In Proc. Human-Centric Conputing, |EEE Press, Sep.

2001, 30--37

Shapely Hierarchical Graph Transfor mation*

Berthold Hoffmannlgof @ zi . de)
Technologiezentrum Informatik, UniverattBremen
Postfach 33 04 40, 28334 Bremen

Abstract

Diagrams can be represented by graphs, and the an-
imation and transformation of diagrams can be modeled
by graph transformation. This paper studies extensions
of graphs and graph transformation that are important for
programming with graphs:

e \We extend graphs by a notion of hierarchy that sup-
ports value composition, and define hierarchical graph
transformationn an intuitive way that resembles term
rewriting.

e We require that admissable shapes for hierarchical
graphs are specified by context-free graph grammars,
in order to set up a type discipline for shapely hierar-
chical graph transformation

The resulting computational model shall be the basis of the
visual language DIAPLAN for programming with graphs
that represent diagrams.

1 Introduction

The Unified Modeling Language (L [21]) is a promi-
nent evidence for the steadily increasing importance of vi-

goes beyond related typing concepts for graphs, which
merely restrict the labelling and degree of nodes and
edges [23].

This paper is structured as follows: In sections 2 and 3 we
recall substitutive transformation of (plain) graphs. Sec-
tion 4 introduces hierarchical graphs, to which substitutive
transformation is extended in section 5. In section 6, we
describe the specification of graph shapes, and refine trans-
formation in section 7 so that it adheres a shape discipline.
We conclude with some remarks on related and future work
(in section 8).

Acknowledgments. The author thanks Annegret Habel
and Frank Drewes for useful comments.

2 Plain Graphs

We base our definitions on graphs that are general enough to
express relations of any arity. Graphs may contain variables
as placeholders for (sub-) graphs.

Hypergraph. Let A be a set ofabels where every label
[€ A has arank numberrank(l) > 0. A hypergraph over

sual languages in computer science. The syntax of a visual IS @ quadruples = (V, E, lab, att) consisting of finite

language can be representecypgphs, andgraph transfor-

setsV of nodes and E of edges, alabelling function lab :

mation can be used as a computational model for specifying £ — A, and anattachment function att : E — V* that
its semantics [1]. Such a specification can also be used for2ssigns sequences of nodes to hyperedges sattita} has

implementing the visual language [15, 12].

In this paper, we investigate the computational model of
a visual language fqrogramming with diagrams. We start
from a definition of graph transformation that is based on
variable substitution [18], and is particularly simple and in-
tuitive. We extend it by two concepts that are fundamental
for programming:

e The composition of values from values (also recur-
sively) is central for structuring data in programming
languages. We extend graphs, along the lines of [7],
by ahierarchy that forbids edges between components.

the lengthrank(lab(e)).> An edgee with rankk and label
may be qualified ak-ary, and as ai-edge. From now on, a
hypergrapl is simply called araph, and its components
are often denoted by, Eg, attg, andlabg.

For some labél € A, I* shall denote thbandle graph of
[that consists of a singleedger that is attached teank({)
pairwise disjoint nodes.

Variables. We assume that contains a distinguished set
X of variable names. The variable names occurring in a

1y * denotes the set aquences v .. .v;, over some vocabulary’

Other notions of hierarchical graphs that are used for (v; € V for 1 < i < k). Theempty sequence is denoted by.

software modeling [3, 9] sacrifice compositionality by
allowing edges that cross component boundaries.

e Typing of values and operations is important for de-
tecting inconsistencies in programs. We require that
the shapes of graphs are specified by context free
graph grammars [6], and refine transformation so that

only shaped hierarchical graphs are manipulated. This

*This work has been partially supported by the ESPRIT Working Group
Applications of Graph Transformation (APPLIGRAPH).

graphG are denoted byt'(G). Edges labelled by variable
names are calledariable edges (variables, for short). A
variablee is straight in a graphG if its attachments are
pairwise distinct. ByG we denote thekeleton of a graph
G where all variables have been removed.

