
CMCS’03 Preliminary Version

CoCasl at Work —
Modelling Process Algebra

Till Mossakowski 1,4 Markus Roggenbach 2,5 Lutz Schröder 3,6

BISS, Department of Computer Science
Universität Bremen, Germany

Abstract

CoCasl [11], a recently developed coalgebraic extension of the algebraic specifica-
tion language Casl [2], allows for modelling systems in terms of inductive datatypes
as well as of co-inductive process types. Here, we demonstrate how to specify pro-
cess algebras, namely CCS [10] and CSP [8,17], within such an algebraic-coalgebraic
framework. It turns out that CoCasl can deal with the fundamental concepts of
process algebra in a natural way: The type system of communications, the syntax of
processes and their structural operational semantics fit well in the algebraic world of
Casl, while the additional coalgebraic constructs of CoCasl cover the various pro-
cess equivalences (bisimulation, weak bisimulation, observational congruence, and
trace equivalence) and provide fully abstract semantic domains. CoCasl hence
becomes a meta-framework for studying the semantics and proof theory of reactive
systems.

Among the various frameworks for the description and modelling of re-
active systems, process algebra plays a prominent role. It has proven to be
suitable at the level of requirement specification, for formal refinement proofs
as well as for writing design specifications. Almost all of the underlying con-
cepts of process algebra can be found in the languages CCS [10] and CSP
[8,17]: a type system on the communications; synchronous as well as asyn-
chronous communication; operational semantics; and also various notions of
process equivalence like strong and weak bisimulation, observation congru-
ence, and trace equivalence. Thus, when proposing a new framework which
aims at the specification of reactive systems in general, it is worthwile to study
if these process algebras and their semantic concepts are covered.

1 till@informatik.uni-bremen.de
2 roba@informatik.uni-bremen.de
3 lschrode@informatik.uni-bremen.de
4 Research supported by the DFG project Multiple (KR 1191/5-2)
5 Research supported by the DFG project COOFL (Qi 1/4-2)
6 Research supported by the DFG project HasCASL (KR 1191/7-1)

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Mossakowski, Roggenbach, Schröder

CoCasl [11], a recently defined coalgebraic extension of the algebraic
specification language Casl [2], allows for modelling systems in terms of in-
ductive datatypes as well as of co-inductive process types. Here, the language
Casl provides a many sorted first order logic with partial functions and sub-
sorting, and also features sort generation constraints for generated and free
datatypes. Furtheron, Casl allows for initial semantics in terms of a struc-
tured free construct. CoCasl extends this language by a basic co-datatype
construct, cogeneratedness constraints, and structured cofree specifications;
moreover, coalgebraic modal logic is introduced as syntactical sugar.

The idea behind the design of CoCasl is to obtain a fruitful synergy of
algebraic and coalgebraic system modelling. Specifying the process algebras
CCS and CSP provides an extensive case study in this language. Thus, besides
beeing a proof of concept for CoCasl, these specifications demonstrate how
to integrate different system aspects within one framework. Casl as the
algebraic sub-language of CoCasl will deal with the syntactic aspects and the
operational semantics of these process algebras, while the equivalence relations
on processes like bisimulation, which have been shown to be of coalgebraic
nature [3,19,16], will be modelled with the coalgebraic constructs provided by
CoCasl. The full specifications are available at [12].

The paper is organized as follows: Section 1 gives an overview of CoCasl.
Then the different aspects of the process algebras CCS and CSP are specified
in parallel, separating between syntax and semantics: Section 2 describes pro-
cess algebra syntax in terms of Casl free datatypes; Section 3 provides the
structural operational semantics. Finally, various notions of process equiva-
lences are specified in Section 4.

1 An overview of CoCasl

The specification language Casl (Common Algebraic Specification Language)
has been designed by CoFI, the international Common Framework Initiative

for Algebraic Specification and Development [7]. For the language definition
cf. [2,4]; a full formal semantics is laid out in [1]. Here, we recall some basic
language features as needed for understanding the specifications below.

