
Shapely Hierarchical Graph Transformation�

Berthold Hoffmann (hof@tzi.de)
Technologiezentrum Informatik, Universit¨at Bremen

Postfach 33 04 40, 28334 Bremen

In Proc. Human-Centric Computing, IEEE Press, Sep. 2001, 30--37

Abstract

Diagrams can be represented by graphs, and the an-
imation and transformation of diagrams can be modeled
by graph transformation. This paper studies extensions
of graphs and graph transformation that are important for
programming with graphs:

� We extend graphs by a notion of hierarchy that sup-
ports value composition, and define hierarchical graph
transformationin an intuitive way that resembles term
rewriting.

� We require that admissable shapes for hierarchical
graphs are specified by context-free graph grammars,
in order to set up a type discipline for shapely hierar-
chical graph transformation.

The resulting computational model shall be the basis of the
visual language DIA PLAN for programming with graphs
that represent diagrams.

1 Introduction

The Unified Modeling Language (UML [21]) is a promi-
nent evidence for the steadily increasing importance of vi-
sual languages in computer science. The syntax of a visual
language can be represented bygraphs, andgraph transfor-
mation can be used as a computational model for specifying
its semantics [1]. Such a specification can also be used for
implementing the visual language [15, 12].

In this paper, we investigate the computational model of
a visual language forprogramming with diagrams. We start
from a definition of graph transformation that is based on
variable substitution [18], and is particularly simple and in-
tuitive. We extend it by two concepts that are fundamental
for programming:

� The composition of values from values (also recur-
sively) is central for structuring data in programming
languages. We extend graphs, along the lines of [7],
by ahierarchy that forbids edges between components.
Other notions of hierarchical graphs that are used for
software modeling [3, 9] sacrifice compositionality by
allowing edges that cross component boundaries.

� Typing of values and operations is important for de-
tecting inconsistencies in programs. We require that
the shapes of graphs are specified by context free
graph grammars [6], and refine transformation so that
only shaped hierarchical graphs are manipulated. This

�This work has been partially supported by the ESPRIT Working Group
Applications of Graph Transformation (APPLIGRAPH).

goes beyond related typing concepts for graphs, which
merely restrict the labelling and degree of nodes and
edges [23].

This paper is structured as follows: In sections 2 and 3 we
recall substitutive transformation of (plain) graphs. Sec-
tion 4 introduces hierarchical graphs, to which substitutive
transformation is extended in section 5. In section 6, we
describe the specification of graph shapes, and refine trans-
formation in section 7 so that it adheres a shape discipline.
We conclude with some remarks on related and future work
(in section 8).

Acknowledgments. The author thanks Annegret Habel
and Frank Drewes for useful comments.

2 Plain Graphs

We base our definitions on graphs that are general enough to
express relations of any arity. Graphs may contain variables
as placeholders for (sub-) graphs.

Hypergraph. Let � be a set oflabels where every label
l 2 � has arank numberrank(l) � 0. A hypergraph over
� is a quadrupleG = hV;E; lab; atti consisting of finite
setsV of nodes andE of edges, a labelling function lab :
E ! �, and anattachment function att : E ! V � that
assigns sequences of nodes to hyperedges so thatatt(e) has
the lengthrank(lab(e)).1 An edgee with rankk and labell
may be qualified ask-ary, and as anl-edge. From now on, a
hypergraphG is simply called agraph, and its components
are often denoted byVG,EG, attG, andlabG.

For some labell 2 �, l� shall denote thehandle graph of
l that consists of a singlel-edgee that is attached torank(l)
pairwise disjoint nodes.

Variables. We assume that� contains a distinguished set
X of variable names. The variable names occurring in a

1V � denotes the set ofsequences v1 : : : vk over some vocabularyV
(vi 2 V for 1 � i � k). Theempty sequence is denoted by".

graphG are denoted byX (G). Edges labelled by variable
names are calledvariable edges (variables, for short). A
variablee is straight in a graphG if its attachments are
pairwise distinct. ByG we denote theskeleton of a graph
G where all variables have been removed.

Example 1 (Chain Graphs) Our running example is con-
cerned with representingchains of graph values. In plain
graphs, the chain structure is represented by two kinds of
edges: Ac-edge is attached to thebegin andend node of a
chain ofi-edges; everyi-edge is in turn attached to thebegin
andend node of anitem graph that is stored in the chain.

