Introduction

- What this tutorial is about
- What it is not about

Overview

 Terrain Visualization

- Problem
 - Given: height values on regular 2D grid
 - Task: render with 60 Hz
- Brute-force solution
 - Render ~ 500 Mio tris
- Better solution
 - view-dependent dyn. LOD, stripes, cache locality
 - Idea: Quadtrees

Avoiding Cracks

- Cannot render quadrangles
- Probably not planar
- Cracks because of T-vertices
- Must render triangles

Subdivision Scheme

- Quadtree induces 4-8 mesh
 - 8
 - new
 - j
 - i

- Induces DAG
 - "vertex j is child of i" \(\iff \) j is created by splitting at i
 - Denote this by an edge \((i,j)\)
Dependency among Triangles

- Graph-theoretic condition
 Let M^0 be the complete DAG, let M be a sub-graph of M^0.
 M yields a crack-free terrain \iff
 $\forall j \in M : (i,j) \in M^0 \implies (i,j) \in M$

- Rendering condition:
 - Find criterion for vertices that has the "nesting property":
 criterion(j) = "render it" \implies
 \forall parents i: criterion(i) = "render it"

Procedure for Rendering

submesh(i,j)
if error(i) < τ then
 return
if B, outside view then
 return
submesh(i,c)
$V += p_i$
submesh(i,cr)

Storing the Quadtree

- Don't use pointers
- Find numbering scheme with little "dead numbers"
- Observation: subdivision scheme induces 2 quadtrees

<table>
<thead>
<tr>
<th>Level</th>
<th>Green</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Storing the "green" quadtree in the "black" one:

Movies

[Black screen]

[Image of the Australian Outback]
Isosurface Generation

- **Problem**
 - Given: scalar field \(f: \mathbb{R}^3 \rightarrow \mathbb{R} \)
 - Task: find polygonal repr. of \(f(x) = t \)
 - Discrete: curvilinear grid / regular grid
 - Space: physical / computational space
 - Task (discrete): find all cells with a node < \(t \) and a node > \(t \)

- **Simple algo ("marching cubes")**
 1. Compute sign for all nodes (\(\oplus > t \));
 2. Triangulate all cells according to LUT

Octrees over Volume Data

- **Leaf**: ptr to lower left node
- **Inner node**: ptr to first child
- All nodes \(v \) store \(v_{\min} \) and \(v_{\max} \)

Isosurface Generation with Octree

- Isosurface intersects volume assoc. with node \(v \) \(\iff \) \(v_{\min} < t < v_{\max} \)
- **Algo (obvious)**
 - Start with root
 - Recurse into nodes satisfying condition
- **Improvement**
 - Observation: edges are visited exactly 4 times
 - Keep hash table of edges

Ray Shooting

- **Applications**: ray tracing, radiosity, volume visualization, terrain following, etc.
- **Simplest solution**: grid
- **3D octree**
 - Bottom-up
 - Top-down

5D Octree for Rays

- **What is a ray?**
 - Point + direction = 5-dim. Object
- **Octree over rays**
 - "Direction cube"
 - One-to-one mapping for dir's:
 \(S^2 \leftrightarrow D = [-1,1]^2 \times \{x,y,z\} \)
 - All rays in universe \(U = [0,1]^2 \)
 - Node of 5D octree = beam in 3D
Introduction

- Construction
 - Start with root node \(U = [-1, 1]^2 \) and all objects associated
 - Partition node iff
 1. Too many objects, and
 2. Cell too large.
 - Partition set of objects

- Shooting rays
 1. Convert ray to 5D point
 2. Find leaf of octree
 3. Intersect ray with associated objects

- Optimizations ...