Casl is separated into various levels, including a level of basic specifications

and a level of structured specifications. Basic specifications essentially list sig-
nature items and axioms in an unstructured way, thus determining a category
of first order models. Structured specifications serve to combine such basic
specifications into larger specifications in a hierarchical and modular fashion.
The structuring operations are independent of the underlying logic and hence
apply to language extensions such as CoCasl in the same way as to Casl.
At the level of basic specifications, one can declare sorts (keyword sort), op-
erations (keyword op), and predicates (keyword pred) with given input and
result sorts. Sorts may be declared to be in a subsorting relation; if s is a
subsort of t, then terms of type s may be used wherever terms of type t are

2

Mossakowski, Roggenbach, Schröder

expected. Subsorts may also be defined in the form s = {x : t • φ}, with the
effect that s consists of all elements of t that satisfy φ. Operations may be
declared to be partial by using a modified function arrow →?. Using the sym-
bols thus declared, one may then write axioms in first order logic. Moreover,
one can specify datatypes (keyword type), given in terms of alternatives con-
sisting of data constructors and, optionally, selectors, which may be declared
to be generated or free. Generatedness amounts to an implicit higher order
induction axiom and intuitively states that all elements of the datatypes are
reachable by constructor terms (‘no junk’); freeness additionally requires that
all these constructor terms are distinct (‘no confusion’). Thus, free datatypes
are really free algebras for the signature given by the constructors.

At the level of structured specifications, one has features such as unions of
specifications, parametrized named specifications, extensions of specifications
(keyword then), and free specifications free { . . .}. The latter are particularly
important in this context; the semantics of a specification

SP1 then free {SP2}

is given by those models of SP1 then SP2 that are free over their reduct to
the signature of SP1.

CoCasl extends Casl both at the level of basic specifications and at the
level of structured specifications by features that support coalgebraic specifica-
tion, so that the combined power of algebra and co-algebra becomes available.
For details beyond the description provided below, including examples for the
usage of all CoCasl features, see [11]. Figure 1 provides an overview of the
dualities between Casl and CoCasl concepts and constructs.

To begin, the datatype constructs are complemented in CoCasl by sup-
port for cogenerated and final datatypes. Cotypes (keyword cotype) dualize
datatypes; they are given by declaring selectors and, optionally, constructors.
In addition to the material generated by a type definition, such cotype def-
initions give rise to axioms that guarantee that the models of the cotype are
coalgebras for the corresponding polynomial set-functor (with alternatives cor-
responding to sums). Cotypes may be declared to be cogenerated or cofree.
These constraints produce implicit axioms which guarantee that models of the
cotype are fully abstract coalgebras (i.e. subcoalgebras of the absolutely fi-
nal coalgebra) or (absolutely) final coalgebras, respectively. Cogeneratedness
amounts to an implicit coinduction axiom, while cofreeness (finality) addi-
tionally requires realization of all possible behaviours; both types of axioms
require higher order quantifiers (so that the constraints are more than just
syntactical sugar).

Both generatedness and cogeneratedness constraints may enclose any num-
ber of signature items (i.e. declarations of sorts, operations, or predicates), so
that one may write

cogenerated { . . . }

where the grouping brackets may contain any basic specification without ax-

3

Mossakowski, Roggenbach, Schröder

Algebra Coalgebra

type = (partial) algebra cotype = coalgebra

constructor selector

generation observability

generated type cogenerated (co)type

= no junk = full abstractness

= induction principle = coinduction principle

free type cofree cotype

= absolutely initial datatype = absolutely final process type

= no junk + no confusion = full abstractness +

all possible behaviours

free {. . . } = initial datatype cofree { . . . } = final process type

Fig. 1. Summary of dualities between Casl and CoCasl.

ioms. As in the case of simple datatype or cotype definitions, these constraints
give rise to implicit induction or coinduction axioms, respectively.

At the level of structured specifications, CoCasl provides a cofree { . . .}
construct, dual to Casl’s structured free. The models of a specification

SP1 then cofree {SP2}

are the fibre-final models of SP1 then SP2, i.e. those models that are final
objects in their fibre w.r.t. the reduction to the signature of SP1. Here, the
fibre of a model M consists of all models that have the same reduct to SP1 as
M . Thus, the semantics of cofree is not fully dual to the semantics of free;
cf. [11] for a discussion of this point and an example that illustrates why the
more liberal semantics of cofree is necessary (for the latter point, see also
Section 2.2 below).

In order to specify properties of coalgebras, CoCasl provides syntactic
sugar for a modal logic in the style of [9]. In [11], a rather general existence
theorem for final models is provided which guarantees the consistency of a
large range of cofree specifications.

