
Self-Localization in Large-Scale Environments
for the Bremen Autonomous Wheelchair

Axel Lankenau, Thomas Röfer, Bernd Krieg-Brückner

Bremer Institut für Sichere Systeme, TZI, FB3, Universität Bremen,
Postfach 330440, 28334 Bremen, Germany.

alone@tzi.de, roefer@tzi.de, bkb@tzi.de

Abstract. This paper presents RouteLoc, a new approach for the abso-
lute self-localization of mobile robots in structured large-scale environ-
ments. As experimental platform, the Bremen Autonmous Wheelchair
“Rolland” is used on a 2,176m long journey across the campus of the
Universität Bremen. RouteLoc poses only very low requirements with re-
gard to sensor input, resources (memory, computing time), and a-priori
knowledge. The approach is based on a hybrid topological-metric repre-
sentation of the environment. It scales up very well, and is thus suitable
for self-localization of service robots in large-scale environments. The
evaluation of RouteLoc is done with a pure metric approach as reference
method. It compares scan-matching results of laser range finder data
with the position estimates of RouteLoc on a metric basis.

1 Introduction

1.1 Motivation

Future generations of service robots are going to be mobile in the first place.
Both, in classical application areas such as the cleaning of large buildings or
property surveillance, but especially in the context of rehabilitation robots, such
as intelligent wheelchairs, mobility will be a major characteristic of these devices.
After having shown that it is technically feasible to build these robots, additional
requirements will become more and more important. Examples of such demands
are the operability in common and unchanged environments, adaptability to user
needs, and low material costs. To satisfy these requirements, methods have to
be developed that solve the fundamental problems of service robot navigation
accordingly. Apart from planning, the primary component for successful naviga-
tion is self-localization: a robot has to know where it is before it can plan a path
to its goal.

Pursuing these considerations, a new self-localization approach was devel-
oped for the rehabilitation robot “Rolland” (see Fig. 1a and [12, 20]) within the
framework of the project Bremen Autonomous Wheelchair. The algorithm is
called RouteLoc and requires only minimal sensor equipment (odometry and two
sonar sensors), works in unchanged environments and provides a sufficient pre-
cision for a robust navigation in large building complexes and outdoor scenarios.

Thomas Röfer
Lankenau, A., Röfer, T., Krieg-Brückner, B. (2003). Self-Localization in Large-Scale Environments for the Bremen Autonomous Wheelchair. In: Freksa, C., Brauer, W., Habel, C., Wender K.F. (Hrsg.): Spatial Cognition III. Lecture Notes in Artificial Intelligence 2685. Berlin, Heidelberg: Springer, 34-61.

a) b)

Fig. 1. a) Bremen Autonomous Wheelchair “Rolland”. b) Route generalization [17].

1.2 The Bremen Autonomous Wheelchair

The Bremen Autonomous Wheelchair “Rolland” (cf. Fig. 1a) is based on the
commercial power wheelchair Genius 1.522 manufactured by the German com-
pany Meyra. The wheelchair is a non-holonomic vehicle that is driven by its front
axle and steered by its rear axle. The human operator controls the system with a
joystick. The wheelchair is equipped with a standard PC (Pentium III 600MHz,
128 MB RAM) for control and user-wheelchair interaction tasks, 27 sonar sen-
sors, and a laser range sensor behind the seat. The SICK laser range finder has
an opening angle of 180◦ toward the backside of the wheelchair and is able to
deliver 361 distance measurements every 30 ms. The original Meyra wheelchair
already provides two serial ports that allow to set target values for the speed and
the steering angle as well as determining their actual values. Data acquired via
this interface is used for dead reckoning. The odometry system based on these
measurements is not very precise, i.e. it performs well in reckoning distances but
it is weak in tracking angular changes. A modular hardware and software archi-
tecture based on the real-time operating system QNX allows for the adaptation
to an individual user [21]. At the moment, the two main applications already
implemented are the Driving Assistant and the Route Assistant [12].

2 Modeling Locomotion and Environment

Self-localization of robots is usually done by matching the robot’s situation, i. e.
the current (and maybe also the past) sensor impressions and its locomotion,
with a representation of its environment, e. g. a map. For a successful match-
ing, it is indispensable that the models for both, the robot’s situation and the
environment, are comparable. The following two sections present the situation
model and the environment model chosen for RouteLoc.

2.1 Situation Model

Röfer [17] introduces an incremental generalization of traveled tracks. The idea
is to generalize the locomotion of the traveling robot during runtime to an ab-

stract route description. Such a description represents the route as a sequence
of straight segments that intersect under certain angles. Since natural minor de-
viations occurring while traveling are abstracted away this way, the generalized
description of the robot’s route from its starting point to its current location is
an adequate situation model.

Specifiying abstract route descriptions. Fig. 1b shows the locomotion of
the robot as recorded by its odometry system as a solid curved line. The corners
recognized by the generalization algorithm are depicted as circles. The rectangu-
lar boxes represent the so-called acceptance areas: As long as the robot remains
within such a region, it is assumed that the robot is still located in the same
corridor. The width of the rectangular boxes is determined with the help of a
histogram-based approach from the measurements of two sonar sensors mounted
on the wheelchair’s left- and right-hand side chassis [17]. Note there may be other
generalization algorithms that do not rely on external sensor input.

As a result, the generalization R of the route traveled so far is defined as a
sequence of corners as follows:

R = 〈ci〉, where ci = (ρi, li), i ∈ {0, . . . , n} (1)

In contrast to the concept “cornerc” proposed by Eschenbach et al. [6], the
length of the incoming segment of a corner is not considered here. In (1), ρi is
the rotation angle between the incoming and the outgoing segment of a corner in
a “local frame of reference”, i. e., ρi describes the relative change in orientation
when passing corner ci. As an example, consider the almost rectangular corner
c1 in the lower left part of Fig. 1b (c0 is the “virtual” starting corner): ρ1 is
about 86◦, because the robot has to turn about 86◦ to the left when changing
corridors at corner c1. Note that ρ0 is a “don’t care” value, i. e. only the outgoing
segment of the first corner is considered, whereas the angle is ignored. The second
parameter of a corner as specified in (1) is the length li of the outgoing segment.

Incremental generalization of route descriptions. Since the situation of
the robot has to be known while it travels, the route generalization must be
carried out incrementally and in real-time. Röfer’s approach satisfies both re-
quirements. Nevertheless, the incremental generalization has the drawback that
it has to partially rely on uncertain knowledge: the distance ln already traveled
in the so far final segment as well as the angle ρn to the previous segment may
change during runtime depending on the locomotion of the robot. The informa-
tion about cn is volatile and not fixed before a new final corner cn+1 is detected.
This is illustrated in Fig. 2: The upper row of the figure shows three different
snapshots of a single trajectory driven by the robot. The respective current lo-
cation of the robot is indicated by the arrow. Even though this is only a sketch,
it is reasonable to expect a similar odometry recording when the robot travels in
a straight corridor, turns right after some time and turns left some time later. In
the lower row, the corresponding generalizations are shown: In Fig. 2a, no corner

a) b) c)

Fig. 2. Fixing of the penultimate corner during the incremental generalization.

has been detected so far, the traveled path completely fits into the imaginary
corridor defined by the acceptance area of the segment depicted as a dashed line.
In Fig. 2b, the robot has conducted a right turn and seems already to perform a
new turn to the left. Nevertheless, it is only then that the robot leaves the accep-
tance area of the first segment. As a result, the generalization algorithm sets up
a new—so far final—corner (indicated by the grey circle) and a new—also so far
final—segment (indicated by the dashed line). Simultaneously, the parameters
of the first corner c0 (marked by the black circle) are fixed. Since it is the first
corner, the angle is irrelevant; but the length of the outgoing segment is known
now. In Fig. 2c, the robot has moved further and has left the acceptance area of
the second route segment, resulting in the generation of another new segment.
The generalization algorithm positions the third corner and fixes the parameters
of c1: The rotation angle from the first to the second segment and the distance
between c1 and c2.

