upper bounds (e.g., EXPTIME for ALC)
 - are often worst-case optimal
- rely on the construction of an exponential-size automaton
 - are exponential in the best and average case too
 - leave less room for optimisations
Automata versus tableaux: summary

Tableau algorithms

- based on a simple idea (model construction)
- amenable to optimisation techniques
- basis for state-of-the-art DL reasoners
- bad for proving deterministic upper time bounds
- termination proofs can become very hard

Automata-based algorithms

- elegant and simple
- well-suited for proving $\text{EXP} \text{TIME}$ upper bounds
- no termination proofs
- no optimised implementations exist (?)

That’s all for today. Thanks!