2 Elements of process algebra syntax

Process algebras observe reactive systems by means of communications. While
CSP requires the communcations just to be a set, CCS has a small type
system, which we model using Casl subtyping.

Both process algebras involve higher order types constructed on top of

4

Mossakowski, Roggenbach, Schröder

their set of communications, namely sets for hiding symbols and as synchro-
nization sets, and functions as well as (binary) relations for renamings. These
type constructions are not available in Casl, but they can be modelled co-
algebraically.

Based on communications and the above mentioned higher order types, the
syntax of processes can be specified as a free datatype. This allows also for
an inductive definition of substitution on processes, a construction necessary
to describe the semantics of recursive processes.

2.1 Type system of communications: Casl subsorting

The language CSP is defined relative to an alphabet Σ of all communications.
At the semantical level, this alphabet Σ is extended by an ‘invisible action’ τ
and and a ‘termination signal’

√
(tick). This can be specified in Casl as

sort Sigma

free type ExtSigma ::= sort Sigma |tau |tick
The effect of the free type declaration is that each element of ExtSigma is
either an element of Sigma or one of two distinct new elements tau and tick.

CCS processes communicate ‘names’. Each name n has a ‘co-name’ n̄,
where the function ¯ (bar) is involutive. Names and co-names together form
the set of ‘labels’. Adding to this set the ‘silent action’ τ results in the set of
‘actions’. Again, Casl captures this simple type system:

sort Name %% Names

free type Label ::= sort Name |bar(Name) %% Labels

free type Act ::= sort Label |tau %% Actions

op bar : Label → Label

∀ a:Name . bar(bar(a)) = a

Note that we have the subsort relations Name < Label < Act . The oper-
ation bar is introduced twice: as constructor from Name into Label and as
function on Label. The involution property on ‘names’ is obtained by implicit
overloading axioms.

2.2 Sets, relations, and function spaces: higher order via cofreeness

As mentioned above, process algebras need higher order types constructed on
their respective alphabet of communications. In Casl, it is not possible to
specify these types monomorphically, while CoCasl captures them in terms
of the structured cofree construct.

The syntax of CCS requires arbitrary sets of labels for restrictions. Since
the powerset, being isomorphic to the set of boolean-valued maps, enjoys a
couniversal property, we can easily specify it in CoCasl: building upon a
specification of a type of booleans, and given a previously declared type of
labels Label,

5

Mossakowski, Roggenbach, Schröder

cofree { sort Set [Label]
op isIn : Label × Set [Label] → Boolean }

specifies Set[Label] as the powerset of the set of labels. Note here the impor-
tance of the fact that the semantics of cofree is given in terms of fibre-cofree
models: finality of a model M can only be expected w.r.t models that in-
terpret the sort Label in the same way as M . Concerning CoCasl syntax,
note that Set[Label] is a so-called compound identifier, which can, for the
purposes of this paper, be regarded as a sort name like any other (in instan-
tiations of the parametrized syntax specification that assign particular label
sets to the parameter Label, the part of the name in square brackets will be
syntactically replaced by the name of the concrete label set). Corresponding
comments hold for other uses of this mechanism further below, e.g. Fun[Label]
or Relation[Sigma].

Similarly, the function spaces needed for relabelling are provided by means
of a structured cofree (by exploiting their couniversal property). Since only
bijections that commute with the ‘bar’ operation are admissible as CCS rela-
bellings, the actual type of relabellings is defined as a subtype:

cofree { sort Fun[Label]
op eval : Fun[Label] × Label → Label }

then
sort Relabelling = { f : Fun[Label] .

∀ l :Label . eval(f, bar(l)) = bar(eval(f, l))
∧ ∀ l, k :Label . (eval(f, l) = eval(f, k) ⇒ k = l

∧ ∀ l :Label . ∃ k :Label . l = eval(f, k)) }
Note the combination of coalgebraic and algebraic modelling: while the type of
functions is specified using a structured cofree, the properties of ‘relabellings’
are described by classical algebraic constructs.

Sets of communications are also needed for the hiding and generalized
parallel operators of CSP. Furtheron, the relational renamings of CSP require
a type of binary relations on the communication alphabet Σ :

cofree { sort Relation[Sigma]
op holds : Relation[Sigma] × Sigma × Sigma → Boolean }

2.3 Process syntax and substitution: inductive types

Using the higher order types introduced above, the respective syntaxes of
CCS and CSP can be specified as free types, c.f. Figures 2 and 3. The
freeness constraint on the type declarations means that the elements of the
types are precisely the terms formed from the parameter sorts (e.g. in Figure 2
the sorts AgentV ariable, AgentConstant, Act, Set[Label] and Relabelling)
and the constructor operations.