Example 1 (Chain Graphs) Our running example is con-
cerned with representinghains of graph values. In plain
graphs, the chain structure is represented by two kinds of
edges: Ac-edge is attached to thegin andend node of a
chain ofi-edges; everitedge is in turn attached to thegin
andend node of aritem graph that is stored in the chain.
Figure 2 shows graphs that contain chain and item
graphs. Graphs are drawn in boxes, with their names writ-
ten in the upper right corner. Nodes are drawn as circles.
Edges are drawn as boxes around their label, and are con

nected to their attachments by lines that are ordered counter-

clockwise, starting at noon. Variable names (occurring in

figure 1) are written in upper case whereas other edge la-

bels appear in lower case. The boxes for binary edges with
empty labels “disappear” so that they are drawn as lines
from their first to their second attached node (as in “ordi-

nary” graphs). We apply this convention to the item graphs
stored in a chain graph.

Morphisms. Structure-preserving node and edge map-
pings between graphs are used to identify (copies of) a
graph as a subgraph in another one.

Let G andH be graphs. Amorphismm : G — H is a
pair(my : Vg = Vyg,mpg : Eq — Eg) of functions that
preserve labels and attachments:

labg omp = labg andatty omg = mj; o attg 2

The morphismn is surjective (injective) if its component
mappings are surjective (injective, respectively).nifis
surjective and injective, it is called asomorphism, and the
graphsG and H are calledsomorphic, denoted byG ==,
H. (We omit the indexn if it is not relevant.)

Edge Replacement. An edgee in a graphG may be re-

placed by another gragh by gluinge’s attachments with
distinguished nodes i®/. This operation is central for
defining transformations.

A pointed graph (G, p) is a graphG with a distinguished
sequence € V2 of points. The length ofp determines
G's rank, writtenrank(G). Often we denote pointed graphs
only by their graph component, and refer to their points by
pe. Points are drawn as filled circles, see Example 2 below.

2The composition f o g of two functionsg : A — Bandf : B — C
is a function inA — C given by f o g(z) = f(g(z)) forallz € A.
The extensionf* : A* — B* of a functionf : A — B maps the
empty sequence onto itself, and a sequeneg . . . a;, onto the sequence

fla1)... f(ak).

Thereplacement of an edge: in a graphG' by a pointed
graph(U, p) is defined ifrank(labg(e)) = rank(U), and
proceeds in two steps: (1) construct the disjoint unio& of
andU, and remove, (2) glue the corresponding nodes of
atta (e) andp.

Instantiation. A substitution pair x — U associates a
variable namer with a pointed grapli/ of the same rank
wherein all points are pairwise distinct. sbstitution is a
finite mapping

o={x; = Up,...,z; = Uy}
of substitution pairs, with pairwise distinct variable names,
and thedomain Dom(o) = {z1,...,z;}. Substy denotes
the substitutions oveX .
Theinstantiation of a graphP according to a substitution
o is obtained by the parallel replacement ofiaNariables
with 2 € Dom(c) by their substitutiowr (), and is denoted
by Po. This definesPo uniquely (up to isomorphism) as
edge replacement is commutative [6, sect. 2.2.2].

A graph P matchesa graph(if there is a substitutios
sothatPo = G.

Constructing the instantiatioRo for given P ando is
straigthforward. Graph matching is far less obvious, but
decidable as well, even if this is NP-complete in general
(see [18, corollary 15]):

Lemmal It is decidable whether a graph P matches a
graph G or not.

Example 2 (Graph I nstantiation) With the substitution

&

the graphd’. andR. in figure 1 match the graplis andH
in figure 2, respectively.

>

, X = ,Z

3 Plain Graph Transformation

Graphs are transformed by matching the pattern graph of
a rule to a host graph, and rewriting it by the instantiated
replacement graph of that rule.

Transformation. A graph transformationrulet = P —
R (rule for short) consists of @attern graph P and are-
placement graph R. The rulet matches a graphG if there
is a substitutiorr such thatPo =, G. The triple(t,m, o)
is then called aedex in G, whichtransformsa graphG into
agraphH = Ro, writtenG =, H.

