Compiler Construction
Solutions to Exercises

Berthold Hoffmann
Informatik, Universitat Bremen, Germany
hof@informatik.uni-bremen.de

January /February 2011

These are solutions to most of the exercises. The explana-
tions may be very brief, because of lack of time for trans-
lating them to English.

Solution 1: Static or Dynamic?

For C, JAvA,and HASKELL folds:

1. Binding is of names to types, classes, variables, procedures is static, with one notable excep-
tion: in Java, the binding of names to method bodies is, in general, dynamic.

2. In C the type of a variable is static, even if it is not always checked.

In Haskell, variables are “single-assignment”, and static as well. In Java, variables have a
static base type b, and may contain, dynamically, values of some subtype of b.

3. In C or Java, an array of the form“[n]{type)a” has a static length. In C, arrays can be declared
as pointers, and be allocated (with malloc) a storage of dynamic size.

The predefined arrays of Haskell are of dynamic size.

4. Values of a variable are dynamic, in general. Only if the variable is “single assignment”, and
the expression defining the variable is constant, the value itsedlf is constant as well.

Solution 2: Bootstrapping

The portable Java Implementation

J ™ B J ™ B B
J’ B’ J

The compilers m und m’ use only subsets J' C J bzw. B’ C B of Java and JBC, respectively.

1: Porting to M
The JVM could be ported to C, and be translated with the native C compiler:

Now the compiler m’ can be interpreted on M, as well as every program p translated with it:

el TP

BEDER

However, the compiler will be slow on M as it is interpeted.

2: Bootstrap on M

Instead of an interpreter, we write a compiler ¢ of B’ into M code; ¢ will just be used to translate
m’ so that not all of the JVM needs t obe translated; ¢ coulkd be done in C.

B &% M| |B ¢ M
\TJ’JQ’BB”—‘
B
B

The result ¢’ can be used to compile ¢ “with itself”, in order to translate, with the resulting ¢, the
master compiler m’ to a “semi-native” Utranslatoe for Java to B in M machinecode:

B &% M| |B <M J ™ B J ™ B
B'|B ¢ M|M B'|B < M|M
M

B/

;
M

Now we have the required native compiler. The B programs produced by it can be interpreted:

: aARane
J|J ™ M|B

<
=]z == =

Solution 3: Regular Definitions

Identifiers
identifier = letter ((,)? (letter | digit))*
letter = a|---z|A|---Z
digit = 0]---9
String Literals
string — (n " ‘ ~ [u7 \n])* "

Solution 4: Finite Automata

Identifiers
NFA B

%

—

_>

DFA The quotient set construction gives the following states and transitions:

1. Py = E(0) = {0}.

2. P, = F(Py, letter) = {1,2,3,5} with transition under letter.
3. P, = F(Py,.) = {5} with transition under _.
4. Py = F(Py,letgit) = {1,3,4,5} with transition under letgit.

5. F(Ps,_) = {6} = P, with transition under _.

6. F(Ps, letter|digit) = {1,3,4,5} = P3 with transition under letgit.

This gives the following DFA:

letter
©—

letgit

Minimal DEA States P, and P3 turn out to be equivalent. There are no dead or unreachable
states. also:

letgit

letgit

letgit

String Literals
NFA

" (" | StringChar)™ "

© @

" | StringChar)™ "

- @@ B0

StringChar

DFA The quotient set construction gives the following states and transitions:
1. Py = E(0) = {0}.
2. P = F(Py,") ={2,3,4} with transition under ".
3. P, =F(P,") ={1,6} with transition under ".
4. Py = F(Py, StringChar) = {3, 4,5} with transition under StringChar.

ot

. F(Ps,")={1,6} = P, with transition under ".
6. F(Ps, StringChar) = {3,4,5} = Ps with transition under StringChar.

The DFAD has following transition diagram:

€ StringChar &
StringChar

Minimal DFA States P; und P; turn out to be equivalent. No state is dead or unreachable:

StringChar
StringChar

©—

Solution 5: Recognition of Comments

1. Regular Definition
comment = | x (;\ (*)+W> (*)*/

Here, t; ... t, denotes the complement of the set {t1,...,t,}, that is, all characters except t1,...,tn.

2. NFA

0-0®

3. DFA The quotient set construction gives the following states and transitions:

1.

> W

o«

10.

© ® N o

Py = E(0) = {0}.
Py—,P, = F(Py,/) ={2}.

PPy = F(Py,*) = {3,4,6,8,11}.
Py—.Py = F(Py,%) = {5,8,9,10,11, 12}
PysPy = F(Py,%) = {4,6,7,8,11}.
Py—/Ps = F(P5,/) = {1}.