In [10], Milner introduces CCS as a class of agent expressions. The cru-
cial point is that the summation operator (non-deterministic choice) involves

6

Mossakowski, Roggenbach, Schröder

free type
AgentExpression ::= sort AgentVariable

| sort AgentConstant

| 0 %% inactive agent

| → (Act ; AgentExpression) %% Prefix

| + (AgentExpression; AgentExpression) %% Sum

| || (AgentExpression; AgentExpression) %% Parall.

| − (AgentExpression; Set [Label]) %% Restriction

| < >(AgentExpression; Relabelling) %% Relabelling

| fix (AgentVariable; AgentExpression) %% Recursion

Fig. 2. The CCS Syntax as a free type.

free type
Process ::= Skip

| Stop

| Omega

| sort ProcessVar

| → (Sigma; Process) %% Prefix

| seq (Process; Process) %% Sequential Composition

| [] (Process; Process) %% External Choice

| |˜| (Process; Process) %% Internal Choice

| − (Process; Set [Sigma]) %% Hiding

| [[]](Process; Relation[Sigma]) %% Relational Renaming

| [] (Process; Set [Sigma]; Process) %% Generalized Parallel

| mu(ProcessVar ; Process) %% Recursion

Fig. 3. The CSP Syntax as a free type.

arbitrary index sets. This is beyond the scope of Casl and CoCasl, as the
specified models interpret sorts by carrier sets. Therefore, and also in order
to capture bisimulation via a final object in a suitably chosen category, we
restrict the language to finite nondeterminism — this is expressive enough to
retain full computational power (cf. [10], p. 135).

While CCS uses environments that bind agent constants to agent expres-
sions, the version of CSP in [17], which we specify here, is restricted to a core
language without environments. The full language including e.g. the various
CSP parallel operators can be recaptured as a definitional extension.

Thanks to the free type construct of the process syntax it is straightforward
to introduce substitution operators, as carried out for the case of CCS in
Figure 4.

7

Mossakowski, Roggenbach, Schröder

op { / }:
AgentExpression × AgentExpression × AgentVariable → AgentExpression

∀ P :AgentExpression; X :AgentVariable

• ∀ Y :AgentVariable . Y { P / X } = P when Y = X else Y

• ∀ C :AgentConstant . C { P / X } = C

• 0 { P / X } = 0

• ∀ a:Act ; E :AgentExpression . (a → E) { P / X } = a → E { P / X }
• ∀ E, F :AgentExpression .

(E + F) { P / X } = E { P / X } + F { P / X }
. . .

Fig. 4. Inductive definition of substitution

3 Structural Operational Semantics

For both process algebras, their semantics as a transition system is defined
by structural operational semantics. A node of the transition system is an
AgentExpression or a Process, resp. The transitions are defined to be the
smallest relation satisfying a certain set of inference rules. The corresponding
Casl construct is a structured free, which has the effect that the introduced
predicate, e.g. pred − → : AgentExpression ∗ Act ∗ AgentExpression,
holds on a minimal subset. Figures 5 and 6 show (part of) the operational
semantics of CCS and CSP, respectively. Both only use positive Horn clauses,
hence the specifications are consistent (note that due to the definition of Act as
free type, axioms with premise ¬a = tau can be replaced by two axioms with
equational premise). Figure 5 includes the CCS inference rule for recursion,
which makes use of the substitution operator described above. CSP models
recursion in the same way. Note how the rules for external choice in CSP are
formulated along the type system of CSP communications on the semantical
level. It is interesting to observe the difference between CCS and CSP in the
modelling of nondeterminism. While CCS directly procedes with an action,
the CSP semantics uses an invisible action τ. This inference rule among other,
similar ones, is the reason why it is necessary to carefully extract the traces
of observable actions from the specified transition system. The advantage of
the — at first sight complicated — transition system for CSP is that it can
also be taken as the basis for working out the denotations of processes in the
failures and failures/divergences semantics of CSP.