4 Hierarchical Graphs

A hierarchical graph consists of a plain graph where some
edges contain graphs that may be hierarchical agaur
definition follows [7], but allows a wider use of variables.

Hierarchical Graph. The set? of hierarchical graphs
consists of sixtuples

H = (V, E, F,lab, att, cts)

whereH = (V, E,lab, att) is a plain graph, called thiep
of H, F C E is the set oframe edges (or justframes) that
are not labelled by variable names, ansl: F — # is the
contents function mapping frames to hierarchical graphs.
The constituents of a hierarchical grafirare often denoted
by Vi, Eg,laby, attg, andctsg.

Hierarchical Morphism. LetG,H € Hp. A hierarchi-

Figure 2. Two plain transformation steps cal morphismm : G — H is a pairm = (1, M) where
e G — Hisa plain graph morphism such that
Example 3 (Chain Graph Transformation) In figure 1, m(f) € Fy forall framesf € Fg, and

the rulee : P — Re enters item graphs at the end of a
chain graph, and the rute Py — R; removesthe first item
graph of a chain graph. Figure 2 shows two transformation
steps using these rules. The substitutidinom example 2

is used in the redefe, m, o) of the first step. The image of As in the plain case, a hierarchical morphism: G —
the skeletor’’, under the morphismu is highlighted by fat H is surjective (injective) if its component morphisms are
lines inG, and the image oP; under the morphism used in surjective (injective, respectively). This inducesiswmor-
the second step is highlighted i as well. phismrelationG 22, H if m is surjective and injective.

o M = (mj : ctsg(f) = ctsu((f) ;p, is @ fam-
ily of hierarchical morphisms between the contents of
frames.

By lemma 1, transformation steps are computable. A
redex(t, m, o) determines the transformed graph uniquely.

Substitutive transformation is more general than the glu-
ing approach [8], since graphs of arbitrary size, namely the
substitutions of variables, can beleted or duplicated in a
single transformation step [18]. In example 3, two occur-
rences of the variable namein the graphR duplicate the
item graphs(X) in H, and the ommission of in the graph
R, deletes the item graph substitutikgrom K.

A rule may have many redices, even in the same context.
Instead of the substitution of Example 3, any substitution
where some of the subgraphs

Component Replacement. Frames are nested in a tree-
like hierarchy. Every occurrence of a frame in the hierarchy
designates its contents as an isolated (hierarchical) graph
component that can be freely replaced by another compo-
nent.

Let H be a hierarchical graph. For every franfiec
Fp, the hierarchical graphtsy(f) is denoted byH/ f
and called a (directcomponent of H. The replace-
ment of the componentd/f in H by some hierarchi-
cal graphU is the hierarchical grapt[f <+ U] =
(Vi, Em, Fi,labg, attg, cts’) with the contents function
cts'(f) = Uif f' = f,andcts'(f') = ctsug(f') otherwise.
R We define thenccurrences in a hierarchical graplif as
the frame sequences

are removed frona(C), and glued to the two points on the Qp ={e}U{fw|f € Fg,we Qu}
left of o(Z) will also match the patterf?e and the grapld. 3Here we have not considerécime nodes that may contain hierarchi-
This reveals a general deficiency of plain graphs: It is cal graphs, as they would not add power to the representation. For, if some
impossible to represemlentifiablesubgraphs, as the chain _nodev shall contain a hierarchical gragh,, H, may as well be contained
h denoted b, or the item graph denoted b, in a ina frame; attached ta.
gra_lp e 9 X p . o . 4Because of the recursion in the definition, hierarchical graphs are de-
unique way. This is the reason for introducing a hierarchical fined inductively ag{ = |, , #:, whereH € H, if F; = 0, and, for

structuring to graphs. i>0,H € HM;if ctsg(f) € H;_1 for every framef € Fg.