P34>*P"(P37 *) = {57 9,8,10,11, 12} = Ps.
Ps—F(P3,*/) = {4,6,7,8,11} = P,.
P44*F(P4, *) = {‘57&97 10,11, 12} = P

Py—3F(Py,%) = {4,6,7,8,11} = P,.

The DFA is as follows:

4. Minimal DFA States P, = {3,4,6,8,11} and P, = {4,6,7,8,11} turn out to be equivalent,
since both are not final, and their successor states (under * and *) are the equivalent:

*

Recognition of Float Literals

589
101112

L0

The start state of the DFA for float literals represents the expression:

Ry

R’

Ry
R3

digit*. digit™ exp’

. dz'gz't+ exp’

digit digit*. digitt exp’
. digitt exp’

digit digit*. digit™ exp’
digit™ exp’)

digit digit" exp’
digit*. digit"™ exp’ = Ry
digit® exp’

e exp’

digit digit® exp’

€

Ele)(+ |=)" digit"
digit digit® exp’

Ry

Rs
Rs

R
Ry

Ry

(+ | =) digit®
e digit™

(+ | =) digit"
digit™

(+ | =) digit”
digit digit”

(+ [=) digit”
digit* exp’ = R3
digit”®

(+ | =) digit”
€

digit digit”

(+ [=) digit*
digit* = R5
digit™

digit digit”
digit* = R6

Solution 6: Lexical Analysis of OOPS-0 mit lex

1. Scanner without Keywords

%option noyywrap
/* Lexeme von 00PS, ohne Schliisselwdrter

(Berthold Hoffmann, hof@informatik.uni-bremen.de) */
/* Ubersetzer Sommer 2011, Ubungszettel 5 x/

/* needed for output of numbers */

Wl

#include <math.h>

%}

/* character classes */
layout [\t\n\f]
letter [a-zA-Z]
digit [0-9]

noast [~*]
noclose [*\)]

noastclose [~*\)]

/* lexeme definitions by regular expressions */
whitespace {layoutl}+

comment \(*({noast}|\#+{noastclosel}) **+\)
prchar NN T IN\R INNE NN

string \’ ({prchar}) *\’

identifier {letter}({letter}|{digitl})x*

number {digit}+

he
/* screener transformation - rather trivial x/
{whitespace} {printf("Whitespace: []1%s[]\n", yytext);}

{comment} {printf ("A comment: %s\n", yytext);}
{identifier} {printf("An identifier: %s\n", yytext);}
{string} {printf("A string literal: %s\n", yytext);}

{number} {printf ("An integer literal: %s (%d)\n", yytext, atoi(yytext));}
M= M=t | =t | | u/n | nypn | n_n | n_n | ngn g I nyn | nen | nyn {
printf ("An operator: %s\n", yytext);

}
R R G D {
printf("A delimiter: %s\n", yytext);
}
. {printf("an erroneous character: %s\n", yytext);}

Do
main(argc, argv)
int argc;
char **argv;
{
++argv; --argc; /* skip over the program name */
if (argec > 0)
yyin = fopen(argv[0], "r");
else
yyin = stdin;
yylex();
}

2. Scanner with Keywords

Keyword can be defined with the following regular expression:

keyword (AND | ATTRIBUTE | BEGIN | CLASS | ELSE | ELSEIF | END | EXTENDS | IF | IS
METHOD | MOD | NEW | NOT | OR | OVERRIDE | READ | RETURN)

The line
{keyword} {printf ("A keyword: %s\n", yytext);}

has t oappear before the line for identifiers.

3. Comparing Scanner Sizes

Called with option -v, flex reports (without keywords):

116/2000 NFA-Zustinde
30/1000 DFA-Zustinde (165 Worter)

71 Epsilon-Zustédnde, 40 Doppel-Epsilon-Zustande
532 Tabelleneintrige insgesamt bendtigt

With keywors, it reprits:

216/2000 NFA-Zusté&nde
79/1000 DFA-Zustéande (470 Worter)

90 Epsilon-Zusténde, 58 Doppel-Epsilon-Zusténde

828 Tabelleneintrédge insgesamt bendtigt

Keywords enlarge the scanner by 60%.

Solution 7: Ambiguity in Context-Free Grammars

The rules
R—R| R|RR|R+ |Rx |R?|(R)|a|b|c

define regular expressions over three terminal symbols.

The grammar is ambiguous as the a/ba und ajb|c und abc have two leftmost derivations
each, because it fails to define the associativity of alternatives and concatenations, as well as their
precedence.

As with expressions, two subcategories T' and F' of R have to be introduced, where the former
does not generate alternatives, and the latter does generate neither alternetives, nor sequences.

R — R|TI|R
T — TF|F
F = F+ [Fx |FZ|(R)

a|b|c

Then the example words above have only one leftmost derivation.