4 Process Equivalences

Milner introduces strong bisimulation, weak bisimulation, and observation
congruence as notions of equivalence on CCS agent expressions, which we
model in a uniform way. For CSP, we study trace equivalence and show that
it is essentially of algebraic nature although there exists a characterization in
terms of bisimulation.

8

Mossakowski, Roggenbach, Schröder

free { pred − → : AgentExpression × Act × AgentExpression

%% (Act):

∀ a:Act ; E :AgentExpression

• (a → E) − a → E

%% (Sum1):

∀ E, E ′, F :AgentExpression; a:Act

• E − a → E ′ ⇒ (E + F) − a → E ′

. . .
%% (Rec):

∀ X :AgentVariable; E, E ′:AgentExpression; a:Act

• E{fix(X,E)/X} − a → E ′ ⇒ fix(X,E) − a → E ′ }

Fig. 5. Part of the CCS Semantics.

free { pred − → : Process × ExtSigma × Process

. . .
%% External Choice:
∀ P, P ′, Q :Process

• P − tau → P ′ ⇒ (P[]Q) − tau → (P ′[]Q)
∀ P, Q, Q′:Process

• Q − tau → Q′ ⇒ (P[]Q) − tau → (P[]Q′)
∀ a:ExtSigma; P, P ′, Q :Process

• ¬ a = tau ⇒ P − a → P ′ ⇒ (P[]Q) − a → P ′

∀ a:ExtSigma; P, Q, Q′:Process

• ¬ a = tau ⇒ Q − a → Q′ ⇒ (P[]Q) − a → Q′

%% Internal Choice:
∀ P, Q :Process

• (P|˜|Q) − tau → P
∀ P, Q :Process

• (P|˜|Q) − tau → Q
. . . }

Fig. 6. Semantis of CSP External and Internal Choice.

4.1 Strong Bisimulation

Modelling strong bisimulation is straightforward. We built up a new transition
system, which — as a starting point — is a nearly identical copy of the CCS

operational semantics. The difference is that the sort Process is introduced as a
generated type, i.e. at this point the equivalence relation on its elements is left
open. By choosing the transition predicate as observer for the sort Process

in the cogenerated construct, the processes are identified by bisimulation.
Finally, this notion is carried over to the sort AgentExpression via a predicate
∼ .

generated type Process ::= [[]](AgentExpression)
pred − → : Process × Act × Process

9

Mossakowski, Roggenbach, Schröder

∀ E, E ′:AgentExpression; a:Act

• E − a → E ′ ⇔ [[E]] − a → [[E ′]]

cogenerated { sort Process

pred − → : Process × Act × Process }

pred ∼ : AgentExpression × AgentExpression

∀ E, F :AgentExpression

• E ∼ F ⇔ [[E]] = [[F]]

The cogeneratedness constraint guarantees full abstractness via a coinduction
axiom, which in this case amounts to stating that strong bisimulation is equal-
ity, cf. [19,10]. Note that the existence of strong bisimulation is guaranteed
by the results of [10]; hence, the above specification is consistent. Moreover,
since strong bisimulation even is a congruence, it is also consistent to shift
the operations of the process syntax from the level of agent expressions to the
level of processes. Also note that there are other abstraction principles on
processes like weak bisimulation discussed below that are not a congruence.

An alternative approach to characterize bisimulation on CCS is modal
logic, c.f. [10]. Our choice of specifying the operational semantics as a free type
keeps us from using the built-in modal logic of CoCasl. But one can easily
define such a logic over a free type of formulae. Its satisfaction relation between
processes and formulae can then be introduced by an inductive definition over
the structure of formulae. Due to the restriction to finite nondeterminism in
our specification of CCS, the modal logic also needs only finite conjunctions
in order to provide an equivalent characterization of bisimulation.

4.2 Weak Bisimulation

In the specification of weak bisimulation in our setting, we make use of the
following characterization in terms of strong bisimulation, reformulating a
result of [6]:

Theorem 4.1 (Weak and Strong Bisimulation)
Let Ti = (Si, si, Act,→i) be transition systems over Act with state set Si, initial

state si ∈ Si and transition relation →i, i = 1, 2. Then

T1 ≈ T2 ⇐⇒ W (T1) ∼ W (T2),

where ≈ denotes weak bisimulation, and ∼ stands for strong bisimulation.