The abstraction resulting from this generalization method turns out to be
very robust with regard to temporary obstacles and minor changes in the envi-
ronment. Nevertheless, it is only helpful, if the routes are driven in a network
of corridors or the like. Fortunately, almost all larger buildings such as hospi-
tals, administration or office buildings consist of a network of hallways. In such
environments, the presented algorithm works robustly.

2.2 Environment Model

In order to localize a robot within a representation of the environment such as
a map, the model used for describing the current situation of the robot must be
compatible to the model used for the description of the robot’s environment, and
it should be appropriate for the intended application scenario of the robot. Devel-
oping service robots, especially rehabilitation robots, usually means to develop
low cost devices. Therefore, the equipment used for self-localization should be as
sparse as possible. Nevertheless, mobile service robots such as cleaning robots,
surveillance robots, and smart wheelchairs often have to cover a large operation
space. That means that the self-localization approach must be able to work in
large-scale environments such as complex buildings, university campuses or hos-
pital areas. Especially in the context of rehabilitation robots the environment
cannot easily be changed, e. g., by mounting artificial landmarks or beacons at

a) b)

Fig. 3. a) Sketch of a floor. b) Corresponding route graph.

decision points, because they are often part of public buildings. Furthermore, en-
vironment changes are very expensive. As a consequence, an approach is needed
that requires only minimal sensor equipment, works in unchanged environments,
that is able to operate reliably in large-scale scenarios.

Taking into account these aspects, a topological map that is enhanced with
certain metric information appears to be an adequate representation of the envi-
ronment in this context. Adapted from [29], such an environment model will be
referred to as route graph. In the following, the nodes of a route graph correspond
to decision points in the real world (or places as called by [29]): hallway corners,
junctions or crossings. The edges of a route graph represent straight corridors
that connect the decision points. In addition to the topological information, the
route graph contains (geo-)metric data about the length of the corridors as well
as about the rotation angles between the corridors. For example, Fig. 3a shows
a sketch of the second floor of the MZH building of the Universität Bremen. The
corresponding route graph is depicted in Fig. 3b. It consists of 22 nodes (decision
points) and 25 edges (corridors) connecting them.

Since the route graph (environment model) has to be matched with route
generalizations (situation model), it is advantageous not to implement the graph
as a set of nodes that are connected by the edges, but as a set of so-called
junctions:

Definition 1 (Junction). A junction j is a 5-tuple

j := (H,T, γ, o, I)

where H (“home” of the junction j) and T (“target” of j) are graph nodes
that are connected by a straight corridor of length o. The set I consists of all
incoming junctions j′i that lead to j, i. e., I = {(H ′,H, γ′, o′, I ′)}. The function
incomings(j) selects the incoming junctions of j, i. e., incomings(j) = I. The
signed angle γ is the rotation angle between the prolongation of an outgoing
segment of some j′i to the outgoing segment of junction j, i. e. it denotes by
how many degrees it has to be turned to travel through j. For left turns, γ is
positive; for right turns, γ is negative; γ = 0 means that j is a so-called “straight
junction”, e. g. the T-bar of a T-junction (cf. Fig. 4).

γ

I

o TH

Fig. 4. Junction in a part of the route graph.

Note that outgoing segments of junctions are directed, i. e. junctions are one-
way connections between route graph nodes. As shown in Sect. 3.1, the corners
of a route generalization are compatible with the junctions of the route graph
in that they can be matched and assigned with a real number representing a
similarity measure.

Based on definition 1, a route graph G is the set of all junctions:

Definition 2 (Route Graph). A route graph G is a set of all junctions that
are connected:

G = {j = (H,T, γ, o, I)|∃j′ ∈ G : j′ 6= j ∧ j′ ∈ incomings(j)}

While the representation of the environment as a route graph is formally
similar to Voronöı diagrams as recently used, e.g., by Thrun [24], Zwynsvoorde
et al. [30, 31], and Choset [3], the localization approach presented here is not
only applicable in sensory-rich (indoor) environments but also in pure outdoor
or hybrid scenarios such as the campus example presented below. This is because
the generalization of the robot’s locomotion is used as reference information for
the localization. Thus, RouteLoc does not have to rely on input from proximity
sensors as it is necessary for the Voronöı diagram based approaches (a Voronöı
diagram is defined on the basis of the sensor-perceived distance of the robot to
objects in its environment).

In contrast to metric (grid-based) representations, the route graph is much
easier to handle with respect to the required amount of computing time and
memory. For example, the campus environment used for experiments in the
results section (see Sect. 6 and Fig. 12a) is coded as a list of only 144 junctions
(see Fig. 13b). The complexity of RouteLoc is linear in the number of junctions
in the route graph. Therefore, it is important to note that covering a larger area
with the route graph does not necessarily mean an increase in junctions. Instead,
the critical question is, how many decision points are there in the environment.

3 RouteLoc: an Overview

This section is meant to explain how generalized route descriptions as situation
model and a route graph as environment model are used for the absolute self-
localization of a mobile robot in large-scale environments. First, a sketch of
RouteLoc is presented to explain the basics of the algorithm. The simplifying
assumptions made here for clarity purposes are then dropped in the detailed
description of the algorithm in Sect. 4.

The basic idea of the self-localization approach is to match the incremen-
tal generalization of the currently traveled route with the route graph. This
matching process provides a hypothesis about the robot’s current position in
its environment: RouteLoc ongoingly determines the hallway (represented by an
edge in the route graph), in which the robot is most likely located at that very
moment in time. Since the distance already traveled in the hallway is also known,
an additional offset can be derived. As a result, the position of the robot within
the hallway is found precise enough for most global navigation tasks. The pre-
cision is limited by about half of the width of the corridor the robot is located
in, as is shown in Sect. 3.3.

3.1 Matching Route and Route Graph

Due to the dualism between a junction in the route graph and a corner in the
generalized route, the chosen situation model and the environment model are
compatible. Thus, self-localizing a robot by matching a generalized route with a
route graph should in principle be straightforward. Nevertheless, there are some
pitfalls that have to be paid attention for.

Since the algorithm has to deal with real data, there are almost no “perfect
matches”. That means, that even if the robot turned by exactly 90◦ at a crossing,
the angle of this corner as calculated by the route generalization will almost
certainly differ from 90◦. This is mainly due to odometry errors. On the other
hand, two corridors that meet in a perfect right angle in the route graph may
well include an angle of only 89.75◦ in reality. These uncertainties have to be
coped with adequately.

A second topic worth considering is the complexity of the matching process:
At least in theory, a route can consist of arbitrarily many corners. Therefore,
matching the whole generalized route with the route graph in each computation
step is not feasible, because—at least in theory—this would require an arbitrarily
long period of computing time. A solution to this problem is presented in the
following subsections.

Within this section, it is assumed that every corner existing in reality is
detected by the generalization algorithm and that every corner detected by the
generalization algorithm is existing in reality. As mentioned earlier, this assump-
tion is simplistic and unrealistic. Nevertheless, it is reasonable here in order to
simplify the explanation of the basic structure of RouteLoc. The details of the
algorithm are thoroughly discussed in Sect. 4.1.

a) b) c)

Fig. 5. Direct match of route corner and route graph junction. a) Odometry recorded.
b) Corresponding route generalization. c) Matching junction in the route graph.

