
HetCasl

Heterogeneous Specification

Language Summary

CoFI Tentative Document: HETCASL Summary
Version: 0.11 02 March 2004

Till Mossakowski
E-mail address for comments: till@informatik.uni-bremen.de

CoFI: The Common Framework Initiative
http://www.brics.dk/Projects/CoFI

Abstract

Heterogeneous Casl (HetCasl) allows mixing specifications written
in different logics (using translations between the logics). It extends
Casl only at the level of structuring constructs, by adding constructs
for choosing the logic and translating specifications among logics. Het-
Casl is needed when combining specifications written in Casl with
specifications written in its sublanguages and extensions. HetCasl
also allows the integration of logics that are completely different from
the Casl logic.
This document provides a detailed definition of the HetCasl syntax
and an informal description of the semantics, building on the existing
Casl Summary [CoF04].

i

Contents

1 Heterogeneous Concepts 1

1.1 Institutions . 1

1.2 Institution Morphisms and Comorphisms 2

1.3 Logic Graphs . 3

2 Heterogeneous Constructs 6

2.1 The Current Logic . 6

2.2 Heterogeneous Structured Specifications 7

2.2.1 Logic Qualifications 7

2.2.2 Logics . 8

2.2.3 Data Specifications 8

2.2.4 Institution Morphisms and Comorphisms 8

2.2.5 Symbol Lists . 9

2.2.6 Reductions . 10

2.2.7 Symbol Mappings 10

2.3 Translations . 11

2.4 Fitting Arguments . 12

2.4.1 View Definitions . 12

2.5 Heterogeneous Architectural Specifications 12

2.6 Heterogeneous Specification Libraries 12

ii

CONTENTS iii

Appendices A–1

A Abstract Syntax A–1

A.1 Structured Specifications . A–2

A.2 Specification Libraries . A–3

B Abbreviated Abstract Syntax B–1

B.1 Structured Specifications . B–1

B.2 Specification Libraries . B–2

C Concrete Syntax C–1

C.1 Context-Free Syntax . C–1

C.2 Structured Specifications . C–2

C.3 Specification Libraries . C–3

C.4 Lexical Syntax . C–3

Index C–4

About this document

This document gives a detailed summary of the syntax and intended seman-
tics of HetCasl. It is intended for readers already familiar with Casl,
in particular with Casl structured specifications and libraries, see [CoF04].
Like the Casl Summary [CoF04], this document provides little or nothing
in the way of discussion or motivation of design decisions; for such matters,
see in particular [Mos03].

Structure

The document consists of a chapter explaining the semantic concepts needed
for heterogeneous specification (Chap. 1), and a chapter (Chap. 2) describ-
ing the language constructs of HetCasl (which extend Casl structured
specifications and libraries).

Like the Casl Summary [CoF04], this document provides appendices con-
taining the abstract syntax (Appendices A and B) and the concrete syntax
(Appendix C) of HetCasl specifications.

Acknowledgements

The author wishes to thank Bernd Krieg-Brückner, Klaus Lüttich, Christian
Maeder, Lutz Schröder and Andrzej Tarlecki for discussions about the design
of HetCasl and about heterogeneous specification in general, as well as the
participants of CoFI for the joint work on Casl, which eventually laid the
grounds for the development of HetCasl.

iv

Chapter 1

Heterogeneous Concepts

1.1 Institutions

HetCasl exploits the fact that Casl structured and architectural spec-
ifications are defined independently of the underlying framework of basic
specifications, formalized in terms of so-called institutions [GB92] (some
category-theoretic details are omitted below) and proof systems.

A basic specification framework may be characterized by:

• a class Sig of signatures Σ, each determining the set of symbols
|Σ| whose intended interpretation is to be specified, with morphisms
between signatures;

• a class Mod(Σ) of models, with homomorphisms between them,
for each signature Σ;

• a set Sen(Σ) of sentences (or axioms), for each signature Σ;

• a relation |= of satisfaction , between models and sentences over the
same signature; and

• (optionally) a proof system , for inferring sentences from sets of sen-
tences.

A signature morphism σ : Σ → Σ′ determines a translation function
Sen(σ) on sentences, mapping Sen(Σ) to Sen(Σ′), and a reduct function
Mod(σ) on models, mapping Mod(Σ′) to Mod(Σ).1 Satisfaction is re-
quired to be preserved by translation: for all S ∈ Sen(Σ),M ′ ∈Mod(Σ′),

Mod(σ)(M ′) |= S ⇐⇒ M ′ |= Sen(σ)(S).
1In fact Sig is a category, and Sen(.) and Mod(.) are functors. The categorical aspects

of the semantics of Casl are emphasized in its formal semantics [CoF04].