The operator W maps a transition system T = (S, s, Act,→) to a tran-

sition system W (T) = (S, s, Act∗,→w) with r
α̂→w r′ : ⇐⇒ r

α̂⇒ r′, where

ˆ : Act → Act∗ with

α̂ :=

α ; α 6= τ

ε ; α = τ
, and

α̂⇒ :=

(
τ→)∗

α→ (
τ→)∗ ; α 6= τ

(
τ→)∗ ; α = τ.

10

Mossakowski, Roggenbach, Schröder

Proof (Sketch) To prove ‘⇒’, we claim that any weak bisimulation rela-
tion R between the transition systems Ti, i = 1, 2, is also a strong bisimulation
between W (Ti), i = 1, 2. This follows from the fact that for any weak bisim-
ulation R the following holds: if (r, s) ∈ R and r ⇒ r′ for some r′, then
s ⇒ s′ and (r′, s′) ∈ R for some s′. This establishes the proof together with
the observation that any step r

α→w r′ with α 6= τ in a transition system
W (T) corresponds to a derivation r(

τ→)∗r1

α→ r2(
τ→)∗r′ in T . The reverse

implication ‘⇐’ holds because the transition systems W (Ti) have essentially
α̂⇒i as their transition relations. 2

Thus, in order to model weak bisimulation, it is necessary to specify the

operator W , i.e. the transition relation
α̂⇒, in CoCasl. The specification

below shows how to iterate tau-transitions to combine this with transitions on
visible actions.

pred − → : AgentExpression × Nat × AgentExpression

∀ E, E1, E3 :AgentExpression; n:Nat

• E − 0 → E

• E1 − (n + 1) → E3 ⇔
∃ E2 :AgentExpression . E1 − n → E2 ∧ E2 − tau → E3

pred −→ : AgentExpression × AgentExpression

∀ E1, E2 :AgentExpression . E1 −→ E2 ⇔ ∃ n:Nat . E1 − n → E2

∀ E, E ′:AgentExpression; l :Label

• [[[E]]] − l → [[[E ′]]] ⇔
∃ E1, E2 :AgentExpression . E −→ E1 ∧ E1 − l → E2 ∧ E2 −→ E ′

• [[[E]]] − epsilon → [[[E ′]]] ⇔ E −→ E ′

Having this available, we proceed in the same way as with strong bisim-
ulation, i.e. we build a new transition system with a ‘copy’ of the type
AgentExpression as a type of nodes formed via the constructor [[[]]], and
α̂⇒ as transition relation, obtain strong bisimulation on this transition system
using the cogenerated construct, and, finally, carry this relation over to the
sort AgentExpression via a predicate ≈ . Note that — as in the case of
strong bisimulation — we obtain a fully abstract model, despite the fact that
weak bisimulation fails to be a congruence for CCS.

4.3 Observation Congruence

Having the notion of weak bisimulation available, we can express Milner’s
definition of observation congruence in [10], p.153, directly in CoCasl. The
crucial point of this definition is that it involves a new transition relation

== =⇒ , which also takes the tau action into accout:

pred == =⇒ : AgentExpression × Act × AgentExpression

11

Mossakowski, Roggenbach, Schröder

∀ E, E ′:AgentExpression; alpha:Act

• E == alpha =⇒ E ′ ⇔
∃ E1, E2 :AgentExpression . E −→ E1 ∧ E1 − alpha → E2 ∧ E2 −→ E ′

pred == : AgentExpression × AgentExpression

∀ P, Q :AgentExpression; alpha:Act

• P == Q ⇔ (∃ P ′: AgentExpression . P − alpha → P ′ ⇒
(∃ Q′:AgentExpression . Q == alpha =⇒ Q′ ∧ P ′ ≈ Q′))

∧ (∃ Q′:AgentExpression . Q − alpha → Q′ ⇒
(∃ P ′:AgentExpression . P == alpha =⇒ P ′ ∧ P ′ ≈ Q′))

4.4 Trace Equivalence on CSP

The extraction of CSP process traces, as described by [17], can be directly
formulated in CoCasl. As a first step, one defines a new transition relation,
which extracts the sequences of communications from the transition system
obtained by the CSP operational semantics.

List [sort ExtSigma fit sort Elem 7→ ExtSigma]
then

List [sort Process fit sort Elem 7→ Process]
then

pred −− −→ : Process × List [ExtSigma] × Process

∀ P, Q :Process; s:List [ExtSigma]
• P −−s −→ Q ⇔ ∃ PL:List [Process] .

