Calibrating IPTs

Dr. Gabriel Zachmann
University Bonn, Germany
zach@cs.uni-bonn.de
web.informatik.uni-bonn.de/~zach

Overview

- Effect of erroneous camera position
- Sources of error
- Tracking system errors
- Correcting distortions
My background

- Virtual prototyping:
 - Assembly simulation
 - Styling review
 - Scientific immersive visualization
 - Ergonomics

Effect of erroneous camera position

- Cave/Powerwall: image distortion
- HMD/Boom: precise manipulation/positioning
HMD/Boom vs. Cave/Powerwall

- Difference: projection plane moves / doesn't move
- Error analysis:

- Angular error, head displacement
- Angular error, head rotation

Different effects on different displays

- Translational camera displacement:
 - HMD is usually better (has less error)
- Rotational camera displacement:
 - Cave is better
- Problem in the Cave: image distortion
- Problem in the HMD: virtual hand doesn't appear where user knows his real hand is
Sources of Error

- **Objective:**
 1. Delay
 2. Transformation pipeline
 3. Minor other sources
 4. Tracking system

- **Subjective:**
 - Reports from users, but ...
 - Uncharted area!

Delay (latency / lag)

- Time span from user action until display update
- **Types of lag**
 - Device
 - Transport
 - Software
 - Synchronisation
- **Latency pipeline:**

![Latency Pipeline Diagram]

- Tracking System
- Filter
- Rendering
- Video Hardware

60-240 Hz 60-120 Hz 60-120 Hz

- 0-16
- 16
- 20 Hz
- 50
- 2
- 20
- ~10 msec
Human factors

- **Effect of latency**

<table>
<thead>
<tr>
<th>Latency / millisec</th>
<th>Effect on user</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Noticeable</td>
</tr>
<tr>
<td>30</td>
<td>User performance decreases (possibly "simulator sickness")</td>
</tr>
<tr>
<td>500</td>
<td>Immersion collapses</td>
</tr>
</tbody>
</table>

- **Head motion**
 - Typically 10 cm/sec and 20 deg/sec
 - Max. most of the time 50 cm/sec and 50 deg/sec
 - Peak 1000 deg/sec

What you should do against latency

- **Device:**
 - "Continuous mode" for device and device server
 - Activate only those sensors the app really uses

- **Time-critical computing**
 - Predictive LOD estimation for constant frame
 - CFD visualization (streamlines, isosurface, ...)

- **Predictive tracker filtering!**
 - Kalman
 - Autoregression
 - Polynomial fit
Transformation errors

- User model

\[M_e = T_{l/r} M_{r/e} M_s T_s \]

M_s = current sensor position
M_e = viewpoint trans. for eye

Where is the display?

\[M_{id} = \text{trf. from left/right eye to display} \]
\[D = \text{display geometry} \]
Minor error sources

- Optical distortion by the display
 - Possible solution: render twice

- Eye tracking?
 - Error is negligible, if projection center = eye center

Tracking system technologies

- Electro-magnetic
- Mechanical
- Optical
- Acoustic
- Inertia-sensing
- GPS
- Computer-vision based
- ...
Prices (2001)

<table>
<thead>
<tr>
<th>System</th>
<th>Approx. Price (EUR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascension Flock-of-Birds (ERT)</td>
<td>10,000</td>
</tr>
<tr>
<td>Polhemus Fastrak (long ranger)</td>
<td>13,000</td>
</tr>
<tr>
<td>Intersense IS600</td>
<td>19,000</td>
</tr>
<tr>
<td>MotionAnalysis</td>
<td>100,000 – 300,000</td>
</tr>
</tbody>
</table>

Tracking system errors

- **Static:**
 - Mis-alignment
 - Distortions

- **Dynamic:**
 - Noise
 - Drift
 - Drop-outs
Principle of electro-magnetic tracking

Sources of noise

- **Power supplies:**

 - if you use Ascension:
 - don't sample at 50 Hz!
 - Try to sample at 100 Hz and average 2 adjacent samples
Monitor:

- put monitors at least 50cm away.

Power spectrum (Fastrak):

- Sync to the mains
- Sync to the monitor

→ put monitors at least 50cm away.
Distance between receiver and transmitter:

- place the transmitter close to the work area
- use a long-range transmitter

Other sources of noise:
- Receiver / transmitter cables
- Cell phones
Sources of distortion

- Where is all the metal hidden?
 - Floor covering (and ceiling of next lower floor)
 - Ceiling (lamps, covering, air conditioning, ...)
 - Walls (steel grid of reinforced concrete)
 - Monitors (coils), computers (shielding), projectors

Effect of size of different sheet metal:

- FoB
 - aluminum
 - steel

- Fastrak
 - aluminum
 - steel
Some measurements in real labs:

- Ascension FoB + ERT
- Polhemus Fastrak & Longranger

... and in our new cave:

- 2.5 x 2.5 x 2 m³
Correcting distortions

- Ingredients for building a calibration table:
 - Markers on the floor, possibly on paper
 - Metal-free holding device for the sensor, possibly several sensors
 - Calibration measurement tool

- Time needed:
 - Preparation = 1-2 hours
 - Measurement = 30 minutes

Data flow:

- Sensor to Alignment
- Alignment to Alignment data
- Sensor to Measure field
- Measure field to Calibration table
- Calibration table to Correction (server)
- Correction (server) to Application
Correction algorithms

- Problem: interpolation
- Verified empirically:
 - Position error does not depend on sensor orientation
 - Orientation error depends on sensor position only
- Approaches:
 - Look-up tables
 - Polynomial interpolation/approximation
 - B-spline volumes
 - Shape functions
 - Radial basis functions (Hardy's Multi-Quadric)

Lookup table

- Given:
 measured points and errors
- Resample into regular grid using Gauss kernel
 \[v_\theta = \sum_p v_pe^{\frac{\|P - Q_p\|^2}{\sigma^2}} \]
- Correction at run-time
 = trilinear interpolation
- Is the grid dense enough?
 Test: calculate correction vector for known measured points using trilinear interpolation, compare with the measured error vectors.
- Orientations: use quaternions and spherical linear interpolation
Polynomial approximation

- **Polynomial fit:**
 \[
 f(x, y, z) = \sum_{j=1}^{R} c_j x^{s_j} y^{t_j} z^{u_j}
 \]
 \[
 c_j \in \mathbb{R}^3, \quad 0 \leq s_j + t_j + u_j \leq r, \quad R = \frac{(r + 1)(r + 2)(r + 3)}{6}
 \]

- Minimize
 \[
 S = \sum_{j=1}^{N} \| e_j - f(P_j) \|
 \]
 by least squares method

- Rotations: exactly analogously with \(g(x, y, z) \)

Result (Ikits, Brederson, Hansen, Hollerbach):

- Position error as a function of distance
- Orientation error as a function of distance
Hardy's Multi-Quadric (HMQ)

Approach for translation

\[f : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \]

\[f(P) = \sum A_i \omega_i(P) , \quad A_i \in \mathbb{R}^3 \]

\[\omega_i(P) = \left[\left(P - P_i \right)^2 + R^2 \right]^{\mu} \]

"radial basis functions"

\[\mu_i = \frac{1}{2}, \frac{1}{4}, 2, \frac{1}{2}, 1 \]

plug in measured points

\[f(P_j) = Q_j , \quad j = 1, \ldots, N \]

yields 3 LES

\[
\begin{pmatrix}
\omega_1(P_1) & \cdots & \omega_N(P_1) \\
\vdots & \ddots & \vdots \\
\omega_1(P_N) & \cdots & \omega_N(P_N)
\end{pmatrix}
\begin{pmatrix}
A_1 \\
\vdots \\
A_N
\end{pmatrix}
=
\begin{pmatrix}
Q_1 \\
\vdots \\
Q_N
\end{pmatrix}
\]

- Orientation:
 - Should still correct, even in cave:
 - Vertical parallax
 - Hand tracking (virtual hand, pointer, ...)
 - Interpolation function \(g : \mathbb{R}^3 \rightarrow \mathbb{R}^6 \)
 - Calibration table contains measured ori \(M^0_p \) of "zero orientation"
 - To correct orientation \(M^\text{measured}_p \) at point \(P \) compute
 \[M^\text{correct}_p = M^0_p \cdot M^\text{measured}_p \]
 with
 \[M^0_p = g(P) \]
- Interpolation of orientations:
 - Quaternions $g : \mathbb{R}^3 \rightarrow \mathbb{R}^4$
 - 2 vectors $g : \mathbb{R}^3 \rightarrow \mathbb{R}^6$
 - Normalize $g(P)$

- The optimal R^2:
 - No theoretical results
 - My experience: [0.1,100] is good for enough points in 3D

Performance of HMQ:
- Model distortion by analytical functions
- Compute HMQ
- Plot error distribution of "distortion functions"
- Plot error after correction with HMQ
- More plots at http://web.informatik.uni-bonn.de/~zach/papers/diss.html
Advantages of HMQ

- Fast: ca. 0.5 millisec with 200 samples
- Arbitrary point clouds
 - Non-rectangular workspace
 (e.g., real mock-up plus VR display)
 - Semi-automatic calibration at run-time

Literature

- Carolina Cruz-Neira, Daniel J. Sandin and Thomas A. DeFanti: "Surround-screen projection-based virtual reality: the design and implementation of the CAVE", Siggraph '93, August 2 - 6, 1993, Anaheim, CA USA.
Introduction Error effects Error sources Tracking errors Correcting distortions

URLs

- http://web.informatik.uni-bonn.de/~zach/index.html
- http://web.informatik.uni-bonn.de/~zach/papers/diss.html
- http://www.ncsa.uiuc.edu/~kindr/emtc.html
- http://www.polhemus.com/
- http://www.ascension-tech.com/