Solution 8: SLL(1)-Property for a Grammar of Commands

For the rules of statements, and the first and last rule rules of statement, the First sets are not
disjoint, and thus violate the SLL(1) condition.

2. We factorize these three rule pairs, where the conditional rules are factorized in the middle,
in oder to get an intuitive rule.

program ::= statement [J
statements ::= statement statement_rest
statement_rest = ¢ ; statement statement_rest
statement ::= if expression then statements else_part end if

| while expression do statements end while
| id assignment_rest
else_part = &| else statements
assignment_rest = ¢ | := expression

Then the First and Follower sets are as follows:

Nichtterminal Prefiz, Sucey

program - 1
statements Prefiz, (statement) elsif ,else,end
statement_rest €,; Succy (statements)
statement id ,if ,while 0,;,elsif ,else,end
else_part €,else - end
assignment_rest £,:= Succy (statement)

The grammar now satisfies the SLL(1) condition.

10

Solution 9: Recursive-Descent Parsing of Commands

1. We use a version of the syntax with EBNF operators:

program ::= statement O]
statements = statement {; statement}
statement == id [:= expression |

| while expression do statements end
| if expression then statements
{elseif expression then statements }

[else statements] end

1. Transformation in rekursive Parsierfunktionen

[statements ::=--]
= procedure statements; = procedure statements; = procedure statements;
begin begin begin
[statement {statement }] [statement |; statement;
end ; while ¢ = ; while ¢ = ;
loop scan;i loop scan;i
[statement] statement
end loop; end loop;
end ; end ;
[statement ::=---]
= procedure statement; = procedure statement;
begin begin
[id ...end | if { =id then [id [:= expression |]
end ; elsif / = while then [while ...end |
elsif / = if then [if ...end]
else ... end if ;
end ;
= procedure statement;
begin
if { = id then scan; if / = := then scan; expression end if

elsif / = while then [while ...end]
elsif £ = if then [if ...end |

else ... end if ;
end ;
= procedure statement;
begin

if £ =1id then ... (wie oben)
elsif / = while
then scan; expression; match(do); statements; match(end);
elsif £ = if then [if ...end]
else ... end if ;
end ;

11

= procedure statement;
begin

if £ =id then ... (wie oben)

elsif £ = while then ... (wie oben)

elsif / = if

then scan; expression; match(then); statements;
[{elsif expression then statements }] [[else statements ||
match(end);match(if)

else ... end if;
end ;
= procedure statement;
begin

if £ =id then ... (wie oben)

elsif £ = while then ... (wie oben)

elsif / = if

then scan; expression; match(then); statements;
while ¢ = elsif
loop scan; expression; match(then); statements;
end loop;
if / = else then scan; statements; end if;
match(end);match(if)

else ... end if ;

end ;

2. Construction of Abstract Syntax Trees

We just show how the parser for conditionals can be extended, which is the most interesting case: We
assume that new(t1,If) allocates a record with components cond, thenpart, and elsepart. Missing else
parts are represented by a node for the empty statement sequence (Skip); elsif parts are represented
by nested If nodes.

3. Parsing with Tree Construction

Every parsing procedure is turned a function returning its abstract syntax tree. The components
of the If node are filled while parsing its components.

function statement return Stmt is

var tl: Stmt;
begin

if ...

elseif . ..

elsif / = if

then new(t1,If);
scan; tl.cond := expression; match(then); t1.thenpart := statements;
while / = elsif
do t1:= tl.elsepart; new(tl,If);

scan; tl.cond := expression; match(then); tl.thenpart := statements

if / = else then scan; tl.elsepart := statements; else t1.elsepart:= Skip;
match(end);match(if);
return tl

else . ..

end if ;

end ;

12

4. Error Recovery

1. Insert a symbol. If procedure match does not find the expected symbol, it acts as if this

symbol has been present. This procedure is called if some part of an alternative has already
been parsed, e.g., for the keywords do, end, then, elseif, and else.

. Skip symbols. If no alternative of a rule can be parsed, error handling should skip all symbols

until a possible successor of the rule is found, e.g., symbols [, ; , elseif, else, and end in the
rule for statement.

. Replace a symbol. This should be done only in situations where

(a) a specific symbol is expected,

(b) the parser will not know how to continue if it is missing,

(c) the input contains a symbol that is similar to the expected symbol, and

(d) the overnext symbol is something that may follow the expected symbol.
In our example, procedure match(then) could replace words them, than, ...by then if the
overnext input symbol ia a possible starter of statement.

With elsif or else, this is not advisable, ab both symbols are optional, and resemble the next
keyword end.