Direct Match of Route Corner and Graph Junction. If there are only
two corners in the route, i. e. R = 〈c0, c1〉 (the “don’t care” corner c0 and the
first “real” corner c1), a direct match of c1 and some junction j in the route
graph is possible (cf. Fig. 5). As mentioned above, a binary decision of whether
or not c1 and j match is not adequate in this situation. Thus, a probabilistic
similarity measure is introduced that describes the degree of similarity between
the route corner and the junction as a real number between 0 and 1. For the
route R = 〈c0, c1〉 this value represents the probability that the robot is located
in j.

The similarity measure md for the direct match of a route corner c with a
route graph junction j is defined as

md(c, j) = sl(c, j) · sα(c, j) (2)

In (2), the similarity sl of the lengths of the outgoing segment of j and of the
route segment of c, is defined as sl(c, j) with

sl(c, j) = sig

(
1− |lc − dj |

dj

)
(3)

In (3), lc is the length of the outgoing route segment of c; dj is the length of the
outgoing corridor of junction j. The longer the corridor, the larger the deviation
may be for a constant similarity measure.

The similarity of the corresponding rotation angles, sα(c, j), is defined as

sα(c, j) = sig

(
1− ||γj − ρc||

π

)
(4)

In (4), γj is the rotation angle between the two segments of junction j, and
ρc is the rotation angle of the final route corner c. Note that the result of this
subtraction is always shifted into the interval [0, . . . , π], as indicated by the || . . . ||
notation. Please also note that these equations will be refined in the following
in order to cover some special cases that will be introduced below.

In (3) and (4), the sigmoid function sig is used to map the deviations in
length and in rotation angle into the intended range. The idea is to tolerate
small deviations with respect to the corridors’ length or the angles, respectively,
whereas large deviations lead to only small similarity values.

If the route R only comprises one corner (the “don’t care corner”), i. e.,
R = 〈c0〉, the angle is ignored, because it is the initial rotation angle that has
no meaning (cf. Sect. 2.1), thus sα(c0, j) = 1. Therefore, the only remaining
criterion for a direct match are the segments’ lengths, thus md(c, j) = sl(c, j) in
this case.

Induction Step. After having defined the direct matching for single-corner
routes, the similarity measure has to be extended to longer routes. When a
route R = 〈c0, . . . , cn〉 with n > 1 is to be matched with a junction j, it has to
be found out, whether there is a direct match between corner cn and junction j,
and whether there is one between cn−1 and some j′ with j′ ∈ incomings(j), and
whether there is one between cn−2 and some j′′ with j′′ ∈ incomings(j′), and so
on. If so, a sequence of junctions of the route graph is found the whole route R
can be matched with.

Thus, the matching quality of a complete route R with respect to a specific
route graph junction j is defined as follows:

Definition 3 (Matching Quality). Given a route R = 〈c0, . . . , cn〉 with n ≥ 0
and a junction j of the route graph G (j ∈ G), the matching quality m(R, j) of
R with respect to j is defined as

m(R, j) = max

{
n∏

i=0

md(ci, ji)
∣∣∣∣ ∃〈j0, . . . , jn〉 : j = jn ∧ jk−1 ∈ incomings(jk)

}
(5)

The definition states that every possible sequence of length n + 1 of route
graph junctions is considered that fulfills two requirements: the final junction
of the sequence must be j and the sequence must be “traversable”, i. e., the
k-th junction in the sequence must be an incoming junction of the (k + 1)-st
junction of the sequence. As such a sequence consists of as many junctions as
there are route corners, the matching quality can be determined by calculating
the product of the direct matching qualities of the sequence junctions and the
corresponding route corners. The overall matching quality of the route R and
junction j is the maximum of all these products.

The number of such sequences grows exponentially with the length of the
route and with the number of junctions in the route graph. Therefore, defin-
ing equation (5) is inadequate for a real-time capable localization approach.
Fortunately, there is a workaround that dramatically reduces the complexity
of calculating the matching quality: following the idea of the incremental route
generalization, the matching quality can be defined inductively. In order to deter-
mine m(〈c0, . . . , cn〉, j), it is sufficient to know md(cn, j) and m(〈c0, . . . , cn−1〉, j′)

a) b) c) d) e)

Fig. 6. Matching of route generalization and route graph.

with j′ ∈ incomings(j). As a result, the defining equation (5) can be refined to

m(〈c0〉, j) =md(c0, j) , n = 0
m(〈c0, . . . , cn〉, j) =md(cn, j) ·maxj′∈incomings(j) m(〈c0, . . . , cn−1〉, j′) , n > 0

(6)
Calculating this recursion in every step is still impractical because it depends on
the length of the route. Fortunately, the recursive function call can be avoided,
if each junction is assigned with the probability value for having been in one of
its incoming junctions before.

By applying definition 3 to the current route and every route graph junction,
the junctions are assigned with a matching quality. The maximum of all the
matching qualities provides a hypothesis which junction most likely hosts the
robot. This junction is called candidate junction jc for a route R.

jc(R) = argmaxj∈G{m(R, j)} (7)

Figure 6 presents a step-by-step visualization of the localization process: In the
initial situation, no information about the robot’s potential location is available.
Therefore, every junction in the graph can host the robot with the same likeli-
hood. This is indicated by the edges underlined in grey in the route graph that is
shown in the upper row of the figure. After the robot traveled some distance in a
corridor (cf. Fig. 6b), three edges in the graph are identified in which the robot
cannot be located. The route segment just traveled is longer than the corridors
represented by these edges. After completing the first turn (90◦ to the left, see
Fig. 6c), basically only three possibilities remain: Either the robot started in a
corridor that is represented by one of the two facing edges depicted vertically
in the lower part of the route graph or it started horizontally and its location
is in the upper part of the graph afterwards. In Fig. 6d, another left turn yields
no new information and thus no reduction of the possible robot locations. As

a) b) c) d)

Fig. 7. Propagation of probabilities.

shown in Fig. 6e, the situation clarifies after the following turn: the location of
the robot is determined by figuring out a unique candidate junction.

3.2 Propagation

In the previous subsection, it has been motivated that it is necessary to store
the probability that the robot was in the incoming segment of a junction before
detecting the last corner. But this information has to be transferred to other
junctions when a corner in the route is detected by the generalization algorithm.
After each corner detection, each junction is assigned with the maximum of the
matching qualities of its incoming junctions, as discussed in Sect. 3.1:

min(j) = max
j′∈incomings(j)

m(〈c0, . . . , cn−1〉, j′) (8)

Figure 7 shows four snapshots of a route traveled in a triangular environment.
The upper part of each column shows the generalized trajectory as recorded
by the robot. The arrow indicates the current position. The lower part of each
snapshot depicts a route graph that consists of six junctions. Each junction
is assigned with two probability values, depicted as partly filled columns. The
left column (dark grey filled) indicates the direct matching quality of the final
route corner with this junction. The right column (light grey filled) describes
the probability of having been in the incoming segment of this junction before.
A completely filled column stands for a 100% match, completely empty means
something below 10% (but more than 0%). The arrows above the probability
columns indicate the junction, e. g. the columns in the lower left corner of the
route graph belong to the junction that leads from the left corridor to the lower
corridor with a rotation angle of about 120◦. From figure 7b to 7c, dotted arrows
indicate the propagation.

3.3 Estimating the Robot’s Position

Knowing the candidate junction and the offset already traveled in its outgoing
segment enables RouteLoc to estimate a metric position of the form “The position

a) b) c) d)

Fig. 8. “Generalization delay” when turning from one corridor to another.

is x cm in the corridor that leads from decision point A to decision point B.” One
could argue that this metric information is superfluous for the user or for higher
level navigation modules, because the corridors between the decision points are
by nature free from decisions such as turning to a neighboring corridor. Thus,
no detailed information about the robot’s location between the decision points
should be required. Nevertheless, the metric information is indispensable for two
reasons: First, not every location that is important for the robot’s task can be
modeled as a decision point. Consider, e. g., some cupboard a wheelchair driver
has to visit in a corridor. Second, when traveling autonomously, the robot often
has to start actions or local maneuvers in time, i. e. they have to be initiated
at a certain place in the corridor, maybe well before the relevant decision point
can be perceived by the robot. This would be impossible without the metric
information.