1

1.2. INSTITUTION MORPHISMS AND COMORPHISMS 2

If present, the proof system is required to be sound, i.e., sentences inferred
from a specification are always consequences; moreover, inference is to be
preserved by translation.

The semantics of a structured specification consists of a signature Σ together
with a class of models in Mod(Σ). A specification is said to be consistent
when there are some models that satisfy all the sentences, and inconsis-
tent when there are no such models. A sentence is a consequence of a
specification if it is satisfied in all the models of the specification.

1.2 Institution Morphisms and Comorphisms

Heterogeneous specifications involve several institutions, which are related
by institution morphisms and comorphisms [GR02].

An institution morphism from an institution I to an institution J consists
of the following components:

• a translation Φ of I-signatures to J-signatures,

• a translation α of J-sentences over Φ(Σ) to I-sentences over Σ,

• a translation β of I-models over Σ to J-models over Φ(Σ),

such that satisfaction is preserved by translation along the institution mor-
phism: for all Σ ∈ SigI , M ∈ModI(Σ) and ϕ′ ∈ SenJ(Φ(Σ)),

M |=I
Σ αΣ(ϕ′) ⇐⇒ βΣ(M) |=J

Φ(Σ) ϕ

While institution morphisms often are projections expressing the fact that
a “richer” institution is built over a “poorer” one, institution comorphisms
often formalize inclusions or encodings between institution. An institution
comorphism is similar to an institution morphism; only the directions of
sentence and model translation change. It consists of the following compo-
nents:

• a translation Φ of I-signatures to J-signatures,

• a translation α of I-sentences over Σ to J-sentences over Φ(Σ),

• a translation β of J-models over Φ(Σ) to I-models over Σ,

such that satisfaction is preserved by translation along the institution co-
morphism: for all Σ ∈ SigI , M ′ ∈ModJ(Φ(Σ)) and ϕ ∈ SenI(Σ):

M ′ |=J
Φ(Σ) αΣ(ϕ) ⇐⇒ βΣ(M ′) |=I

Σ ϕ.

1.3. LOGIC GRAPHS 3

J
JJ

��QQ

�� QQ

!!aa

�� QQ

'

&

$

%
CASL

CoCASL CASL-LTL

CSP-CASL

SB-CASLHasCASL

SubFOL= PFOL=

FOL=

Horn=• •

Graph of CASL

proposed extensions

sublanguages and

Figure 1.1: A sample logic graph.

Simple theoroidal institution morphisms and comorphisms [GR02] ad-
mit extra flexibility: signatures may be mapped to theories (where a the-
ory consists of a signature and a set of sentences over that signature). In
the sequel, we allow simple theoroidal (co)morphisms when we talk about
(co)morphisms.

An institution comorphism is said to be a subinstitution comorphism ,
if its signature and sentence translation components are embeddings, and
its model translation component is an isomorphism. An institution I is
said to be a subinstitution of an institution J if there is a subinstitution
comorphism from I to J .2

Finally, a transformation τ between two institution morphisms (Φ1, α1, β1) :
I → J and (Φ2, α2, β2)) : I−→J consists of a family of signature morphisms
τΣ : Φ1(Σ)−→Φ2, indexed by signature Σ in I, and satisfying some natu-
ral compatibility requirements. Transformations between comorphisms are
defined similarly.

1.3 Logic Graphs

Heterogeneous specification is based on an arbitrary but fixed graph of in-
stitutions, morphisms, comorphisms and transformations, which we call the
logic graph . We will henceforth speak of logics when speaking about the
institutions of the logic graph. Each logic, morphism and comorphism in
the logic graph has a unique name , which is needed for referring to it.3

2The dual notion, subinstitution morphism, does not cover typcial examples, e.g. the
inclusion of equational algebra into first-order logic.

3The logic graph is implicitly extended with identities and compositions, yielding a
2-category of morphisms and a 2-category of comorphisms.

1.3. LOGIC GRAPHS 4

We will assume that the logic graph comes with a default logic (which for
the purposes of HetCasl is the institution underlying Casl). We also will
assume that some of the subinstitution comorphisms in the logic graph are
marked as (default) logic inclusions. However, between a given pair of
logics, at most one logic inclusion is allowed. The source logic of a logic
inclusion is said to be a sublogic of the target logic. The logic inclusions
are subject to a coherence condition : given two paths of inclusions be-
tween two logics, there must be a comorphism transformation between the
composites of the paths.4

Similarly, we assume that some of the institution morphisms are marked as
(default) logic projections, again with the proviso that between a given
pair of logics, at most one logic projection is allowed, and also with a coher-
ence condition similar to that of logic inclusions.