Solution 10: A Grammar violating the SLR(1) condition

1. The grammar is ambiguous, since expressions like

id +1id +1id id xid *id id + id *xid

have two leftmost derivations (and two distinct derivation trees). The grammar does not
define precedence and associativity of the operators + and x .

2. The characteristic finite automaton for this grammars has states as shown in Figure 1.

Solution 11: Bottom-Up SLR(1)-Parsing

}_

}_

F

- bamyrar . Ly
0 0i3 .
?a—b*cDI— —ab—b*cD - 049(2? —b)*xcOF %E(Gb—b)*clj
OE 1 0E1—4 “ ‘s
>—bxcdbF ——bxc 0(2E 6 —4 0(2E 6 —4i 3
a a— + ﬁpb)*cﬂl— (a—b)*CD
El-43 aor BT, o 0(2E 6 — 4E 7 0(2E 6,
A a—b Fw)*cDF (a—b)*CD
OE1—4E1ﬂ»<5{>c|j|_0E1—4E1>|s5;3{>D 0(2E 6)9 0E 1
a — bx a—bxc [W*CI:H— ﬁa_b)b*clj
OE1—-4E1+5E8 OE1-4ET7 - 0E1%5 0E 1%5i3
a—bxc a—bxc F - .U
0E 1 S e
OF yes! OE1x5E8 OE 1
a—bxc F —— [+ >0
(a—0b)xc (a—b)xc
yes! -

13

My = -E
0=5 T ES My =G(M;,id),i = 0,2,4,5 =E = (E-)
E—-E+F i E E E
E—»-ExE =E —id- et
E 34 —E 5E+ -E M7 =G (M4, E)
MIZG(Miv)71207274a5 E —)E;E E - E iE
E—-E -+ F -~ L
E SE :E E — -id MgZG(M5,E)
(M ()= My =G(M;,x),i=1,6,7,8 =E—ExE
MQ_G(M’Mﬁ)aZ_Oa27475 —E %ZEiE E_>EiE
:EéﬁE.E% E—>E+E E—E -xE
—oEL E - ExE My =G(Ms,))
E - ExE /
E - (E) =E - (E)-
E—-(E) £ T A A
E —.id — 1 Mg =G(Mi,8)
T =S - E$
Figure 1: SLR(0) States for an expression grammar
= g>(a—b)*—cljl— O—(Qba—b)*—cD
0 0(2 € (
F —>(a —b)cdO+ —>a — b)cd .
p (0(2i 3 0(2E 6
. F ——=>—-b)*x—c0F ——>—5)*—cO
0(2i 0(2E 6 (a (a
o ——=>-bdd+ ——2>—b)dd .
(a (a 0(2E6 —4 0(2E 6 —4i 3
. F——b) s —OF ————=p) % —J
0(2E 6 — 4 0(2E6—4i3 (a— (a—b
F b ————F—=—p)cO
(a— (a—1b }_0(2E6—4E7)* 0L 0(2E6)* .
S) % —) % —
0(2E 6 — 4E 7 0(2E 6 a—b'" "¢ (a—b ¢
F——p)cOF ———p)cO
(a—b (a—0b 0(2E 6)9 OE 1
- A=k —OF =Sk —cl
0(2E 6)9 (a—0) (a—0)
[———d no!
(a —b) OE1x5
F ——>—cdkr no!
(a —b)x

Solution 12: Identification with Linear Visibility

1. The program has the abstract syntaxt tree below left.

14

2. Applying the attribute rules yields the attrbuted tree below right.

P P

()

L L /\D L
: : ! ! 6@ 0 B@ of! §@
Id Kd Id Kd Id Kd Id Kd I d I d Id [defAkd Id [defAkd

3. The first uses of y and x refer to k3 and k2, resp.; the last use of x refers to k1.

Solution 13: Attribute Grammar for (Global Visability

We use the abstract syntax known from Exercise 12. The semantical basis should be extended by
one operation:

e The predicate isLocal can be useful to determine whether an identifier has already be declared
within the current block.
Identification with Global Visibility

If declarations shall be visible if they appaer after (right of) their use, the attribute rulkes have to
be extended as follows:

e An attribute (a) is added to St. It shall contain all declarations visible in a block.

This is the attribute used in U.

Rules L, D, and U collect attributes v and n as before.

In rule (B), the attribute a for the contained statement is defined to be its n attribute. Th v
attribute of the statement is obtained by applying nest to the a attribute of the block.

In L, the attribute a is distributed to all children.

i, &Y e A
@h A m @ . ° @ St enter

The evaluater for this attribute grammar needs more than one traversal of every node:

15

1. For each block, the declarations are collected by computing the attributes v and n.
2. Then all uses in that block are evaluated, and all blocks, recursively.