(# s) + 1 = # PL

∧ first(PL) = P

∧ last(PL) = Q

∧ (∀ i :Nat . 0 < i ∧ i < (# PL) ⇒
(PL!i) − (s!i) → (PL!(i + 1)))

Here, a type of lists is imported by referencing a parametrized specification
List[sort Elem]. The parameter sort Elem is explicitly instantiated with the
sorts ExtSigma and Process, respectively. The instantiated specifications
then define sorts List[ExtSigma] and List[Process], respectively, making use
of an automatic renaming mechanism provided by Casl structured specifica-
tions.

CSP processes are trace equivalent iff they have the same sets of traces,
i.e. they have they can take the same steps in terms of sequences of commu-
nications, where the invisible action tau has been removed.

pred == : Process × Process

∀ P, Q :Process

• P == Q ⇔ ∀ s:List [ExtSigma]
. ∃ P ′:Process . P == s =⇒ P ′ ⇔ ∃ Q′:Process . Q == s =⇒ Q′

This modelling is so intuitive that we refrained from translating trace
equivalence into strong bisimulation as suggested by the following theorem,

12

Mossakowski, Roggenbach, Schröder

Framework CSP-Casl

CCS-Casl

Casl-Chart

=�
�

�
� Z

Z
Z

Z~

Meta-framework Casl-LTL CoCasl

Fig. 7. Relationship between CoCasl and other reactive Casl extensions

again reformulating a result by [6]:

Theorem 4.2 (Trace Equivalence and Strong Bisimulation)
Let Ti = (Si, si, Σ,→i) be transition systems over Σ with state set Si, initial

state si ∈ Si and transition relation →i, i = 1, 2. Then

T1 =T T2 ⇐⇒ P (T1) ∼ P (T2),

where =t denotes trace equivalence, and ∼ stands for strong bisimulation.

The operator T is the usual powerset construction, i.e. it maps a transition

system T = (S, s, Σ,→) to a transition system P (T) = (RS(S), s, Σ,→P),
where

X
α→P Y ′ : ⇐⇒ Y = {r′ ∈ S | ∃r ∈ X.r

α→P r′}
and RS(S) is the least subset of 2S\∅ such that

(i) {s} ∈ RS(S) and

(ii) X ∈ RS(S), X
α→P Y implies Y ∈ RS(X).

Conclusion and related work

We have presented CoCasl specifications for the process algebras CCS and
CSP including various notions of equivalences, namely strong bisimulation,
weak bisimulation, observation congruence, and trace equivalence. Interest-
ingly enough, CoCasl also provides easy constructions for higher order types
like power sets, relation types, and function spaces. In general, our speci-
fications deal with the concepts involved in a natural way, indicating that
CoCasl is an expressive language which is able to deal with reactive systems
at an appropriate level.

From a more general point of view, we have presented a general scheme for
specifying models of concurrency: a clear destinction between syntax, opera-
tional semantics, and a (fully abstract) domain representing the chosen notion
of equivalence has turned out to be the most adequate design.

There are various proposals of reactive Casl extensions – see Figure 7 for
a small selection. Our definition of CoCasl differs from Casl extensions like

13

Mossakowski, Roggenbach, Schröder

CSP-Casl [15], CCS-Casl [20,21] or Casl-Chart [14] These Casl exten-
sions combine Casl with reactive systems of a particular kind, the semantics
of which is defined in terms of set theory. We use CoCasl (being much sim-
pler than full set theory) as a meta-framework suitable for the formalization
of (the semantics of) different frameworks for reactive systems. Hence, proof
support for CoCasl [11] can be used to prove meta-properties about these
frameworks.

Casl-LTL [13] is similar to CoCasl inasmuch as it is suitable as a meta-
framework: for example, CCS has been formalized in Casl-LTL. However,
the formalization in [13] has important drawbacks: only the transition relation
is modelled, but the various forms of bisimulation are not covered, nor are
infinite state systems and recursion. It is unclear whether these shortcomings
can be repaired within Casl-LTL.

Future work on CoCasl as a meta-framework will include the specifica-
tion of further models of concurreny and their various notions of behavioural
equivalence (see e.g. [22,5]). Moreover, we aim at direct specifications of re-
active systems, in particular in the spirit of recently introduced co-algebraic
paradigms for object-oriented modelling [18].