The rest of this section discusses some aspects that are relevant for a suc-
cessful position estimate.

Ambiguous environment. In some situations, the structure of the environ-
ment could turn out to be inadequate to this route-localization approach in its
current version. In a square environment, for instance, the algorithm will fail,
because every junction remains equally likely to host the robot even if the robot
moves through the corridors. This problem of perceiving different places as if
they were the same is commonly referred to as perceptual aliasing. When trav-
eling in the square environment, four position estimates that are equally likely
would be favored, no decision for a specific corridor would be possible.

Similarly, in a straight corridor, the algorithm is almost lost, because it has
no means to infer where the robot started. Nevertheless, the longer the robot
moves along the corridor, the less estimates are valid, simply due to the length of
the trajectory already traveled. But even, if the robot traveled a straight route
segment of about the corridor’s length, the algorithm still would generate two
hypotheses about the robot’s position, one at each end of the corridor.

“Generalization delay” when changing corridors. Due to the nature of
the generalization algorithm, there exists a certain delay before the change of
corridors can be detected. For example, in Fig. 8a, the generalization (depicted
as a thin black line; the arrow indicates the current position) of the traveled

route is correctly matched with the route graph. The highlighted junction is
the candidate junction, resulting in a position estimate which is indicated by
the cross. The estimated position differs only slightly from the real position
(cf. the paragraph on precision below). In Fig. 8b, the robot almost reached
the T-junction. The localization is still correct. In Fig. 8c, the robot already
changed corridors by taking the junction to the right. But the generalization
algorithm has not yet been able to detect this, because it still can construct
an “acceptance area” for the current robot position within the same corridor as
before. Therefore, it assumes that the robot passed the T-junction and estimates
the robot’s position to be in the junction that forms a straight prolongation to
the former one. It is not until the robot has traveled some more distance before
the generalization algorithm detects the corner (see Fig. 8d). Then, the position
estimate is immediately corrected and a precise hypothesis is set up.

Precision of the position estimate. Because of the modeling of the environ-
ment and the robot’s locomotion, the algorithm is rather insensitive to odometry
errors (see Fig. 12b). The offsets normally represent only short distances that
result from accumulating straight movements, and almost no rotational motion
which often causes dead reckoning errors. Nevertheless, the precision of the al-
gorithm is limited to half the width of the current corridor at right angles to
the robot’s driving direction and half the width of the previous corridor in the
robot’s driving direction (see Fig. 9). The error could be even bigger, if the route
graph is not correctly embedded in the center of the corridors, as it should be.
Note that errors do not accumulate across junctions, but within longer junctions
odometry errors may become significant.

The precision does explicitly not depend on the length of the traveled route,
as every matching of a route corner to a graph junction once again limits the
error. Nevertheless, the quality of the position estimate depends on the “quality”
of the environment. The results of the experiments presented in Sect. 6 confirm
this point of view.

4 Inside RouteLoc: a Deeper Insight

Section 3 uses the unrealistic assumption that the route generalization algorithm
creates a new corner for every decision point (junction) the robot passes, and—
vice versa—that every generated corner has its counterpart in the route graph
and in the real world. This is too optimistic, as is shown below. Section 4.1 copes
with this problem and presents a general solution that requires no restrictive
assumptions.

Right at the beginning of a robot journey, a few special cases have to be
paid attention to: If the robot did not start its travel at a decision point but
within a corridor, the standard matching process as described above does not
work as fast as it could. Furthermore, a route with no real corner detected so far
requires some special attention during the matching process. This is discussed
in Sect. 4.2.

a) b)

Fig. 9. Precision of the position estimate. a) Entering a narrow corridor from a wide
one. b) Vice versa.

Another assumption made in Sect. 3 is that the robot can only change its
general driving direction at decision points. This is a straightforward inference
from the definition of decision points (junctions) and corridors connecting these
decision points. But, there is a decision the robot can make anywhere, not only
at decision points: turning around. Since the route graph junctions are directed,
such a turning maneuver implies that the robot leaves the current junction. But
unfortunately, it does not end in another junction represented in the route graph,
because such turning junctions are not available in the route graph. Section 4.3
describes the handling of turning around within corridors.

4.1 On Phantom Corners and Missed Junctions

While the robot travels, the self-localization algorithm is expected to ongoingly
present a hypothesis about the robot’s current position. This hypothesis is to be
updated in regular intervals. In the experiments presented in the results section
6, an update interval of 20cm travel distance has been used. In every update
step, the route generalization algorithm checks whether a new corridor has been
entered and updates the route description accordingly. Afterwards, the matching
process is carried out which leads to a position estimate, as discussed in Sect. 3.3.

In every update step, four different situations can occur with respect to de-
tected or undetected route corners, and to existing or not existing junctions in
the route graph:

1. There is no junction in reality and the generalization algorithm correctly
detects no route corner (see Fig. 10a). This is the normal case because most
of the time the robot moves through corridors.

2. There is a junction in reality and the generalization algorithm correctly
detects a corresponding route corner (see Fig. 10b). This was the assumption
in the previous section.

3. There is no junction in reality even though the generalization algorithm
detects a route corner, a so-called phantom corner (see Fig. 10c). Unfor-
tunately, this case is not that rare, because due to odometry drift, long
corridors are often generalized to more than one segment.

4. There is a junction in reality but the route generalization algorithm does
not detect a corresponding route corner (see Fig. 10d). This is the problem

a) b) c) d)

Fig. 10. Special cases handled by RouteLoc.

of missed junctions which is not a flaw of the route generalization algorithm
but a result of the spartan sensor use of the approach. Nevertheless, the
self-localization algorithm is able to handle it.

The correct handling of these four situations is fundamental for the algorithm.
They are discussed in the following sections.

There is no Junction and no Corner is Detected. In Fig. 10a, the standard
situation is illustrated: the robot moves within a corridor, no junction in its
surroundings, and the route generalization algorithm correctly infers that the
robot did not change corridors, but still travels in the same corridor as one step
before. In this case, the matching process can be carried out as described in
Sect. 3. There is only one restriction: the definition of the similarity measure in
(3) assumes that the final length of the route segment to be matched with the
junction’s outgoing segment is already known. As mentioned above, this is not
the case for the currently final segment of the route traveled so far. Therefore,
the calculation of the similarity measure sl(c, j) for the lengths of the final route
corner c and a junction j has to be changed in this case to

sl(c, j) =

{
1 , lc ≤ dj ∧ c = cn

sig
(
1− lc−dj

dj

)
, otherwise (9)

In (9), lc is the length of the route segment of corner c; dj is the length of the
outgoing corridor of junction j. In contrast to the original definition in (3), the
similarity is set to 100% not only if the lengths are equal, but also if the final
route segment is shorter than the junction segment. This is no surprise, as it is a
preliminary match and the currently available information about the final route
segment indicates that it matches the route graph junction. Only if lc happens
to be larger than dj , the similarity measure drops below 100%. Note that (9)
replaces (3) as definition of the similarity measure with respect to the segments’
lengths.

As long as no corner is detected, there is no need for propagating the prob-
abilities to adjacent junctions. Thus, the similarity values for each junction are
only adapted to the current route generalization. Nevertheless, the case of missed
junctions has to be kept in mind (see below).