The traversal is nested: The program node and every block has to be traversed twice before the
nested blocks are evaluated. In the Haskell function, this is done in two functions, collect: TAB —
TAB and idfy: TAB — St — St.

idfy’ :: Pr -> Pr
idfy’ (P s) = P s’ where s’ = idfy (collect (initial) s)

collect:: TAB -> St -> TAB

collect v (U _ _) =n where n = v

collect v (B s) = unnest n where n = collect (nest v) s

collect v Dxk)=n where n = enter v (x,k))

collect v (L s1 s2) = n’ where n = collect v sl; n’ = collect n s2
idfy:: TAB -> St -> St

idfy a Wx _) =Uxk’ where k’ = def a x

idfy a (B s) =B s’ where s’ = idfy a’ s; a’ = collect (unest a) s
idfy a O xk) =Dxk

idfy a (L s1 s2) =L sl1’ s2’ where s1’ = idfy a s1; s2’ = idfy a s2

Error handling is not yet included in these definitions.

Solution 14: Attribution with Simultaneous Visibility

Graphically, the attribute rules look as follows:

~

= °° @ %@
A@'\. ®;@ >a.

Id Kd

The attribution of a tree is as follows:

16

Solution 15: Type Compatibility

Just for fun, I have studied the rather elaborate type coercions in Algol-68.

Type Coercions
Types can be coerced in the following ways::

1. Widening extends the precision of numbers: short short int — short int — int —
long int — long long int, or extends the kind of numbers: int — real — compl.

2. Dereferencing yields the base type of a reference (pointer): ref 7 — 7.

Voidening coerces types to the unit type: 7 — void.

- W

Deproceduring) calls a parameterless procedure: proc 7 — 7.
5. Uniting coerceds a type to a union type containing it: 7 — union 7 o.

6. Rowing coerces values to one-element arrays: 7 — [i:i] 7.

Contexts for type coercions

The following program parts are subject to coercions:
1. strong: Actual to formal parameter of a procedure: all coercions.
2. firm: Operands to argument types of operations: no widening, no voiding, no rowing.
3. meek: Conditions of if statements: only dereferencing and deproceduring.

4. weak: Operands of structure selections and array subscriptions: only dereferencing and de-
proceduring.

5. soft: right-hand side to left-hand side of an assignment: onlx deproceduring.

Further rules define how single coercions can be combined in the different contexts.
Not bad, isn’t it?

Solution 16: Declaration Tables in Java

The signatures of the semantic basis is turned into method signatures by considering the table as
their receiver object.

We assume that identifiers are represented as numbers in the range {0,...,n}.

The contents of a table consists of objects of type Entry.

class Entry {
int Id;
Decl decl;
int level,;
Entry next, global;
}

17

class TAB {
int currentLevel;
LinkedList<Entry> nesting,
Entry[] entries = new Entryl[n];

public void init() {
nest();
enter(x_1, d_1);

enter(x_n, d_n);

};

public void nest() {
currentLevel++;
nesting.addFirst()
};

public void unnest() {

currentLevel--;

Entry e = nesting.getfirst();

while e != null {
entries[nesting.Id] = entries[nesting.Id].global;
e = e.next
s

nesting.removeFirst();

};

public void enter(Id x, Decl d) {
Entry e = new Entry;
e.Id = x;
e.decl = d;
e.level = currentLevel;
e.next = nesting.getFirst();
e.global = entries([x];
entries[x] = e

};

public Decl def(Id x) {
return entries[x].decl

};
public bool isLocal(Id x) {
return (entries[x] '= null)
&% (entries[x].level — currentLevel)

};
}

Solution 17: Declaration Tables for Overloading

No solution, sorry!

18

Solution 18: Transforming and Evaluating Expressions

The expression3 + (x % 4) mit a(x) = 3 is transformed as follows:

codew (3 + (z x4))«

= codew (3)a; codew (z * 4)a; add,;

= Idc 3;codew (x)a; codey (4)a; mul; add;
= Idc 3;code(z)a;ind;ldc 4; mul; add;
= Idc 3;Ida 3;ind;ldc 4; mul; add;

The store of the P machine takes the following states:

0
1
2
SP— 10 |3 4 0 |— 10 |— 0 |— 0 |—
4 Ida 3 3 ind 3 Idc 4 3 mul 3 add SP—>
5 SP—[3 SP—[10 10 SP—[40
6 SP— 4 4

Solution 19: Transformating Generalized Expressions

1. Predefined Functions.

codew (sf(er,...ex))a = codew(er) a;

codeyy (ex) a;
jpsf a(sf)
Instructions jpsf and retsf could be defined as follows:

jpsf a | OPC := PC; PC :=a
retsf | PC := OPC

For expressions over values that occupy k£ > 1 storage cells, the transformation scheme can stay as
it was.