Acknowledgements

The authors wish to thank Christoph Lüth for vigorous comments, Horst
Reichel for fruitful collaboration on CoCasl, Erwin R. Catesbeiana for advice
on the role of consistency, and the participants of an informal workshop in Mu-
nich on December 8 and 9, 2002, for insightful discussions about observational
approaches.

References

[1] Casl – The CoFI Algebraic Specification Language – Semantics (1999),
Note S-9 (Documents/CASL/Semantics, version 0.96), in [7].

[2] Casl – The CoFI Algebraic Specification Language – Summary, version 1.0.1
(2001), Documents/CASL/Summary, in [7].

[3] Aczel, P. and N. Mendler, A final coalgebra theorem, in: Category Theory and
Computer Science, LNCS 389 (1989), pp. 357–365.

[4] Astesiano, E., M. Bidoit, B. Krieg-Brückner, H. Kirchner, P. D. Mosses,
D. Sannella and A. Tarlecki, Casl – the Common Algebraic Specification
Language, Theoret. Comput. Sci. 286 (2002), pp. 153–196,.

[5] Broy, M., Algebraic specification of reactive systems, in: Algebraic Methodology
and Software Technology, LNCS 1101 (1996), pp. 487–503.

[6] Cheng, A. and M. Nielsen, Open maps (at) work, Technical Report RS-95-23,
BRICS (1995).

14

Mossakowski, Roggenbach, Schröder

[7] CoFI, The Common Framework Initiative, electronic archives, notes and
documents accessible from http://www.cofi.info.

[8] Hoare, C. A. R., “Communicating Sequential Processes,” Prentice Hall, 1985.

[9] Kurz, A., Specifying coalgebras with modal logic, Theoret. Comput. Sci. 260

(2001), pp. 119–138.

[10] Milner, R., “Communication and Concurrency,” Prentice Hall, 1989.

[11] Mossakowski, T., H. Reichel, M. Roggenbach and L. Schröder, Algebraic-
coalgebraic specification in CoCasl, presented at WADT 02, submitted for
publication.

[12] Mossakowski, T., M. Roggenbach and L. Schröder, Specifications of
CCS and CSP in CoCasl, available under http://www.pst.informatik.

uni-muenchen.de/∼baumeist/CoFI/case.html.

[13] Reggio, G., E. Astesiano and C. Choppy, Casl-LTL — a Casl extension
for dynamic reactive systems — summary, Technical Report DISI-TR-99-34,
Università di Genova (2000).

[14] Reggio, G. and L. Repetto, Casl-Chart: a combination of statecharts and
of the algebraic specification language Casl, in: Algebraic Methodology and
Software Technology, LNCS 1816, Springer, 2000, pp. 243–257.

[15] Roggenbach, M., CSP-Casl — a new integration of process algebra and
algebraic specification, presented at WADT 02, submitted for publication.

[16] Roggenbach, M. and M. Majster-Cederbaum, Towards a unified view of
bisimulation: a comparative study, Theoret. Comput. Sci. 238 (2000), pp. 81–
130.

[17] Roscoe, A., “The theory and practice of concurrency,” Prentice Hall, 1998.

[18] Rothe, J., H. Tews and B. Jacobs, The coalgebraic class specification language
CCSL, J. Universal Comput. Sci. 7 (2001), pp. 175–193.

[19] Rutten, J. J. M. M., Universal coalgebra: A theory of systems, Theoret. Comput.
Sci. 249 (2000), pp. 3–80.

[20] Salaün, G., M. Allemand and C. Attiogbé, A formalism combining CCS and
Casl, Technical Report 00.14, University of Nantes (2001).

[21] Salaün, G., M. Allemand and C. Attiogbé, Specification of an access control
system with a formalism combining CCS and Casl, in: Parallel and Distributed
Processing, IEEE, 2002, pp. 211–219.

[22] Sassone, V., M. Nielsen and G. Winskel, Models for concurrency, Theoret.
Comput. Sci. 170 (1996), pp. 297–348.

15

	An overview of CoCasl
	Elements of process algebra syntax
	Type system of communications: Casl subsorting
	Sets, relations, and function spaces: higher order via cofreeness
	Process syntax and substitution: inductive types

	Structural Operational Semantics
	Process Equivalences
	Strong Bisimulation
	Weak Bisimulation
	Observation Congruence
	Trace Equivalence on CSP

	References