There is a Junction and a Corner is Detected. In some situations, the
route generalization algorithm detects corners in the route, as shown in Fig. 10b.
If there exists a corresponding junction in the route graph, the matching as de-
scribed in Sect. 3 will be successful. Note that detecting a new corner in the route
fixes the then penultimate corner in its angle and length components. Therefore,
the matching is a three-step process in this case: first, the new penultimate cor-
ner is matched according to the rules described in Sect. 3.1 and the similarity
measure just defined in (9). Second, the probabilities are propagated to the ad-
jacent junctions as discussed in Sect. 3.2. And third, the new final corner is
matched as a non-fixed corner according to (9).

There is no Junction, but a Corner is Detected. Unfortunately, this case
is not as rare as one could expect. As depicted in Fig. 10c, the motion track as
recorded by the robot’s odometry can significantly deviate from a straight line
even if the robot drives in a straight corridor. Especially in very long corridors,
the odometry tends to be inaccurate. As an example, consider Fig. 12b that de-
picts the generalized motion track that has been recorded during experiments on
the campus of the Universität Bremen. In the upper left part of the figure, the
main boulevard of the campus, which is straight and about 300m long, is parti-
tioned into several segments. This is because the odometry recorded the straight
boulevard as a crescent-shaped curve. The erroneously detected “phantom cor-
ners” between the segments are a problem for the self-localization algorithm
because the probability values have to be propagated through the graph after
every route corner detection (see the section on propagation 3.2). If, however,
such a detected route corner is a phantom corner, the propagation will be an
error.

Therefore, when detecting a corner, the self-localization algorithm has to
decide whether it is a corner with a corresponding junction in the route graph,
or whether it is a “phantom corner” that results from bad odometry data. As if
this were not enough, this decision cannot be made until the information about
the route corner is fix. That means, the decision of whether or not a corner is
believed to be either real or phantom can only be made with respect to the
penultimate, already fixed, corner in the generalized route.

These considerations suggest to pursue two instead of one hypotheses for
each junction (see Fig. 11): The first describes how probable it is that the robot
is in the outgoing segment of the junction and has been in the incoming segment
before the final corner has been detected (i. e., the final route corner is real ; see
Fig. 11c). The second hypothesis describes the probability that the robot is in
the outgoing segment of the junction and has already been there before the final
corner has been detected (i. e., the final corner is phantom; see Fig. 11d).

As a result, two similarity measures for the two hypotheses have to be defined:
The similarity measure that assumes the final route corner to be a real corner
is identical to md as defined in (2). It is renamed to mr

d here. The similarity
measure that assumes the final route corner to be a phantom corner is called

c)

a) b)

d)

Fig. 11. Real and Phantom route corners. a) Generalized route before detection of the
corner. b) After detection. c) Real corner. d) Phantom corner.

mp
d. It uses (9) as measure for the similarity of the segments’ lengths, but a

different definition sp
α of the rotation angle similarity:

sp
α(c, j) = sig

(
1− ρc

π

)
(10)

In (10), the rotation angle ρc of the route corner is compared to 0◦, instead of
to the junction angle as in (4). As a result, the matching probability is close
to 100% for very small angles (i. e., detected route corners with a small angle
are likely to be phantom corners) and low for significant angles (i. e., detected
route corners with an angle of, say, 90◦ are expected to be real corners with high
probability).

The two hypotheses are always considered in parallel, i. e., there are two
probabilities for a junction to host the robot: One of them assumes that the
final route corner is a real corner, which means that the robot has been in the
incoming segment of the junction before the corner has been detected. The other
one assumes that the final corner is a phantom corner, which means that the
robot has already been in the outgoing segment of the junction before the corner
has been detected. As a result, there also exist two matching qualities mr(R, j)
(assuming final corner of R is real) and mp(R, j) (assuming the final corner of
R to be phantom).

When a new final corner is detected in the route, the propagation process
copies the superior hypothesis to the adjacent junction. At that time, a decision
can be made about whether the real or the phantom probability is the “correct”
one, because the corner is fixed in length and rotation angle.

The overall probability of the junction (i. e. the matching quality) is then
calculated as the maximum of both hypotheses:

m(R, j) = max{mr(R, j),mp(R, j)} (11)

There is a Junction, but no Corner is Detected. It is possible that a
corner existing in reality has been passed and has not (yet) been detected by

the generalization algorithm. As a consequence, the resulting change of corri-
dors is not recognized (missed junction). Usually, this cannot be blamed on the
generalization but on the fact that—based only on the locomotion data—one
cannot distinguish traveling in a straight corridor with no junctions or crossings
from traveling in a straight corridor passing several T-junctions. Therefore, the
self-localization algorithm has to solve this problem. In every step, it is checked,
whether the outgoing segment of the final route corner cn is longer than the
outgoing segment of the currently considered route graph junction j. If so, it is
likely that this route segment is an overlap from a previous junction that leads
to j. Note that not only straight predecessors of j (i. e. those that form a 0◦

angle with j) have to be considered here. Every incoming segment of j could
have “hosted” the initial part of the route segment of corner cn. Especially in
long corridors with lots of crossings, it often happens that these overlaps stretch
over more than one junction.

Due to these considerations, it is always calculated how far the final route
segment extends into the outgoing segment of the currently considered junction.
This may significantly differ from the length of the final route segment. That
is why it is a simplification to use the length lc of the route segment in (3).
Instead, in all equations for the similarity measure ((3), (9)), the distance l+c
already traveled in the segment has to be used instead of the length of the so
far final route segment lc (cf. Sect. 4.4).

4.2 Initial Phase Specialities

After solving the phantom corner and missed junction problems in Sect. 4.1,
there are two special cases with respect to the early phases of a robot journey
that are to be covered by the algorithm, but have not been addressed yet:

– Matching a route R = 〈co〉 that comprises only the initial corner with the
route graph

– Starting the robot’s journey not at a decision point but somewhere in the
middle of a corridor.

These two topics are discussed in the following two paragraphs.

Before the first corner was detected. As discussed in Sect. 2.1, the rotation
angle of the initial route corner c0 is special in that it is a “don’t care” value.
Even stronger, it may never be used during the matching process, because it has
no meaning: it describes the rotation angle between the first route segment and
an imaginary but not existing “zeroth” route segment. Therefore, the matching
process has to be carried out slightly different as long as no real route corner
has been detected. The implementation of this requirement is straightforwardly
achieved by a further extension to the similarity measure calculation previously
shown in (3) and refined in (9). The equation that includes the ”before the first

corner” case looks as follows for the assumption that cn is a real corner:

sr
α(c, j) =

{
1 , c = c0

sig
(
1− ||γj−ρc||

π

)
, otherwise (12)

and for the assumption that cn is phantom:

sp
α(c, j) =

{
1 , c = c0

sig
(
1− ρc

π

)
, otherwise (13)

where c0 is the initial corner of the route.

Starting in the middle of a corridor. The basic idea of the whole approach
is that detected route corners can be identified with certain junctions in the
route graph. Then, the similarity measures deliver an adequate means to decide
about the matching quality. However, at the very beginning of a robot journey, a
situation may occur, where the robot does not start at a place in the real world
that is represented by a route graph node. Instead, the starting position could
be located somewhere in a corridor in the middle between two decision points.
If the robot reached the first adjacent junction, detected a corner, and matched
the route with the graph, the length of the driven segment would be significantly
too short in comparison with the junction’s outgoing segment (because the robot
started in the middle). Nevertheless, the route segment perfectly fits into the
route graph. Thus, for the first route segment, it must be allowed that it is
shorter than the junction’s outgoing segment without loss of matching quality.
Once again, the equations for the similarity measures are refined to:

sr
l (c, j) =

{
1 , l+c ≤ dj ∧ c ∈ {c0, cn}

sig
(
1− l+c −dj

dj

)
, otherwise (14)

sp
l (c, j) =

{
1 , l+c ≤ dj ∧ c ∈ {c1, cn}

sig
(
1− l+c −dj

dj

)
, otherwise (15)

4.3 Turning Around Within a Corridor

Nonholonomic vehicles such as the Bremen Autonomous Wheelchair “Rolland”
are not able to move in arbitrary directions but they are restricted to bias bear-
ings such as forwards and backwards instead. As a consequence, nonholonomic
robots are not able to turn on the spot without shunting. Especially for the wheel-
chair, there are some corridors that are too narrow to turn at all. Therefore, it
is fundamental to know the orientation of the wheelchair within a corridor. This
is solved by modeling the corridors as one-way junctions, where the orientation
is inherently known (see Sect. 2.2 on route graphs). If the robot turns around in
a corridor, it leaves its current junction. But—by definition—leaving a junction
means to enter another junction. Unfortunately, there are no junctions in the
route graph that connect the two directions of a corridor.