A subset of the logics of the logic graph is marked as main logics. Each
main logic comes with an associated set of sublogics.

We further assume an (associative, symmetric, idempotent) partial union
operation on the logics of the logic graph. If the union of two logics is defined,
we require that both logics are included in the union via logic inclusions, and
that the union is minimal (w.r.t. the sublogic relation) with this property.
With the help of this binary union it is easy to define unions of finite lists
of logics.

For proof-theoretic purposes, it is also required that each logic in the logic
graph can be mapped (via some comorphism in the logic graph) to a logic
equipped with a proof system, such that this mapping preserves and reflects
semantic consequence.

The Grothendieck logic5 of the logic graph puts all signatures of all in-
volved logics side by side (hence, Grothendieck signatures are pairs con-
sisting of a logic and a signature in that logic). A signature morphism in
this large realm of signatures consists of an intra-institution signature mor-
phism plus an inter-institution translation (along some institution morphism
or comorphism). Sentences, models and satisfaction for a signature of the
Grothendieck logic are just the sentences, models and satisfaction of that
signature in the respective logic. Translation of sentences and models is
given by composing the intra-institution translation induced by the signa-
ture morphism with the inter-institution translation given by the institution
morphism or comorphism.

4This ensures that between two given logics in the 2-category of comorphisms, there is
only one logic inclusion up to connectedness via 2-cells. Note that 2-cells are factorized
out in the Grothendieck construction below.

5Technically, this construction corresponds to a quotient in the sense of [Mos02] of a
Bi-Grothendieck institution [Mos03] — the latter can be regarded as a Grothendieck insti-
tution in the sense of [Dia02] by regarding institution morphisms as spans of comorphisms.

1.3. LOGIC GRAPHS 5

The (co)morphism transformations in the logic graph lead to identification
of certain signature morphism in the Grothendieck logic (this concerns sig-
nature morphisms that are conceptually “the same”, and in particular are
known to have identical induced sentence and model translations).

A signature inclusion in the Grothendieck logic is a signature morphism
that consists of an intra-institution inclusion and a logic inclusion. The
union of two signatures in the Grothendieck logic is constructed by trans-
lating the two signatures in the union of the underlying logics, and uniting
them there (note that either of these steps may be undefined, leading to
undefinedness of the signature union in the Grothendieck logic).

Some logics in the logic graph may be marked as process logics. Each
process logic has an associated data logic, which is required to be included
in the process logic by means of a logic inclusion.

Chapter 2

Heterogeneous Constructs

This chapter indicates the abstract and concrete syntax of the constructs of
heterogeneous specifications, extending those for Casl specifications. The
semantics of a heterogeneous specification consists of a signature in the
Grothendieck logic and a class of models over that signature. It is assumed
that for any of the logics in the logic graph, there is an abstract syntax and
semantics for basic specifications as well as for symbol lists and mappings.

For an introduction to the form of grammar used here to define the ab-
stract syntax of language constructs, see Appendix A, which also provides
the grammar defining the abstract syntax of the HetCasl specification
language (as an extension of the Casl grammar).

The central slogan is: heterogeneous specification is just ordinary specifica-
tion over the Grothendieck logic. The rest of this chapter details how this
works.

2.1 The Current Logic

Within a homogeneous Casl structured specification, the current signa-
ture (also called local environment) may vary. Within a heterogeneous
structured specification, also the current logic may vary. Since Grothendieck
signatures consist of a logic and an ordinary signature, the current logic may
be regarded as part of the local environment. However, there is also a current
logic at the level of libraries, and a construct for changing the current logic.
This is necessary in order to determine the logic in which the empty local
environment (which is the empty signature in the current logic) is formed.

At some places, (implicit) coercions into the current logic may take place.
More precisely, this happens for logic qualifications and data specifications

6

2.2. HETEROGENEOUS STRUCTURED SPECIFICATIONS 7

as introduced below. A specification is coerced into the current logic by
translating its logic into the current logic using the corresponding logic in-
clusion. If there is no logic inclusion between the two logics, the construct
involving the coercion is ill-formed.

Note that at other places, implicit logic coercions are induced by the def-
inition of unions of Grothendieck signatures in Sect. 1.3 above. E.g., the
semantics of instantiations of generic specifications in Casl is such that the
resulting signature of the instantiation is united with the local environment.
When e.g. Casl specification downloaded from a Casl library is referenced
in a library written in a Casl extension, this has the effect that the Casl
specification is coerced to the logic of the Casl extension.

The local environment of a heterogeneous specification may be translated
only along logic inclusions, and may not be affected by other logic transla-
tions. This in particular means that translations and reductions involving
non-inclusion (co)morphisms may not affect the local environment. Other-
wise, the heterogeneous specification is ill-formed.