Pe Re

lo

PI’ Rr

H K

L0

£

g

=e

_O

£

i 5

=r

g

Figure 4. Two hierarchical substitutive transformation steps

and extend the notion of eomponent H/w and of com-
ponent replacement H[w <« U] to arbitrary occurrences
w € Qg as follows:

Hje=H, H/(fw)=(H/f)/w
Hle « U)=U, H[fw— Ul=H[f + (H/f)[w + U]]

From now on, we silently assume that substitutions and
instantiation are extended to hierarchical graphs.

Example 4 (Hierarchical Chain Graphs) For a hierar-
chical representation of chains, we turn thandi-edges of
Example 1 into frames that contain chain and item graphs,
respectively. Frames are boxes (like ordinary edges), with
their contents drawn inside; they are filled in different
shades of grey, so that their labelandi can be omitted.
Figures 3 and 4 shows hierarchical graphs that con-
tain chain graph components. In this representation, chain

graphs and item graphs are isolated components. This help?here is 4 co

to maintain the consistency of the representation, and allows
to compose and decompose them freely.

5 Hierarchical Graph Transformation

It is easy to extend plain graph transformation to hierarchi-
cal graphs: In the definition of rules and substitutions, plain

H = Glw + Ro]. However, this would make it more com-
plicated to impose a shape discipline on transformations in
section 7. We therefore define transformation in a slightly
different way, byembedding pointed pattern and replace-
ment graphs into &ontext, which is a hierarchical graph
with a single variable.

Substitutive Hierarchical Transformation. A hierar-
chical graph transformation rulet : P — R (hierarchi-
cal rule, for short) consists of a pointed hierarchigai-
tern graph P wherein all points are pairwise distinct, and a
pointed hierarchicaleplacement graph R.
A hierarchical graph is aontext, and denoted bg¢'[], if
it contains a single straighole variable namedA in one
of its components. Thembedding of a pointed hierarchical
graphU with rank(U) = rank(A) into C[] is defined by
replacing theA-edge withU, and is denoted bg[U].
Arulet : P — R matches a hierarchical grapld: if
ntext'[] and a substitutionr such that? =,
C[Po]. The triple(t,m, o) is then called aedex in G, and
transforms G into another graptif = C[Ro], denoted by
G =, H. Note that every redex of a rule determines the
result of rewriting this redex uniquely, up to isomorphism.

Example5 (Hierarchical Chain Graph Transfor mation)
Figure 3 shows hierarchical versions of the rudesndr in
example 3, and transformations using these rules in figure 4.

graphs are replaced by hierarchical graphs, and a rule mayq i figure 2, fat lines indicate the matching®f in G and

be applied to every component of a hierarchical graph.

We could define a transformation step by requiring that
G/w = Po for some occurrence in Q ¢, some hierar-
chical pattern grapt® and some substitution, and con-
struct the transformed graph lmpmponent replacement:

of P, in H. Figure 5 shows the context and the substitution
for the first transformation step.

Hierarchical substitutive transformation is computable,
as the hierarchical graph matching probléfPo] = G

Y =

J:{Xb—)

Figure 5. Context and substitutionfor G = H

Do }

can be solved by matching the finite s{d?/?u |w e Qp}

102 | |

> |

O—X]

=

Figure 6. The shape of chain and item graphs

context-free. (See [6, section 2.5] for details.) In particu-
lar, they allow to define theecursive algebraic data types

of plain graphs with the corresponding plain graphs in some of functional languages that are constructed with disjoint

component of7.
6 Shapes

Shape analysis has been used for inferring whether pointer

union+ and cartesian produst. Moreover, doubly-linked

or cyclic lists, leaf- or root-connected trees, and other im-
perative data structures employing structure sharing can be
specified as well [10].

structures in imperative programs are shaped as doubly-7 Shapely Hierarchical Graph Transforma-

linked lists, root-connected trees and the like [22]. Here we

devise a means tgpecify shapes in a way that is not possi-

ble on the level of imperative languages (nor in functional
or logical languages where pointers are hidden altogether).
The specification is based on edge replacement [6], but we

immediately adopt a terminology fitting to our purposes.