Texture Synthesis

- Properties of textures
 - Stationary under moving window
 - Locality of dependency

- Algorithm

  ```
  for all \( p \in \) new image do
    find \( p_i \in \) old image so that
    \[ \|p - N(p)\| = \min \] set \( p_i = p \)
  ```

Nearest Neighbor Apps

- Better independence from size of \(N(p) \)

BSP Trees

- Generalization of k-d trees

- Definition (recursive)
 - \(S = \) set of objects,
 - \(S(v) = \) objects assoc. with node \(v \),
 - \(T(S) = \) BSP for set \(S \)
 1. Case \(|S| = 1 \):
 - \(T = \) leaf \(v \) storing \(S(v) \)
 2. Case \(|S| = 3 \):
 - \(T = \) tree with root \(v \) storing \(h \), and \(S(v) \),
 - \(S^+\) = \(\{ x \in S \mid x \subseteq h \} \)
 - children for sets \(S^+(v) \) and \(S^-\)
 - \(S^-(v) = \{ x \in h | x \subseteq S \} \)

Autopartitions

- Properties
 - Each \(h \) = plane of one polygon
 - Each \(S(v) = \) that polygon

- Complexity
 - \(O(n \log n) \)
 - In 2D: proven
 - In 3D: experience for "well-behaved" geometry
BSPs for Object Representation

- Difference to orig. definition:
 - stop only when |S|=0
- Leaves
 - Homogenous convex cells
 - Either inside or outside
- Construction
 - Guided by heuristic

Boolean Operations

- Operations: ∩ ∪ ⊆

Algorithm
1. Split BSP by plane
2. Merge two BSPs
3. Compute operation on cells

Subalgorithm 1

- Split BSP T by plane H, polygon p at root of T
- Output two new BSPs
- Cases:
 1. T is leaf:
 - trivial ...
 2. p ⊂ H:
 - return children
 3. H completely on one side of p:
 - split one child, combine with other child
 4. H crosses p:
 - split both children, recombine across p

Subalgorithm 2

- Merge T₁ and T₂
- Output T with leaf cells C such that
 \[C = \{ C \mid C = C_i \cap C_j, C_i, C_j \in C \} \]
- Algorithm
1. T₁ or T₂ is leaf: perform operation on cell
2. Else:
 - \[T_1 \text{split} \rightarrow T'_1 \text{merge} \rightarrow T' \]
 - \[T_2 \text{split} \rightarrow T'_2 \text{merge} \rightarrow T' \]

Subalgorithm 3

- The Cell Operation

<table>
<thead>
<tr>
<th>Op</th>
<th>T₁</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>∩</td>
<td>in</td>
<td>T₁₁</td>
</tr>
<tr>
<td></td>
<td>out</td>
<td>T₁₂</td>
</tr>
<tr>
<td>∪</td>
<td>in</td>
<td>T₂₁</td>
</tr>
<tr>
<td></td>
<td>out</td>
<td>T₂₂</td>
</tr>
<tr>
<td>\</td>
<td>in</td>
<td>T₁₂</td>
</tr>
<tr>
<td></td>
<td>out</td>
<td>T₁₂</td>
</tr>
<tr>
<td>⊆</td>
<td>in</td>
<td>T₁₂</td>
</tr>
<tr>
<td></td>
<td>out</td>
<td>T₂₂</td>
</tr>
</tbody>
</table>

Demos
Bounding Volume Hierarchies

- Definition (informal):
 - Tree, nodes carry BV
 - Leaves carry one (or more) “primitives”
 - BV of node contains BVs of all children
 - Leaf BV contains primitive
- Many variables
- Bounding Volumes
- Tightness

Applications
- Ray shooting
- Nearest-neighbor
- Frustum and occlusion culling
- Geographical data bases
- Collision detection

Construction
- Strategies
 - Bottom-up
 - Insertion
 - Top-down
 - Heuristic
- Interactive hierarchy construction

Collision Detection

Simultaneous traversal:
```
traverse(A,B)
if A,B do not overlap then
  return
if A and B are leaves then
  check primitives
else
  for all children A_i, B_j do
    traverse(A_i, B_j)
```

The recursion tree (what the algo really does):

Movies

Remaining primitives

A simple application

Thanks Folks
A Continuum of Data Structures

Quadtree K-d tree BSP tree BV hierarchy