2.2 Heterogeneous Structured Specifications

SPEC ::= ... | LOGIC-QUALIFICATION | DATA-SPEC

A logic qualification selects a particular logic. A data specification is a
concise notation for writing the data and process parts of a specification in
a process logic. The syntax of Casl symbol lists and symbol mappings
is extended in HetCasl in such a way that also inter-logic translations,
reductions, fitting maps and views are allowed. The remaining Casl struc-
turing constructs are available unchanged in HetCasl, but now with a
heterogeneous meaning. Revealings and local specifications must be homo-
geneous, however. The semantics of basic specifications is determined by
the semantics of basic specifications for the current logic.

2.2.1 Logic Qualifications

LOGIC-QUALIFICATION ::= logic-qual LOGIC SPEC

A logic qualification is written:

logic L SP

L must denote a logic in the logic graph. The specification SP gets the
empty signature for that logic as local environment (this is similar to closed
specifications). The result is then coerced into the enclosing current logic.

2.2. HETEROGENEOUS STRUCTURED SPECIFICATIONS 8

2.2.2 Logics

LOGIC ::= SIMPLE-LOGIC | SUBLOGIC

SIMPLE-LOGIC ::= simple-logic LOGIC-NAME

SUBLOGIC ::= sublogic LOGIC-NAME LOGIC-NAME

LOGIC-NAME ::= SIMPLE-ID

A SIMPLE-LOGIC is written:

LN

LN must be the name of a main logic in the logic graph.

A SUBLOGIC is written

LN1 . LN2

LN1 and LN2 must be a logic names in the logic graph, such that LN1 is a
main logic and LN2 is a sublogic of LN1 .

2.2.3 Data Specifications

DATA-SPEC ::= data-spec SPEC SPEC

A data specification is written:

data SP1 SP2

The current logic is required to be a process logic. SP1 gets as local en-
vironment the empty signature in the data logic of the current logic. The
resulting signature is then coerced into the current logic, and the result of
this coercion is added to the local environment for SP2 .

2.2.4 Institution Morphisms and Comorphisms

The same syntax is used for both institution morphisms and comorphisms. It
is determined by the context whether a morphism or a comorphism is needed.
In the sequel, we will sometimes use ‘morphism‘ when both a morphism or
a comorphism can be meant.

MORPHISM ::= NAMED-MORPHISM | QUALIFIED-MORPHISM

| ANONYMOUS-MORPHISM | DEFAULT-MORPHISM

NAMED-MORPHISM ::= named-mor MORPHISM-NAME

QUALIFIED-MORPHISM ::= qual-mor MORPHISM-NAME LOGIC LOGIC

ANONYMOUS-MORPHISM ::= anonymous-mor LOGIC LOGIC

DEFAULT-MORPHISM ::= default-mor LOGIC

2.2. HETEROGENEOUS STRUCTURED SPECIFICATIONS 9

MORPHISM-NAME ::= SIMPLE-ID

A named morphism NAMED-MORPHISM is written

MN

MN must be the name of an institution morphism or comorphism in the
logic graph.

A qualified morphism QUALIFIED-MORPHISM is written

MN : LN1 → LN2

The sign ‘→‘ is input as ‘->‘.

LN1 and LN2 must be names of logics in the logic graph, and MN must
be the name of an institution morphism or comorphism in the logic graph,
with source LN1 and target LN2 .

An anonymous morphism ANONYMOUS-MORPHISM is written

LN1 → LN2

LN1 and LN2 must be names of logics in the logic graph, and there must
be a unique institution morphism or comorphism in the logic graph having
source LN1 and target LN2 .

An default (inclusion or projection) morphism DEFAULT-MORPHISM is written

→ L

L must be the name of a logic in the logic graph. If the enclosing construct
requires an institution comorphism, there must be a (necessarily unique)
logic inclusion from the source logic (as determined by the enclosing con-
struct) to L. If the enclosing construct requires an institution morphism,
there must be a (necessarily unique) logic projection from the source logic
(as determined by the enclosing construct) to L.