Shape Grammars. A shaperule s has the forrm ::= R.
It associates ghapenamen € A\ X with a variable-free
pointed hierarchical grapR. The shape rule directly de-
rivesa hierarchical grap& to a hierarchical grapH by re-
placing onen-edge byR; this is written as? =, H. Shape
rules perform edge replacement in hierarchical graphs.

A finite setS of shape rules inducesshape system > =
(Ha, N, S) over the shape naméé C A that occur as left
hand sides irf. Then=-s denotes direct derivation vié,
with reflexive-transitive closures>¢. If G =% H, we say
thatG derives H.

For each shape name € N, the shape grammar
T, = (Ha,N,S,n®) with startgraph n*® defines the set
Fn ={G € Hp | n* =% H} of shapeforms.

Example 6 (Shapes of Chain Graphs and Item Graphs)
Figure 6 defines the shape of chain and item gr&pBhape
names are denoted by lower case greek lettersyligad:
in this case. We writes ::= R; | ... | Ry, for shape rules
n ::= Ry ton ::= Ry, with the same shape name.

tion

We now define shaped graphs, and define shapely hierarchi-
cal graph transformation so that it preserves shapes.

Shaped Graphs. For the rest of this paper, we fix a shape
systemX = (Gj, N,S), and assume that every variable
namez € X is typed with a shape namgype(z) € N.

Theshape [G] of a (pointed) hierarchical gragh is the
(pointed) hierarchical graph obtained by relabelling every
z-variable with its shape namegpe(z), for allz € X(G).

The setGs; of shaped graphs is defined by uniting the
sets ofn-shaped graphs G,, = {G € Gx | [G] € F,} for
alln € N. We writetype(G) = n if G € G,.

A substitution pair: +— (U, p) is shapedif U € Giype(a)-
The shaped substitutions consist of shaped substitution
pairs and are denoted ISubsty. .6

Lemma2 For all hierarchical graphs G € G, and all
shaped substitutions o € Substy::

(D) 1G] =5 [Go].

(2) G € Gy, impliesGo € Gx, with type(G) = type(Go).

Proof. (1) For every shaped substitution pair> U in o,
n® =% [U] if n = type(z). If the replacement of some
z-variable occurring inG yields a hierarchical grapt'’,
this corresponds to the replacement ofiaedge in[G| by

Shape grammars generate a kind of graph languages thatU] yielding [G']. Then[G| =5 [G'] follows from the

5The numbers attached to the node in the first shapessdoresses that
this node is the firsand second point of an empty chain.

sect. 2.2.2], we conclude thpd7| =% [Go].

6Note that the pairs in such substitutions may have different shapes.

(2) Let[G| € F, forsomen € N. This means that® =%
[G], so thatn® =% [Go] by transitivity of derivations.
ThusG, Go € Gs. with type(G) = type(Go) = n. m|

Shapely Transformation. From now on, we restrict our

attention to the transformation of shaped graphs by shapely

rules.

Arulet : P — R is shapely if its pattern and re-
placement graph® and R are shaped so thaype(P) =
type(R). Such a rulematchesa shaped grap@ if there is a
shaped context grapgfi[] € Gy, with type(A) = type(P)
and a shaped substitutiensuch thatG = C[Po]. Thent
transforms G to the hierarchical grapH = C[Ro], written
G 3t H.

Lemma3 For all shaped context graphs C[] € Gx and
all pointed shaped graphs U with type(U) = type(A),
C[U] € Gz with type(C[]) = type(C[U])).

Proof. SinceC[U] = C]]o for the (shaped) substitution
o ={A — U}, lemma 2 applies directly. |

Figure 7. The shape of graphs in Figure 3-5

the graphg7 and H are thus (variable-free) shaped graphs
of type~y, and thee-step is shapely. (Thestep is shapely
as well.)