The invariant for codey, must be generalized so that codey (e) sets k top cells of the stack for
every expression yielding a value of that size. The P-CODE instructions monopg, and dyopg have
to know about the size of their arguments, and how to access their components. The same would
hold for predefined functions.

2. Compound Operands. The transformation of identifiers and literals would have to be extended
as follows:

codew (v)a = codey(x)a;ind wenn gr(z) =1
= codey(z) a;mvs gr(z) sonst
codew () = Idc ry;...; Idc ry;
Here (71, ...,) represent the literal [in k > 1 storage cells, and the instruction mvs (“move static

block”) is defined as follows:

mvs n | for i :=n — 1 downto 0

do S[SP +i] := S[S[SP] + i
end ;

SP:=SP+n-—1

(Copying is done from top to bottom so that the address of the block is overwritten only in the last
step.)

19

10

43

10

Solution 19A Numeric Choice

(The exercise corresponding to this solution is hidden in the second part of Exercides 18, starting
on the last two lines of page 9 in the Exercises.)
Computed gotos for numeric choices (case) are generated as follows:

code(case e of u: Cy;...; o: C, default Cy)a
= codey(e)a;

lip ;ula

gip ;ola

Idc u

sub;

ijp;

ujp Ly - s ujp lo;
ly: code(Cy)a;ujp lg;

l,: code(Coa;ujp le
la: code(Ch)ay

This kind of transformation is good as long as the range 0..n is rather small, since the goto table
occupies n code cells. Two instructions have to be executed for every choice, a typical trade-off
between storage and time requirements.

Transformation into nested ifs is good for big n, and if many of the selected commands are
actually equal.

Numeric choice should be extended to join cases with equal commands. Then the transformation
would look as follows:

case ¢ var t: Integer :=e¢;
of €015+ -5C0ko Co; if te {80,1,...,60719-0} then C,
| C1,1y-+-,Clk; ° Cy; = elsif te {6171,...,617]@1} then C;
| Cnis---sCnk, : Cn elsif ¢t € {cy,1,...,¢nk, } then C,
default C, else C,
The condition “t € {¢n.1,-..,¢nk,} must be expresses as a disjunction “t =c¢p 1 V-V epp, } if

the language does not provide power sets over the type of e.

Solution 20: Array Transformation
It holds that gr(Complex) = 2 and

gr(array [—3.. + 3]of Complex) = (0o —u+ 1) x gr(Complex)
B-(-3)+1)x2=7x2=14

The address environment defines a(a) = 0 and «(7) = 14. The transformation is as follows; we

20

al[—3].re 0 a[-3].re 0 a[—3].re 0
a[—3].im 1 a[-3].im 1 a[—3].im 1
al—2].re 2 al-2]re 2 al—2].re 2
a[—2].im 3 al-2].im 3 a[—2].im 3
a[—1].re 4 al-1re 4 a[—1].re 4
a[—1].im 5 al-1].im 5 a[—1].im 5
al0].re 6 al0].re 6 al0].re 6
al0].im 7 a[0].im 7 al0].im 7
al[+1].re 8 a[+l].re 8 al[+1].re 8
a[+1].im 9 al[+1].im 9 a[+1].im 9
a[+2].re 10 a[+2].re 10 al[+2].re 10
a[+2].im 11 a[+2].im 11 a[+2].im 11
a[+3].re 12 al+3].re 12 a[+3].re 12
a[+3].im 13 a[+3].im 13 a[+3].im 13
1 1114 1 1114 1 1]14
ala) 0115 SP — a(ali]) [04+24+6 |15
SP— i 1|16
(a) Storing a and ¢ (b) Stack before ixa 2; inc 6 ... (c) ...and afterwords

Figure 2: Storage and subscription of static arrays

assume staic adresses, and omit the bounds checks “chk uo0”:

code(i := 1)«

= codey (i)a; codew (1)a; sto

= loa «(i); Idc 1; sto

code(ali] := ali + 1))«

= codey(a[i])a; codew (ali + 1])a; sto 2;

codey (a)a; codew (i)a; ixa 2; inc 6; codey (ali + 1])«; ind; sto 2;

loa a(a); codea(i)c; ind; ixa 2; inc 6; codea(a)a; codew (i 4+ 1)a; ixa 2; inc 6; mvs 2; sto 2;

loa 0; loa «a(i); ind; ixa 2; inc 6; loa «(a); codew (i)c; codew (1)c; add; ixa 2; inc 6; mvs 2; sto 2;
loa 0; loa 14; ind; ixa 2; inc 6; loa 0; code4(7)a; ind; Idc 1; add; ixa 2; inc 6; mvs 2; sto 2;

loa 0; loa 14; ind; ixa 2; inc 6; loa 0; loa 0; ind; Idc 1; add; ixa 2; inc 6; mvs 2; sto 2;

Executing the first command “i := i+ 1”7 sets the first storage cell to 1. Then the storage for laocal
variables looks as in Figure 2(a). The store operation is as follows, where the modifier is the element
size:

ston |fori:=0ton—1do S[S[SP —n]+1i]:=S[SP—-n+1+1
SP:=5P—-n—-1

Yes, this code is far from optimal.