2.2.5 Symbol Lists

HET-SYMB-ITEMS ::= HOM-SYMB-ITEMS | LOGIC-REDUCTION

HOM-SYMB-ITEMS ::= hom-symb-items SYMB-ITEMS*

LOGIC-REDUCTION ::= logic-reduction MORPHISM

A heterogeneous symbol list HET-SYMB-ITEMS* denotes a signature mor-
phism in the Grothendieck logic. Each HET-SYMB-ITEMS denotes such a
signature morphism, and the signature morphism for a HET-SYMB-ITEMS* is

2.2. HETEROGENEOUS STRUCTURED SPECIFICATIONS 10

obtained by composing all these signature morphisms. The composition may
involve both homogeneous and heterogeneous components, e.g. as follows:

(L1,Σ1) ⊇ (L1,Σ2) 7→ (L2,Φ(Σ2)) ⊇ (L2,Σ3) 7→ (L3,Φ′(Σ3)) . . . ,

where the “7→” components denote institution morphisms and the “⊇” com-
ponents denote intra-institution signature inclusions. Each HET-SYMB-ITEMS
gets a required target signature, which initially is the signature of the spec-
ification of the enclosing REDUCTION, and then is the source signature of
the Grothendieck signature morphism constructed from the preceding list
of HET-SYMB-ITEMS.

A logic reduction LOGIC-REDUCTION is written:

logic MOR

MOR must determine an institution morphism. The source logic of the in-
stitution morphism must match the required target signature as determined
by the list of preceding HET-SYMB-ITEMS. The institution morphism con-
tributes to the Grothendieck signature morphism denoted by the enclosing
symbol list by mapping to its target logic. The resulting signature is the
new required target signature.

Note that institution morphisms are defined in a way that models are mapped
along their signature translation. The signature translation of the morphism
is analoguous to the signature reduction as determined by a homogeneous
SYMB-ITEMS*, and the model translation of the morphism is analoguous the
model reduction as determined by a homogeneous SYMB-ITEMS*.

2.2.6 Reductions

The abstract syntax of reductions is changed as follows:

REDUCTION ::= reduction SPEC RESTRICTION

RESTRICTION ::= HIDDEN | REVEALED

HIDDEN ::= hidden HET-SYMB-ITEMS+

REVEALED ::= revealed SYMB-MAP-ITEMS+

In this way, heterogeneous reductions can be formed. Heterogeneous symbol
lists are not allowed within revealings (i.e. revealings are always required to
be homogeneous).

2.2.7 Symbol Mappings

HET-SYMB-MAP-ITEMS ::= HOM-SYMB-ITEMS | LOGIC-TRANSLATION

2.3. TRANSLATIONS 11

HOM-SYMB-MAP-ITEMS ::= hom-symb-map-items SYMB-MAP-ITEMS*

LOGIC-TRANSLATION ::= logic-translation MORPHISM

A heterogeneous symbol mapping HET-SYMB-MAP-ITEMS* denotes a signa-
ture morphism in the Grothendieck logic. Each HET-SYMB-MAP-ITEMS de-
notes such a signature morphism, and the signature morphism for a HET-SYMB-MAP-ITEMS*
is obtained by composing all these signature morphisms. The composition
may involve both homogeneous and heterogeneous components, e.g. as fol-
lows:

(L1,Σ1) → (L1,Σ2) 7→ (L2,Φ(Σ2)) → (L2,Σ3) 7→ (L3,Φ′(Σ3)) . . .

where the “ 7→” components denote institution morphisms and the “→” com-
ponents denote intra-institution signature inclusions. Each HET-SYMB-MAP-ITEMS
gets a required source signature, which initially is the signature of the
(source) specification of the enclosing construct, and then is the source signa-
ture of the Grothendieck signature morphism constructed from the preceding
list of HET-SYMB-MAP-ITEMS.

A logic translation LOGIC-TRANSLATION is written:

logic MOR

MOR must determine an institution comorphism. The source logic of the
institution comorphism must match the required source logic as determined
by the list of preceding HET-SYMB-MAP-ITEMS. The institution comorphism
contributes to the Grothendieck signature morphism denoted by the enclos-
ing symbol mapping by mapping to its target logic. The resulting signature
is the new required source signature. Note that institution comorphisms
are defined in a way that models are mapped against their signature trans-
lation. The signature translation of the comorphism is analoguous to the
signature translation as determined by a homogeneous SYMB-MAP-ITEMS*,
and the model translation of the comorphism is analoguous to the model
reduction as determined (also in a contravariant way) by a homogeneous
SYMB-MAP-ITEMS.

2.3 Translations

TRANSLATION ::= translation SPEC RENAMING

RENAMING ::= renaming HET-SYMB-MAP-ITEMS+

In this way, heterogeneous translations can be formed.

2.4. FITTING ARGUMENTS 12

2.4 Fitting Arguments

FIT-SPEC ::= fit-spec SPEC HET-SYMB-MAP-ITEMS*

For heterogeneous (i.e. those involving logic translations) fitting maps and
(as well as for heterogeneous views), the rules determining a unique signature
morphism between two given signatures (Sect. I:4.1.3 of the Casl Reference
Manual [CoF04]) do not apply. Rather, each homogeneous sub-part of the
symbol mapping has to explicitly map all the symbols of the appropriate
source signature.