Itis decidable whether some hierarchical graphis shaped
or not, since membership in a context-free hypergraph lan-
guage is decidable [6, sect. 2.7]. Thus shapes set up a prac-
tical shape discipline that allows to detect errors in hierar-
chical graphs and hierarchical rules automatically.

Like most other type disciplines that can Batically
checked (just by inspecting programs), this may also make

The shape discipline is consistent, since the result of athe application of rules more efficient: The host graph to be

shapely transformation is a shaped graph again.
Theorem 1 If G =; H by some shapely rule ¢, then H is
an shaped graph whenever G is an shaped graph.

Proof. Let(t,m, o) be the redex such thé&t =,,, C[Po].
Since(C[] is a shaped graph by definitioRo and C[Ro]
are shaped graphs by lemmata 2 and 3. O

In most cases, only variable-free shaped graphs will be

transformed. So the question arises whether variable-free ' i i _ .
Zpmple 6 is ambiguous. It must be, since otherwise either

shaped graphs are also closed under shapely hierarchic
transformation. This is only true if the rules do not intro-

transformed can be type-checkedgaysing it according to
its shape grammar. If the shape grammarsiasenbiguous
so that every shaped graph rexactly one derivation tree,
graphs can be represented by these trees, and rule matching
boils down to matching a pattern derivation tree to the host
graph derivation tree. This would be nearly as efficient as
pattern matching in functional languages. (D.A. Watt fol-
lowed a similar idea when he devised an analysis-oriented
restriction of two-level string grammars [24].)

However, the shape of chain graphs as defined in ex-

R, or P, would fail to be shaped. For ambiguous shapes,

duce new variables in their replacement graphs that do notth® @daptation of the Cocke-Kasami-Younger parsing algo-

appear already in their pattern graphs.

Corollary 1 Let G =, H for shaped graphs G, H, and
some shapely hierarchical rulet with X (R) C X' (P).
If G isvariable-free, then H isvariable-free as well.

Proof. If G is variable-free, the substitutions(z) are
variable-free for allz € X'(P). Since all variables of?
are required to occur i, they are all inDom(¢) so that
Ro andH are variable-free as well. m|

Example 7 (Chain and Item Graph Substitutions)
Consider example 5 and the shapes specified in figure 7

rithm to graphs devised in [15] can still be employed, as it
parses ambiguous grammars as well. However, the number
of derivation trees may be exponential in general. C. Laute-
mann defined a class of shape grammars where the number
of derivation trees is at most polynomial [14].

8 Conclusions

We have extended graphs by a compositional notion of hi-
erarchy, and have devised a notion of hierarchical graph
transformation that extends the rewriting of terms [13]

(which are trees over function symbols) to trees over graphs

(namely, hierarchical graphs) in a straight-forward way:

Assume that the variable names in Figures 3 and 5 have theTransformation substitutes variables in a rule pattern, em-

typestype(X) = ¢, type(Y) = x, andtype(A) = §. Then
the substitutiorr is shaped, the graplf& and R, have the
typed, and the contex’[] has the typey. By theorem 1,

beds the instantiated pattern into a context, and then inserts
an instantiated replacement into that context. This way of
graph transformation is quite intuitive from a programming

point of view. Furthermore, it can easily be refined by a too restricted for specifying the shapes of graphs that oc-
shape discipline that is consistent and decidable, and may cur in certain applications. Then Church-Rosser graph lan-
also allow for more efficient implementation. Hopefully guages [17] could be considered.

this is accepted as excuse for inventing yet another varia- The reader may also have noticed that it might be nice to
tion of graph transformation. have polymorphic shapes: The chain typey in example 6
should rather be &ype schema x(«a) with a type parame-

ter « that can be instantiated by concrete typeg(:) and

the like. Then the rulee andr could be defined polymor-
“phically for chains containing items @iy shape, as in a
functional language.