Solution 21: Storage and Selection of Dynamic Arrays
Code for allocating an array is as it was:

[x: array [-n..+n] of Complex]a = [x]a a;[n]w «;[n]w «@;sad a(z) size(Complex);
Ida10;lda 5 ;ind ;neg ;lda5 ;ind ;sad 10 2;

21

Aftewrwards, the storage looks as in the left of Figure 3 ganz links illustriert. The code for x[i] is:
[x[i]la = [x]a a;dpl ;ind ;[i]w «;chd ;ixa size(type(x[i])) ;

Ida a(z) ;dpl ;ind ;lda (i) ;ind ;chd ;ixa size(type(x[i])) ;

= Ida 10 ;dpl ;ind ;lda 15 ;ind ;chd ;ixa 2 ;sli ;

; : az)—| 22|10 :
: a(z)— 22|10 14| 11 alz)—] 22|10
a(z)—{ 2210] 11 112 |11
1411 —6 |12 3113 —6 | 12
—6 |12 -3 |13 37 14 -3 |13
S R it
. alt x[—3].re 16 a(i)— 1115
ai)— 1115 x[—3].re 16 x[—3].im 17 x[-3].re 16
x[—3].re 16 x[~3].in] 17 x|—2].re 18 x[—3].in 17
x[—3].in 17 x[—2].re 18 x[—2].inl 19 x[—2].re 18
x|~2].re 18 x[—2].in 19 x[—1].re 20 x[—2].im 19
T e N R
" dpl ' lda 155ind x[0].T¢] 22 ixa 2 x[—1].im 21
x[—1].im 21 x[0].re 22 x[0].im 23 x[0].re 22
x[0].re] 22 x[0]. im 23 . A
. x[+1].re 24 x[0].im 23
x[0].im 23 x[+1].re 24 i
‘ x[+1].im 25 x[+1].re 24
x[+1].re 24 x[+1].im 25 x[+2].re 26 x[+1].im 25
x[+1].im 25 x[+2] re 26 x[+2].im 27 x[+2].re 26
x[+2]re | 26 x[+2im |27 x[+3]rd | 28 x[+2).im | 27
x[+2].im 27 x[+3].re 28 x[+3].inl 29 x[+3].re 28
x[+3].re 28 x[+3].im 29 ' x[+3].in 29
x[+3].im 29 .
: 10
SP—s s }8 22 SP—| 24
SP— 1

Figure 3: Subscibing a dynamic array

Solution 22: Static Predecessors

The block nesting is fixed, say at fpax. So static predecessors can be stored in the cells S[0] to
Sllmax — 1].
Actions upon Procedure Entry
Let us assume that procedure p calls ¢ which is declared on level ¢,.
1. S[FP + SVV] := S[¢,]; The old static predecessor is stored in the frame of g.
2. S[¢,] := FP; the current F'P of ¢ is the base address for g.

22

Actions upon Procedure Exit

1. S[¢,] :== S[FP + SVV]; The previous static predecessor is restored.

Load Instruction for Non-Local Variables

The access operation uses a cell of the displax vector as a basis.

Idaac¢ = SP:=SP+1;
S[SP] := S[S[4]] + a;

ZThis is more efficient if the variable is declared more than one level above its acccess.

Load Instruction for Local Variables

The register F'P can be used instead of the static predecessor.

Idla = SP:=SP+1;
S[SP] := S[FP] + a;

(Access to a register is — a little — more efficient than acces to the storage celle S[currentLevel].

Load Instruction for Global Variables

Global variables have completely static addresses.