2.4.1 View Definitions

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE HET-SYMB-MAP-ITEMS*

See the remark about heterogeneous fitting maps above.

2.5 Heterogeneous Architectural Specifications

The syntax and semantics of architectural specifications remains as for Casl,
except that the underlying logic is the Grothendieck logic. Like for struc-
tured specifications above, the syntax and semantics of fitting maps has
changed:

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM HET-SYMB-MAP-ITEMS*

2.6 Heterogeneous Specification Libraries

There is one new construct at the level of specification libraries.

LIB-ITEM ::= ... | LOGIC-SELECTION

LOGIC-SELECTION ::= logic-select LOGIC

A logic selection is written:

logic L

2.6. HETEROGENEOUS SPECIFICATION LIBRARIES 13

L must denote a logic in the logic graph, which is used as current logic for the
subsequent library items (until the next LOGIC-SELECTION). The selection of
the current logic does not affect downloads from other libraries. Vice versa,
downloads (as well as other library items that are not logic selections) can
change the current logic only locally. That is, the current logic remains
unchanged for the next library item (until a logic selection occurs).

Bibliography

[CoF] CoFI. The Common Framework Initiative for algebraic specifica-
tion and development, electronic archives. Notes and Documents
accessible from http://www.cofi.info/.

[CoF04] CoFI (The Common Framework Initiative). Casl Reference Man-
ual. LNCS Vol. 2960 (IFIP Series). Springer, 2004.

[Dia02] R. Diaconescu. Grothendieck institutions. Applied categorical
structures, 10:383–402, 2002.

[GB92] J. A. Goguen and R. M. Burstall. Institutions: Abstract model
theory for specification and programming. Journal of the Associ-
ation for Computing Machinery, 39:95–146, 1992. Predecessor in:
LNCS 164, 221–256, 1984.

[GR02] J. Goguen and G. Rosu. Institution morphisms. Formal aspects of
computing, 13:274–307, 2002.

[Mos02] T. Mossakowski. Comorphism-based Grothendieck logics. In
K. Diks and W. Rytter, editors, Mathematical foundations of com-
puter science, volume 2420 of LNCS, pages 593–604. Springer, 2002.

[Mos03] T. Mossakowski. Foundations of heterogeneous specification. In
M. Wirsing, D. Pattinson, and R. Hennicker, editors, Recent Trends
in Algebraic Development Techniques, 16th International Work-
shop, WADT 2002, Frauenchiemsee, Germany, 2002, Revised Se-
lected Papers, LNCS Vol. 2755, pages 359–375. Springer, 2003.

14

Appendices

15

Appendix A

Abstract Syntax

The abstract syntax is central to the definition of a formal language. It
stands between the concrete representations of documents, such as marks
on paper or images on screens, and the abstract entities, semantic relations,
and semantic functions used for defining their meaning.

The abstract syntax has the following objectives:

• to identify and separately name the abstract syntactic entities;

• to simplify and unify underlying concepts, putting like things with
like, and reducing unnecessary duplication.

There are many possible ways of constructing an abstract syntax, and the
choice of form is a matter of judgement, taking into account the somewhat
conflicting aims of simplicity and economy of semantic definition.

The abstract syntax is presented as a set of production rules in which each
sort of entity is defined in terms of its subsorts:

SOME-SORT ::= SUBSORT-1 | ... | SUBSORT-n

or in terms of its constructor and components:

SOME-CONSTRUCT ::= some-construct COMPONENT-1 ... COMPONENT-n

The productions form a context-free grammar; algebraically, the nontermi-
nal symbols of the grammar correspond to sorts (of trees), and the terminal
symbols correspond to constructor operations. The notation COMPONENT* in-
dicates repetition of COMPONENT any number of times; COMPONENT+ indicates
repetition at least once. (These repetitions could be replaced by auxiliary
sorts and constructs, after which it would be straightforward to transform
the grammar into a Casl FREE-DATATYPE specification.)

A–1

A.1. STRUCTURED SPECIFICATIONS A–2

The context conditions for well-formedness of specifications are not deter-
mined by the grammar (these are considered as part of semantics).

The grammar here has the property that there is a sort for each construct
(although an exception is made for constant constructs with no components).
Appendix B provides an abbreviated grammar defining the same abstract
syntax. It was obtained by eliminating each sort that corresponds to a single
construct, when this sort occurs only once as a subsort of another sort.

The following nonterminal symbol corresponds to the Casl syntax, and are
left unspecified here: SIMPLE-ID. The grammars are given as extensions of
the corresponding grammars for the Casl syntax, see part II of of the Casl
Reference Manual [CoF04].