Related Work. T.W. Pratt was probably the first to define

hierarchical graph languages [19]. He specified the seman
tics of programming languages by context-free graph gram-
mars, but did not consider further transformation of these
graph languages. Engels and Heckel [9] study hierarchi-

cal graph transformation as the basis for system modelingthe Perspective. Shapely hierarchical graph transforma-
languages like WL [21]. They allow edges betwen cOm- oy shall become the computational model for the rule-
ponents (crossing frame borders), which is necessary in that, ;caq languageIBPLAN for programming with hierarchi-

application domain, but would not be adequate for program- graphs[11]. Further concepts of R PLAN shall be de-
ming since it would give away (de-)compositionality of hi- a4 on top of this model:

erarchical graphs.

Substitutive hierarchical graph transformationis a (mod- ¢ Transformation predicateswith parameters shall allow
est) extension of hierarchical graph transformation [7], to abstract from transformation sequences.
where variables denote tleatire contents of frames. With
our kind of _transformation, itis es;ential that variables may Application conditions andpredicate parameters shall
denote arbitrary supgraphs (see Flgurg 3)-)] allow to specifycontrol in an imperative or functional
Busattoet al. [3] investigate a generic notion of hierar- way.
chical graph transformation by which other approaches can
be simulated [2], also that of [7], and probably shapely hi-
erarchical graph transformation as well.
The way we define shapes has been inspired by the work
of P. Fradet and D. LeMetayer @tructured Gamma [10]
that uses structured multiset rewriting, a notion that can be
“translated” to graph transformation and edge replacement
in a straight-forward way.

e Classes shallencapsulate shape rules and transforma-
tion predicates.

e Primitive values likenumbers andstrings shall be in-
tegrated into the graph model.

Moreover, DAPLAN shall be integrated with the RGEN
tool [15] for generating diagram editors, yielding a lan-
Next Steps. Transformation may be highly nondetermin- guage and tool foprogramming with diagramsthat is itself
istic. This may lead to an overload of backtracking. So, Visual [12]:

nondeterminism has to be restricted to the degree that is re-

ally needed for solving a particular problem. Good design e DIAGEN can generate editors for arbitrary diagram

of rule patterns, hierarchical structure, and shapes can al- languages that are represented as shaped hierarchical
ready reduce nondeterminism. However, even for a given graphs. Such editors allow to construct input oAb
context and rule, there may be many substitutiomsatch- PLAN programs, and to display their results, in a di-
ing the rule to the host graph (see example 3). An impor- agram notation tailored to the program’s application
tant goal will thus be to bind the nondeterminism imposed domain.

by substitution. For instance, one could require that every
frame in a pattern contains at most one variable. (The pat- e DIAPLAN can be used to program the semantics of dia-

tern graphs in Figure 3 are of this kind.) This would make grams in terms of the shaplely hierarchical graphs that
rule matching nearly as efficient and deterministic as for the represent them internally. These semantic operations
gluing approach in [7]. However, already the search for a can then be called from the user interface of the edi-
pattern skeleto® in a graphG (the subgraph isomorphism tors.

problem) is known to be NP-hard in general.

Shapes are just a “structural” way of classifying values For instance, InPLAN could then be used to extend the
according to their (graph-ical) representation. More type Statecharts editor generated byaAlGEN in [16] with op-
discipline would be useful, for instance as in [9] or iRd? erations that animate the behavior of Statecharts, or with
GRES[23]. Also, context-free graph languages might be transformations that simplify them.

References Applications of Graph Transformations with Indus-

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

trial Relevance (AGTIVE'99), Selected Papers, num-
R. Bardohl, M. Minas, A. Sctrit, and G. Taentzer. Ap- ber 1779 in Lecture Notes in Computer Science, pages
plication of graph transformation to visual languages. 165-180. Springer, 2000.
In G. Engels, H. Ehrig, H.-J. Kreowski, and G. Rozen-

berg, editors,Handbook of Graph Grammars and [12] B. Hoffmann and M. Minas. A generic model for

Computing by Graph Transformation, Vol. I1: Speci- diagram syntax and ser_n_antics. I|_1 J D. P. Polim,
fication and Programming, chapter 3, pages 105—180. A. Z. Brode_r, A. Corradini, R. Gorrieri, R. Hec.kel,
World Scientific, Singapore, 1999. J. Hromkovic, U. Vaccaro, and J. B Wells, ed.ltors,

ICALP Workshops 2000, number 8 in Proceedings
G. Busatto and B. Hoffmann. Comparing notions of in Informatics, pages 443-450, Waterloo, Ontario,
hierarchical graph transformatioBlectronic Notesin Canada, 2000. Carleton Scientific.