An additional problem is that a turning maneuver can be carried out at
any position within the hallway. In contrast to that, leaving the corridor is only
possible at junctions.

To overcome these problems in order the able to handle turns, the set of
junctions that initially form the route graph G is extended by so-called “turn-
junctions” at program start as shown:

G′ = G ∪
{(

H,T, π, |HT |, I
)
|H,T ∈ G, I ⊆ G,∀i ∈ I : i = (T,H, π, |TH|, I ′)

}
(16)

In (16), for each junction ji in the initial route graph G, all turn-junctions T that
can be generated for ji are added to G. As an example, consider the route graph
depicted in Fig. 13b that is used for the experiments presented in Sect. 6. The
144 junctions of this route graph require an additional set of 102 turn-junctions.
The upper bound of the number of required turn-junctions for a route graph
with n “real” junctions is 2n. In typical environments, however, it often happens
that two or more junctions share one turn-junction, e. g. junctions cdh and kdh
in Fig. 13b both need the turn-junction dhd. The incoming and the outgoing
segment of these turn-junctions represent the same hallway (forwards and back-
wards direction) and have a rotation angle of 180◦. After having generated the
turn-junctions at program start, they are dealt with as if they were “normal”
junctions in the sequel. The only exception is that the deviation of the length
is ignored when calculating the matching quality of a generalized route corner
with such a turn-junction (undershooting is granted for turn-junctions).

4.4 Similarity Measures (final revision)

This section recapitulates the defining equations for the similarity measures in-
cluding all special cases:

mr
d(c, j) = sr

l (c, j) · sr
α(c, j) (17)

mp
d(c, j) = sp

l (c, j) · s
p
α(c, j) (18)

sr
l (c, j) =

{
1 , l+c ≤ dj ∧ (c ∈ {c0, cn} ∨ isTurn(j))

sig
(
1− l+c −dj

dj

)
, otherwise (19)

sp
l (c, j) =

{
1 , l+c ≤ dj ∧ (c ∈ {c1, cn} ∨ isTurn(j))

sig
(
1− l+c −dj

dj

)
, otherwise (20)

sr
α(c, j) =

{
1 , c = c0

sig
(
1− ||γj−ρc||

π

)
, otherwise (21)

sp
α(c, j) =

{
1 , c = c0

sig
(
1− ρc

π

)
, otherwise (22)

5 Related Work

The following subsection gives a brief overview about mobile robot self-localiza-
tion. In Sect. 5.2, RouteLoc is compared to prominent approaches and set in
relation to Markov localization methods.

5.1 Self-Localization Techniques

There are two basic principles for the self-localization of mobile robots [1]: Rel-
ative approaches need to know at least roughly where the robot started and
are subsequently able to track its locomotion. At any point in time, they know
the relative movement of the robot with respect to its initial position, and can
calculate the robot’s current position in the environment. It has to be ensured
that the localization does not lose track, because there is no way to recover
from a failure for these approaches. Modern relative self-localization methods
make often use of laser range finders. They determine the robot’s locomotion
by matching consecutive laser-scans and deriving their mutual shift. Gutmann
and Nebel [8, 9] use direct correlations in their LineMatch algorithm, Mojaev and
Zell [14] employ a grid map as “short term memory”, and Röfer [18] accumulates
histograms as basic data structure for the correlation process.

On the other hand, absolute self-localization approaches are able to find the
robot in a given map without having any a-priori knowledge about its initial
position. Even more difficult, they solve the “kidnapped robot problem” [5],
where—during runtime—the robot is deported to a different place without being
notified. From there, it has to (re-)localize itself. That means, the robot has to
deliberately “unlearn” acquired knowledge.

The absolute approaches are more powerful than the relative ones and supe-
rior in terms of fault tolerance and robustness. They try to match the current sit-
uation of the robot—defined by its locomotion and the sensor impressions—with
a given representation of the environment, e. g. a metric map. As this problem is
intractable in general, probabilistic approaches have been proposed as a heuris-
tics. The idea is to pose a hypothesis about the current position of the robot in
a model of the world from which its location in the real world can be inferred.
A distribution function that assigns a certain probability to every possible posi-
tion of the robot, is adapted stepwise. The adaptation depends on the performed
locomotion and the sensor impressions. Due to the lack of a closed expression
for the distribution function, it has to be approximated. One appropriate model
is provided by grid-based Markov-localization approaches that have been exam-
ined for some time: they either use sonar sensors [4] or laser range finders [2] to
create a probability grid. As a result, a hypothesis about the current position
of the robot can be inferred from that grid. Recently, so-called Monte-Carlo-
localization approaches have become very popular. They use particle filters to
approximate the distribution function [7, 25]. As a consequence, the complexity
of the localization task is significantly reduced. Nevertheless, it is not yet known
how well these approaches scale up to larger environments.

Apart from these purely metric representations of the environment, Kuipers
et al. propose the integration of metric and topological concepts with their “spa-
tial semantic hierarchy” [11]. The idea is pursued by Simmons and Koenig [23]
and Nourbakhsh et al. [15] by augmenting topological maps with metric informa-
tion. The resulting self-localization methods also work probabilistically on the
basis of the odometry and a local model of the environment perceived with the
sensors. A very recent approach by Tomatis et al. combines map-building and
self-localization [27]. They employ a 360◦ laser range finder and extract features
such as corners and openings which are used to navigate in a global topological
map. In addition, the laser-scans are searched for line structures (walls, cup-
boards, etc.) which build the basic data structure for several local metric maps
(one for each node of the topological map).

5.2 Comparison between RouteLoc and prominent approaches

A number of prominent self-localization algorithms use the Markov localiza-
tion approach, some of them with toplogical representations of the environment
[23, 15, 27], others with metric maps [2, 7, 25]. In the robotics community, it is
referred to as “Markov localization” if the algorithm somehow exploits the so-
called Markov assumption [22]. It states that the outcome of a state transition
may only depend on the current state and the chosen action. The outcome does
explicitly not depend on previous states or actions.

RouteLoc is no pure Markov localization: while the matching and propagation
process as presented in Sect. 3 satisfies the Markov assumption, the necessary
handling of the missed junctions and phantom corners violates it. Apart from the
“Markov or not” question, RouteLoc differs from other localization approaches
with respect to some aspects that are gathered in table 1. As reference algo-
rithms the topological-metric approach used for the office delivery robot Xavier
by Simmons and Koenig [23] and the Mixture-MCL algorithm (an improved ver-
sion of the common Monte Carlo Localization approaches) by Thrun et al. [26]
are chosen.

Updating and propagating the probabilities is of linear complexity with re-
spect to the number of junctions representing the environment. Since the number
of junctions is usually related sublinearly (or linearly at most) to the size of the
environment, the approach scales very well.