A.1 Structured Specifications

SPEC ::= ... | LOGIC-QUALIFICATION | DATA-SPEC

LOGIC-QUALIFICATION ::= logic-qual LOGIC SPEC

LOGIC ::= SIMPLE-LOGIC | SUBLOGIC

SIMPLE-LOGIC ::= simple-logic LOGIC-NAME

SUBLOGIC ::= sublogic LOGIC-NAME LOGIC-NAME

LOGIC-NAME ::= SIMPLE-ID

DATA-SPEC ::= data-spec SPEC SPEC

MORPHISM ::= NAMED-MORPHISM | QUALIFIED-MORPHISM

| ANONYMOUS-MORPHISM | DEFAULT-MORPHISM

NAMED-MORPHISM ::= named-mor MORPHISM-NAME

QUALIFIED-MORPHISM ::= qual-mor MORPHISM-NAME LOGIC LOGIC

ANONYMOUS-MORPHISM ::= anonymous-mor LOGIC LOGIC

DEFAULT-MORPHISM ::= default-mor LOGIC

MORPHISM-NAME ::= SIMPLE-ID

HET-SYMB-ITEMS ::= HOM-SYMB-ITEMS | LOGIC-REDUCTION

HOM-SYMB-ITEMS ::= hom-symb-items SYMB-ITEMS*

LOGIC-REDUCTION ::= logic-reduction MORPHISM

HET-SYMB-MAP-ITEMS ::= HOM-SYMB-ITEMS | LOGIC-TRANSLATION

HOM-SYMB-MAP-ITEMS ::= hom-symb-map-items SYMB-MAP-ITEMS*

LOGIC-TRANSLATION ::= logic-translation MORPHISM

RESTRICTION ::= HIDDEN | REVEALED

HIDDEN ::= hidden HET-SYMB-ITEMS+

REVEALED ::= revealed SYMB-MAP-ITEMS+

A.2. SPECIFICATION LIBRARIES A–3

RENAMING ::= renaming HET-SYMB-MAP-ITEMS+

FIT-ARG ::= FIT-SPEC | FIT-VIEW

FIT-SPEC ::= fit-spec SPEC HET-SYMB-MAP-ITEMS*

FIT-VIEW ::= fit-view VIEW-NAME FIT-ARG*

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE HET-SYMB-MAP-ITEMS*

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM HET-SYMB-MAP-ITEMS*

A.2 Specification Libraries

LIB-ITEM ::= ... | LOGIC-SELECTION

LOGIC-SELECTION ::= logic-select LOGIC

Appendix B

Abbreviated Abstract Syntax

B.1 Structured Specifications

SPEC ::= ... | logic-qual LOGIC SPEC

| data-spec SPEC SPEC

LOGIC ::= simple-logic LOGIC-NAME

| sublogic LOGIC-NAME LOGIC-NAME

LOGIC-NAME ::= SIMPLE-ID

MORPHISM ::= named-mor MORPHISM-NAME

| qual-mor MORPHISM-NAME LOGIC LOGIC

| anonymous-mor LOGIC LOGIC

| default-mor LOGIC

MORPHISM-NAME ::= SIMPLE-ID

HET-SYMB-ITEMS ::= hom-symb-items SYMB-ITEMS*

| logic-reduction MORPHISM

HET-SYMB-MAP-ITEMS ::= hom-symb-map-items SYMB-MAP-ITEMS*

| logic-translation MORPHISM

RESTRICTION ::= hidden HET-SYMB-ITEMS+

| revealed SYMB-MAP-ITEMS+

RENAMING ::= renaming HET-SYMB-MAP-ITEMS+

FIT-ARG ::= fit-spec SPEC HET-SYMB-MAP-ITEMS*

| fit-view VIEW-NAME FIT-ARG*

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE HET-SYMB-MAP-ITEMS*

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM HET-SYMB-MAP-ITEMS*

B–1

B.2. SPECIFICATION LIBRARIES B–2

B.2 Specification Libraries

LIB-ITEM ::= ... | logic-select LOGIC

Appendix C

Concrete Syntax

The concrete syntax of HetCasl is based on concrete syntaxes for basic
specifications, symbol lists and symbol mappings for each of the logics in
the logic graph.

A parser for HetCasl is available via the Heterogeneous Tool Set (Hets)
web page

http://www.tzi.de/cofi/hets

It is based upon parsers for basic specifications, symbol lists and symbol
mappings for each of the logics in the logic graph.

Section C.1 below provides a context-free grammar for the HetCasl input
syntax in terms of changes and additions to the context-free grammar of
Casl (see Chap. II:3 of [CoF04]). It has been derived from the ‘abbreviated’
abstract syntax grammar in Appendix B.