Idga = SP:=S5P+1;
S[SP] := q;

Solution 23: Translating Recursive Procedures
The PAscAL function

function fac (n: Integer): Integer;
begin

if n <= 0 then fac := 1 else fac := n * fac(n-1)
end

is translated as follows:

code(function fac...)a
= f: sspl';sep k’; ujp m’;

m’ : code(if n < 0 then fac :=1 else fac:=nx*fac(n —1))a; retp

The variable fac for the result of the function is on address —2, and its value parameter n on address
—1. The size I’ of local storage is 4 (for the organization cells) — there are no local variables. The
maximal stack growth, needed for register EP, equals 4. The jump to m’ can be omitted. The code
continues as follows:
= ssp 4; sep 3;
codew (n < 0)cy; jpf I”;
code(fac := 1)a; ujp I";
I"”: code(fac := n*fac(n — 1))
U : retp

23

= ssp 4; sep 3;

loa 0(—1); ind; Idc 0; leq ; jpf I”;
loa 0(—2); Idc 1; sto 1; ujp I"";

I”: loa 0(—2);loa 0(—1); ind ; codew (fac(n — 1))a; mul ; sto 1;

l/// .

retp

= ssp 4; sep 3;

loa 0(—1); ind; Idc 0; leq ; jpf I”;
loa 0(—2); Idc 1; sto 1; ujp I"’;

I”: loa0(—2);loa 0(—1); ind ; mst 0; codey (n — 1)a; cup 2 f; mul ; sto 1;

l/// .

retp

= ssp 4; sep 3;

loa 0(—1); ind; Idc 0; leq ; jpf I”;
loa 0(—2); Idc 1; sto 1; ujp I"";

I”: loa0(—2);loa 0(—1);ind ; mst 0; loa 0(—2); ind ; Idc 1; sub; cup 2 f; mul ; sto 1;

l/// .

retp

In Figure 4 we show the complete code on the left, and the state of the storage in several
instances (calls) of fac. On the right, we see the state immediatly before returning from recursion
(n equals 0).

Solution 24: Parameter Passing

Constant Parameters

1.

Constant parameters are names for immutible values. In contrast to value parameters, no
value may be assigned to them.

If procedure calls are sequential, the value of the actual parameter need not be copied, as it
cannot be changed during the call.

Value parameters may save to allocate one local varibale.

Name Parameters

1.

We must generate code for name parameters. Every use of the formal parameter jumps to
that code in order to evaluate it.

This resembles procedure parameters.

Example: Jensen’s deviceexplains a rather unexpected feature of name parameters:

var a: array [1..n] of Integer;
var i: Integer;
function sum (name a:Integer) : Integer;
begin
sum := 0;
for i:= 1 to n do sum := sum + a;
end;

begin
write (sum(alil));
end.

Function sum sums up the elements of the array a — not n*a[i] for the value of i when the
procedure is entered. So one avoids the “expensive” passing of arrays.

This obfuscates the definition of sum.

24

0|sspl 0 x 0 T 0 x
1 |sepk 1 0| alx) 1 0| a(z) 1 0| a(x)
2 | ujpm 2 facg 2 facg 2 facq
f =3 SSp U 3 2 No 3 2 No 3 2 ng
4 | sep k' 4 0SSV 4 0| SV 4 0|SV
5| loa 0(—1) 5 0| DV 5 0| DV 5 0| DV
6 | ind 6 3| EP 6 3| EP 6 3| EP
7| 1dc 0 7 30 | RSA 7 30 | RSA 7 30 | RSA
8 | leq 8 2 | a(faco) 8 2 | a(faco) 8 2 | affacy)
9 | jpf l” 9 2 | val(ng) 9 2 | val(no) 9 2 | ng * facy
10 | loa O (—2) 10 facl 10 fa01
11 | Idc 1 11 1| n 11 1|n
12 | sto 1 12 0|SV 12 0|SV
13 | ujp 1" 13 4| DV 13 4| DV
=14 [loa 0(-2) 14 4| EP 14 4| EP
15 {loa 01 15 23 | RSA 15 23 | RSA
16 | ind 16 | 10 | o(facy) 16 10 | «o(facy)
17 | mst 0 17 1| val(nq) 17 1 | ny * facy
18 [loa 0 (—2) 18 faco
19 | ind 19 0] na
20 | Idc 1 20 0] SV
21 | sub 21 12 | DV
22 |cup 2 f 22 4| EP
23 | mul 23| 23| RSA
24 | sto 1 24 18 | a(facy)
" =25 | retp 25 1
m =26 |loa 00
27 | mst 0
28 | Idc 1
29 | cup 2 f
30 | sto 1
31 | stp

Figure 4: Code and procedure frame for fac

Solution 25: Translating a Complete Program
The Pascal Program is translated as follows:
code(program fakultaet ...)a
= ssp [; sep k; ujp m; code(function fac ...)a; m : code(x := fac(2))a; stp

= ssp [; sep k; ujp m; code(...)a;; m : loa 00; mst 0; Idc 1; cup 2 f; sto 1; stp

Here x has the address 0, the extension [of local variables is 1, and the maximal stack growth
k is 3. (For translating“x := fac(2)”, the address of x, the space for the result of fac, and the value
2 of the actual parameter has to be pushed on the stack.)

The translation of fac can be found in Solution 23.

Solution 26: Multiple Inheritance

No solution, sorry!

25