Theoretical Computer Science, 2001. to appear.
[13] G. Huet. Confluent reductions: Abstract properties

G. Busatto, H.-J. Kreowski, and S. Kuske. An abstract and app"cations to term rewriting systenjeurna] of

hierarchical graph data model. Technical report, Fach- the ACM, 27(4):797-821, 1980.

bereich Mathematik-Informatik, Universit Bremen,

to appear 2001. [14] C. Lautemann. The complexity of graph languages
) . generated by hyperedge replacemeitta I nformat-

V. Claus, H. Ehrig, and G. Rozenberg, editoRoc. ica, 27:399-421, 1990.

Graph Grammars and Their Application to Computer
Science and Biology, number 73 in Lecture Notes in [15] M. Minas. Concepts and realisation of AGEN. Sci-

Computer Science. Springer, 1979. ence of Computer Programming, to appear 2001.

J. E. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, [16] M. Minas and B. Hoffmann. Specifying and im-
editors.Proc. Graph Grammarsand Their Application plementing visual process modeling languages with
to Computer Science, number 1073 in Lecture Notes DIAGEN. Electronic Notes in Theoretical Computer

in Computer Science. Springer, 1996. Science, to appear 2001.

F. Drewes, A. Habel, and H.-J. Kreowski. Hyper-
edge replacement graph grammars. In Rozenberg [20],
chapter 2, pages 95-162.

[17] D. Plump. Church-Rosser hypergraph languages. Talk
at the Workshop “Automaten und Formale Sprachen”,
Schauenburg-Elmshagen, Germany, September 1999.

F. Drewes, B. Hoffmann, and D. Plump. Hierarchi-
cal graph transformationJournal of Computer and
System Sciences, to appear 2001. (A short version ap-
peared in number 1784 of Lecture Notes in Computer [19]
Science, pages 98-113, 2000).

[18] D. Plump and A. Habel. Graph unification and match-
ing. In Cuny et al. [5], pages 75-89.

T. W. Pratt. Definition of programming language se-
mantics using grammars for hierarchical graphs. In

H. Ehrig. Introduction to the algebraic theory of graph Claus et al. [4], pages 389-400.

grammars. In Claus etal. [4], pages 1-69. [20] G. Rozenberg, editor. Handbook of Graph Gram+

G. Engels and R. Heckel. Graph transformation as mars and Computing by Graph Transformation, \Vol. |:
a conceptual and formal framework for system mod- Foundations. World Scientific, Singapore, 1997.
elling and evolution. In U. Montanari, J. Rolim, and .

E. Welz, editorsAutomata, Languages, and Program: [21] J. Rumbaugh, I. Jacobson, and G. Boo‘ﬁt!e Unified
ming (ICALP 2000 Proc.), number 1853 in Lecture Modeling Language Reference Manual. Object Tech-
Notes in Computer Science, pages 127-150. Springer, ~ n0logy Series. Addison Wesley, 1999.

2000. [22] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-

P. Fradet and D. L. Mfayer. Structured Gamma. analysis problems in languages with destructive updat-
Science of Computer Programming, 31(2/3):263-289, ing. ACM Transactions on Programming Languages
1998. and Systems, 20(1):1-50, 1998.

B. Hoffmann. From graph transformation to rule- [23] A. Schirr, A. Winter, and A. Zihdorf. The ROGRES
based programming with diagrams. In M. Nagl, approach: Language and environment. In Rozenberg
A. Schirr, and M. Minch, editors|nt’| Workshop on [20], chapter 13, pages 487-550.