6 Results

In order to evaluate the performance of an approach for the global self-localization
of a mobile robot, a reliable reference is required that delivers the correct actual
position of the robot. Then, this reference can be used to compare it with the
location computed by the new approach, and thus allows assessing the perfor-
mance of the new method. RouteLoc uses a mixture of a topological and a metric
representation. In fact, a typical position estimate would be “the wheelchair is

Table 1. Comparison between RouteLoc and two other localization approaches

Aspect RouteLoc Simmons & Koenig
[23]

Thrun et al. [26]

sensor input odometry (+ 2 sonars
for generalization)

odometry + sonars odometry + camera
or laser range finder

setting campus (in-/outdoor) indoor office environ-
ment

indoor museum

complexity 144 junctions for 46
nodes and 100 edges,
depends on number of
decision points

3348 Markov states
for 95 nodes and 180
edges, depends on ex-
tent of environment

About 1000 samples
for an indoor environ-
ment, number of sam-
ples adaptable

memory very low very low huge

precision Position estimate
given by junction
and metric offset in
the corresponding
corridor

Topological map is
represented by a set
of Markov states (res-
olution 1m, 90◦ orien-
tation steps)

Samples indicate po-
sition, only small er-
rors

in the segment between junctions Ji and Ji′ in a distance of, e. g., 256 cm from
Ji”.

A metric self-localization method is used as a reference. To be able to com-
pare the metric positions determined by the reference locator with the junc-
tion/distance pair returned by RouteLoc, the real-world position of each junc-
tion is determined in advance. Thus, it is possible to compute an (x, y, θ) triple
from the junction/distance representation that can be compared to the metric
position returned by the reference locator.

6.1 Scan Matching

The method used as a reference was developed by Röfer [18] and is based on
earlier work by Kollmann and Röfer [10]. They improved the method of Weiß et
al. [28] to build maps from measurements of laser range sensors (laser scanners)
using a histogram-based correlation technique to relate the individual scans.
They introduced state-of-the-art techniques to the original approach, namely the
use of projection filters [13], line-segmentation, and multi-resolution matching.
The line-segmentation was implemented employing the same approach that was
already used for route generalization presented in Sect. 2.1. It runs in linear
time with respect to the number of scan points and is therefore faster than other
approaches, e. g. the one used by Gutmann and Nebel [8].

The generation of maps is performed in real-time while the robot moves.
An important problem in real-time mapping is consistency [13], because even
mapping by scan-matching accumulates metric errors. They become visible when
a loop is closed. Röfer [18, 19] presented an approach to self-localize and to map
in real-time while keeping the generated map consistent.

a) b)

t
rq

p

o

m

ld

c
Z

L

P

FP

S

R
X

T

L

MV

c

h

f

j

i

b

YQ

G

C B
C

A

G

H

D

J E
Q

e
g

i

f

h
d

k

m

o

p
q

r
t

150

100

50

0

-50

-100

-150

-200

-250

-300
-150 -100 -50 0 50 100 150 200 250 300

Start in the
MZH building

Boulevard
(way there)

NW2 building

Boulevard
(way back)

Finish in the
MZH building

IW building

FZB complex

IW building

s

K
I

H

O N

I

O

Y

s

Fig. 12. a) The campus of the Universität Bremen (380m × 322m). b) Route general-
ization of odometry data recorded on the campus.

6.2 Experimental Setup

Experiments with the Bremen Autonomous Wheelchair “Rolland” have been car-
ried out on the campus of the Universität Bremen (cf. Fig. 12a) . The wheelchair
was driven indoors and outdoors along the dashed line shown in Fig. 12a, visited
seven different buildings and passes the boulevard which connects the buildings.
The traveled distance amounts to 2,176m. Traveling along this route with a
maximum speed of 84cm/s takes about 75min. While traveling, the wheelchair
generated a log file which recorded one state vector every 32ms. Such a state
vector contains all the information available for the wheelchair: current speed
and steering angle, joystick position, current sonar measurements, and complete
laser scans. As mentioned, only locomotion data and the measurements of two
sonar sensors are used for the self-localization approach presented here. Feeding
the log file (192MB) into the simulator SimRobot [16], it is possible to test the
algorithm with real data in a simulated world. Note that the simulator works in
real-time, i. e. it also delivers the recorded data in 32ms intervals to the connected
software modules, one of which is the self-localization module.

For the evaluation of the approach, a laser-scan map of the whole route was
generated, using the scan matching method presented in [18]. For such a large
scene, the laser map deviates from the original layout of the environment in
that the relative locations of the buildings are not 100% correct. Therefore, the
route-graph was embedded into the laser scan map making it possible to compare
both localization results on a metric basis while traveling through the route with
simultaneously active scan matching and route localization modules1 It consists

1 That is the reason why the layout of the route graph depicted in Fig. 13b differs
from the map shown in Fig. 12a.

a) b)

tt

oo pp

nn

qq rr

mm ll
kk

dd
cc

PPMM

aaWWXXZZTT
RR

LL

UU
SS

VV

hh

JJ

DD

ff

ii

ee

YY

gg

bb

CC

GG

QQ

II

OONN
KKHH

ss

FF EE

jj

AA
BB

Fig. 13. a) Laser map generated along the route depicted in Fig. 12a. b) Route graph
representing the relevant part of the campus.

of 46 graph nodes and 144 junctions. The represented corridors range in length
from 4.3m to 179m.

The deviations between the metric positions determined by the reference
locator and the locations calculated by RouteLoc are depicted in Fig. 14. Note
that the horizontal axis corresponds to the travel time along the route and not to
travel distance, i. e. the wheelchair stopped several times and also had to shunt
sometimes, so that distances along this axis do not directly correspond to metric
distances along the route.

As RouteLoc represents the environment as edges of a graph, its metric pre-
cision is limited. The edges of the route graph are not always centered in the
corridors; therefore, deviations perpendicular to a corridor can reach its width,
which can be more than 10 m outdoors (e. g. corridor dc). There are three reasons
for deviations along a corridor: first, they can result from the location at which
the current corridor was entered (see Sect. 3.3). The bandwidth of possibilities
depends on the width of the previous corridor. Second, deviations can be due
to odometry errors, because the wheelchair can only correct its position when
it drives around a corner. In case of the boulevard (corridor cdh), the wheel-
chair has covered approximately 300 m without the chance of re-localization.
Third, deviations can also result from a certain delay before a turn is detected
(e. g. the peak after JE in Fig. 14). Such generalization delays are discussed in
Sect. 3.3 and are also the reason for some peaks such as the one at the end of
the boulevard (dc).

Even though the odometry data turned out to be very bad (see Fig. 12b),
the approach presented here is able to robustly localize the wheelchair. It takes
a while before the initial uniform distribution adapts in such a way that there
is sufficient confidence to pose a reliable hypothesis about the current position

0

100

200

300

400

500

600

700

800

900

1000

s
t

q
p

n
m k
d

d
c

d
c

d
c

d
c

a
Z

M
P

F
P

R
X

L
M a
c

c
d

c
d

c
d

d
h

d
h fi ij

g
b

g
b

Y
Q

K
H

G
C

C
A G
I

D
J

J
E

Q
Y

Y
e e
g if

h
d

h
d

d
k

m
n

o
p ts

route progress

d
e

v
ia

ti
o

n
 i
n

 c
m

Fig. 14. Deviations of RouteLoc’s position estimates from those made by the laser scan
based localization. The letters correspond to segments between the junction labels used
in Fig. 13b, but due to the lack of space, some are missing.

of the robot. But if this confidence is once established, the position is correctly
tracked.