The lexical syntax, comments and annotations, the literal syntax, and the
display format is identical that of Casl, resp. that of the respective logic in
the logic graph.

C.1 Context-Free Syntax

The following meta-notation for context-free grammars is used:

Nonterminal symbols are written as uppercase words, possibly hyphen-
ated, e.g., SORT, BASIC-SPEC.

Terminal symbols are written as lowercase words, e.g. free, assoc.

C–1

C.2. STRUCTURED SPECIFICATIONS C–2

Sequences of symbols are written with spaces between the symbols. The
empty sequence is denoted by the reserved nonterminal symbol EMPTY.

Optional symbols are underlined, e.g. end, ;. This is used also for the
optional plural ‘s’ at the end of some lowercase words used as terminal
symbols, e.g. sorts.

Repetitions are indicated by ellipsis ‘...’, e.g. MIXFIX...MIXFIX denotes
one or more occurrences of MIXFIX, and [SPEC]...[SPEC] denotes one
or more occurrences of [SPEC]. Repetitions often involve separators,
e.g. SORT,...,SORT denotes one or more occurrences of SORT separated
by ‘,’.

Alternative sequences are separated by vertical bars, e.g. idem | unit TERM
where the alternatives are idem and unit TERM.

Production rules are written with the nonterminal symbol followed by
‘::=’, followed by one or more alternatives. When a production ex-
tends a previously-given production for the same nonterminal symbol,
this is indicated by writing ‘...’ as its first alternative.

Start symbols are not specified.

C.2 Structured Specifications

SPEC ::= ... | logic LOGIC : GROUP-SPEC

| data GROUP-SPEC SPEC

LOGIC ::= LOGIC-NAME

| LOGIC-NAME . LOGIC-NAME

LOGIC-NAME ::= SIMPLE-ID

MORPHISM ::= MORPHISM-NAME

| MORPHISM-NAME : LOGIC -> LOGIC

| LOGIC -> LOGIC

| -> LOGIC

MORPHISM-NAME ::= SIMPLE-ID

HET-SYMB-ITEMS ::= SYMB-ITEMS ,..., SYMB-ITEMS

| logic MORPHISM

HET-SYMB-MAP-ITEMS ::= SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

| logic MORPHISM

RESTRICTION ::= hide HET-SYMB-ITEMS ,..., HET-SYMB-ITEMS

| reveal SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

C.3. SPECIFICATION LIBRARIES C–3

RENAMING ::= with HET-SYMB-MAP-ITEMS ,..., HET-SYMB-MAP-ITEMS

FIT-ARG ::= SPEC fit HET-SYMB-MAP-ITEMS ,..., HET-SYMB-MAP-ITEMS

| SPEC

| view VIEW-NAME

| view VIEW-NAME [FIT-ARG]...[FIT-ARG]

VIEW-DEFN ::= view VIEW-NAME : VIEW-TYPE end

| view VIEW-NAME : VIEW-TYPE =

HET-SYMB-MAP-ITEMS ,..., HET-SYMB-MAP-ITEMS end

| view VIEW-NAME SOME-GENERICS : VIEW-TYPE end

| view VIEW-NAME SOME-GENERICS : VIEW-TYPE =

HET-SYMB-MAP-ITEMS ,..., HET-SYMB-MAP-ITEMS end

FIT-ARG-UNIT ::= UNIT-TERM

| UNIT-TERM fit HET-SYMB-MAP-ITEMS ,..., HET-SYMB-MAP-ITEMS

C.3 Specification Libraries

LIB-ITEM ::= ... | logic LOGIC

C.4 Lexical Syntax

For parsing outside basic specifications, symbol lists and symbol mappings,
the lexical syntax is almost identical to that of Casl. There are two addi-
tional keywords:

logic data

and the keywords specific to the Casl logic are removed from the list of
keywords.

For parsing basic specifications, symbol lists and symbol mappings in a logic,
the lexical syntax of that logic is used.

Index

axioms, 1

coercions, 6
comorphisms, 2
consequence, 2
consistent, 2
current logic, 6
current signature, 6

data logic, 5
data specification, 7
default logic, 3

Grothendieck logic, 4

homomorphisms, 1

inconsistent, 2
institution morphisms, 2
institutions, 1

logic graph, 3
logic inclusions, 4
logic projections, 4
logic qualification, 7

main logics, 4
models, 1
morphisms, 1

process logics, 5
proof system, 1

reduct, 1

satisfaction, 1
sentences, 1
signature inclusion, 4
signature morphism, 1
signatures, 1
Simple theoroidal, 2
subinstitution, 3
subinstitution comorphism, 3
sublogic, 4

symbol lists, 7
symbol mappings, 7
symbols, 1

transformation, 3
translation, 1

union, 4

C–4