7 Conclusion and Future Work

Self-Localization of mobile robots in large-scale environments can be efficiently
realized if a hybrid representation of the environment is used. The probabilistic
approach presented here matches an incremental generalization of the traveled
route with an integrated topological-metric map, the route graph. Real-world
experiments at the Universität Bremen showed the robustness and efficiency
of the algorithm. RouteLoc needs only very little input (only odometry data).
It is fast and well-scaling, but is sometimes not as precise as other (metric)
approaches. Therefore, it should be regarded as a basic method for absolute self-
localization that can be extended on demand. In the first place, a disambiguation
of situations and the resulting reduced time for the initial localization can be
obtained if the route generalization and the route graph were augmented by
feature vectors. Additional sensors to detect the features as well as dialogs with
the human driver will help here.

RouteLoc will be extended such that self-localizing becomes possible even
in a-priori unknown environments (SLAM). For this purpose, the robot has to
build the route graph from scratch during runtime and, subsequently, it has to
solve the problem of place integration. That means, it has to find out whether
its current position is already represented in the route graph, or whether it is
located in a corridor that is so far unknown.

Acknowledgements

The Deutsche Forschungsgemeinschaft supports this work through the priority
program “Spatial Cognition”.

References

1. J. Borenstein, H. R. Everett, and L. Feng. Navigating Mobile Robots – Systems
and Techniques. A.K. Peters, Ltd., USA, 1996.

2. W. Burgard, D. Fox, and D. Henning. Fast grid-based position tracking for mobile
robots. In G. Brewka, Ch. Habel, and B. Nebel, editors, KI-97: Advances in Ar-
tificial Intelligence, Lecture Notes in Artificial Intelligence, pages 289–300, Berlin,
Heidelberg, New York, 1997. Springer.

3. H. Choset and K. Nagatani. Topological simultaneous localization and mapping
(slam): toward exact localization without explicit localization. IEEE Transactions
on Robotics and Automation, 17(2):125 – 136, April 2001.

4. A. Elfes. Occupancy grids: A stochastic spatial representation for active robot
perception. In S. S. Iyengar and A. Elfes, editors, Autonomous Mobile Robots,
volume 1, pages 60–70, Los Alamitos, California, 1991. IEEE Computer Society
Press.

5. S. P. Engelson and D. V. McDermott. Error correction in mobile robot map
learning. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 2555–2560. IEEE, May 1992.

6. C. Eschenbach, C. Habel, L. Kulik, and A. Leßmöllmann. Shape Nouns and Shape
Concepts: A Geometry for ‘Corner’, volume 1404 of Lecture Notes in Artificial
Intelligence, pages 177–201. Springer, Berlin, Heidelberg, New York, 1998.

7. D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo localization: Efficient
position estimation for mobile robots. In Proc. of the National Conference on
Artificial Intelligence, 1999.

8. J.-S. Gutmann and B. Nebel. Navigation mobiler Roboter mit Laserscans. In
P. Levi, Th. Bräunl, and N. Oswald, editors, Autonome Mobile Systeme, Informatik
aktuell, pages 36–47, Berlin, Heidelberg New York, 1997. Springer.

9. J.-S. Gutmann, T. Weigel, and B. Nebel. A fast, accurate, and robust method
for self-localization in polygonial environments using laser-range-finders. Advanced
Robotics, 14(8):651 – 668, 2001.

10. J. Kollmann and T. Röfer. Echtzeitkartenaufbau mit einem 180◦-Laser-
Entfernungssensor. In R. Dillmann, H. Wörn, and M. von Ehr, editors, Autonome
Mobile Systeme 2000, Informatik aktuell, pages 121–128. Springer, 2000.

11. B. Kuipers, R. Froom, Y. W. Lee, and D. Pierce. The semantic hierarchy in robot
learning. In J. Connell and S. Mahadevan, editors, Robot Learning, pages 141–170.
Kluwer Academic Publishers, 1993.

12. A. Lankenau and T. Röfer. The Bremen Autonomous Wheelchair – a versatile and
safe mobility assistant. IEEE Robotics and Automation Magazine, “Reinventing
the Wheelchair”, 7(1):29 – 37, Mar. 2001.

13. F. Lu and E. Milios. Globally consistent range scan alignment for environment
mapping. Autonomous Robots, 4:333–349, 1997.

14. A. Mojaev and A. Zell. Online-Positionskorrektur für mobile Roboter durch Kor-
relation lokaler Gitterkarten. In H. Wörn, R. Dillmann, and D. Henrich, editors,
Autonome Mobile Systeme, Informatik aktuell, pages 93–99, Berlin, Heidelberg,
New York, 1998. Springer.

15. I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish: An office-navigating robot.
AI Magazine, 16:53–60, 1995.

16. T. Röfer. Strategies for using a simulation in the development of the Bremen
Autonomous Wheelchair. In R. Zobel and D. Moeller, editors, Simulation-Past,
Present and Future, pages 460–464. Society for Computer Simulation International,
1998.

17. T. Röfer. Route navigation using motion analysis. In Proc. Conf. on Spatial
Information Theory ’99, volume 1661 of Lecture Notes in Artificial Intelligence,
pages 21–36, Berlin, Heidelberg, New York, 1999. Springer.

18. T. Röfer. Building consistent laser scan maps. In Proc. of the 4th European Work-
shop on Advanced Mobile Robots (Eurobot 2001), volume 86 of Lund University
Cognitive Studies, pages 83 – 90, 2001.

19. T. Röfer. Konsistente Karten aus Laser Scans. In Autonome Mobile Systeme 2001,
Informatik aktuell, pages 171–177. Springer, 2001.

20. T. Röfer and A. Lankenau. Ensuring safe obstacle avoidance in a shared-control
system. In J. M. Fuertes, editor, Proc. of the 7th Int. Conf. on Emergent Tech-
nologies and Factory Automation, pages 1405 – 1414, 1999.

21. T. Röfer and A. Lankenau. Architecture and applications of the Bremen Au-
tonomous Wheelchair. Information Sciences, 126(1-4):1 – 20, Jul. 2000.

22. J.S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall, New Jersey, USA, 1995.

23. R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable
environments. In Proc. of the Int. Joint Conf. on Artificial Intelligence, IJCAI-95,
pages 1080–1087, 1995.

24. S. Thrun. Learning maps for indoor mobile robot navigation. Artificial Intelligence,
99:21 – 71, 1998.

25. S. Thrun, W. Burgard, and D. Fox. A Real-Time Algorithm for Mobile Robot
Mapping With Applications to Multi-Robot and 3D Mapping. In Proc. of the
IEEE Int. Conf. on Robotics & Automation, 2000.

26. S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization
for mobile robots. Artificial Intelligence, 101:99 – 141, 2000.

27. N. Tomatis, I. Nourbakhsh, and R. Siegwart. Simultaneous localization and map
building: A global topological model with local metric maps. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2001), Maui, Hawaii, October/November 2001.

28. G. Weiß, C. Wetzler, and E. von Puttkamer. Keeping track of position and orien-
tation of moving indoor systems by correlation of range-finder scans. In Proc. Int.
Conf. on Intelligent Robots and Systems 1994 (IROS-94), pages 595–601, 1994.

29. S. Werner, B. Krieg-Brückner, and Th. Herrmann. Modelling Navigational Knowl-
edge by Route Graphs, volume 1849 of Lecture Notes in Artificial Intelligence, pages
295–316. Springer, Berlin, Heidelberg, New York, 2000.

30. D. van Zwynsvoorde, T. Simeon, and R. Alami. Incremental topological modeling
using local Voronöı-like graphs. In Proc. of IEEE/RSJ Int. Conf. on Intelligent
Robots and System (IROS 2000), volume 2, pages 897 – 902, Takamatsu, Japan,
October 2000.

31. D. van Zwynsvoorde, T. Simeon, and R. Alami. Building topological models for
navigation in large scale environments. In Proc. of IEEE Int. Conf. on Robotics
and Automation ICRA 2001, pages 4256 – 4261, Seoul, Korea, May 2001.