Figure 2 shows graphs that contain chain and item
graphs. Graphs are drawn in boxes, with their names writ-
ten in the upper right corner. Nodes are drawn as circles.
Edges are drawn as boxes around their label, and are con-
nected to their attachments by lines that are ordered counter-
clockwise, starting at noon. Variable names (occurring in
figure 1) are written in upper case whereas other edge la-
bels appear in lower case. The boxes for binary edges with
empty labels “disappear” so that they are drawn as lines
from their first to their second attached node (as in “ordi-
nary” graphs). We apply this convention to the item graphs
stored in a chain graph.

Morphisms. Structure-preserving node and edge map-
pings between graphs are used to identify (copies of) a
graph as a subgraph in another one.

Let G andH be graphs. Amorphism m : G ! H is a
pair hmV : VG ! VH ;mE : EG ! EHi of functions that
preserve labels and attachments:

labH ÆmE = labG and attH ÆmE = m�

V Æ attG
2

The morphismm is surjective (injective) if its component
mappings are surjective (injective, respectively). Ifm is
surjective and injective, it is called anisomorphism, and the
graphsG andH are calledisomorphic, denoted byG �=m

H . (We omit the indexm if it is not relevant.)

Edge Replacement. An edgee in a graphG may be re-
placed by another graphU by gluinge’s attachments with
distinguished nodes inU . This operation is central for
defining transformations.

A pointed graph hG; pi is a graphG with a distinguished
sequencep 2 V �

G of points. The length ofp determines
G’s rank, writtenrank(G). Often we denote pointed graphs
only by their graph component, and refer to their points by
pG. Points are drawn as filled circles, see Example 2 below.

2Thecomposition f Æ g of two functionsg : A! B andf : B ! C

is a function inA ! C given byf Æ g(x) = f(g(x)) for all x 2 A.
The extensionf� : A� ! B� of a functionf : A ! B maps the
empty sequence" onto itself, and a sequencea1 : : : ak onto the sequence
f(a1) : : : f(ak).

Thereplacement of an edgee in a graphG by a pointed
graphhU; pi is defined ifrank(labG(e)) = rank(U), and
proceeds in two steps: (1) construct the disjoint union ofG

andU , and removee, (2) glue the corresponding nodes of
attG(e) andp.

Instantiation. A substitution pair x 7! U associates a
variable namex with a pointed graphU of the same rank
wherein all points are pairwise distinct. Asubstitution is a
finite mapping

� = fx1 7! U1; : : : ; xk 7! Ukg

of substitution pairs, with pairwise distinct variable names,
and thedomain Dom(�) = fx1; : : : ; xkg. Subst� denotes
the substitutions overH�.

Theinstantiation of a graphP according to a substitution
� is obtained by the parallel replacement of allx-variablese
with x 2 Dom(�) by their substitution�(x), and is denoted
by P�. This definesP� uniquely (up to isomorphism) as
edge replacement is commutative [6, sect. 2.2.2].

A graphP matches a graphG if there is a substitution�
so thatP� �= G.

Constructing the instantiationP� for givenP and� is
straigthforward. Graph matching is far less obvious, but
decidable as well, even if this is NP-complete in general
(see [18, corollary 15]):

Lemma 1 It is decidable whether a graph P matches a
graph G or not.

Example 2 (Graph Instantiation) With the substitution

� =

8><>:C 7!
i

;X 7! ;Z 7!

9>=>;
the graphsPe andRe in figure 1 match the graphsG andH
in figure 2, respectively.

3 Plain Graph Transformation

Graphs are transformed by matching the pattern graph of
a rule to a host graph, and rewriting it by the instantiated
replacement graph of that rule.

Transformation. A graph transformation rule t = P !

R (rule for short) consists of apattern graph P and are-
placement graph R. The rulet matches a graphG if there
is a substitution� such thatP� �=m G. The tripleht;m; �i
is then called aredex inG, whichtransforms a graphG into
a graphH �= R�, writtenG)t H .

2

Pe

C

c

X

i

Z

e
!

Re

C

c

X

i

X

i

Z

Pr

X

i

C

c

Z

r
!

Rr

C

c

Z

Figure 1. Two plain rules

G

i

c

i
)
e

H

i i

c

i
)
r

K

i

c

i

Figure 2. Two plain transformation steps

Example 3 (Chain Graph Transformation) In figure 1,
the rulee : Pe ! Re enters item graphs at the end of a
chain graph, and the ruler : P r ! Rr removes the first item
graph of a chain graph. Figure 2 shows two transformation
steps using these rules. The substitution� from example 2
is used in the redexhe;m; �i of the first step. The image of
the skeletonPe under the morphismm is highlighted by fat
lines inG, and the image ofPr under the morphism used in
the second step is highlighted inH as well.

By lemma 1, transformation steps are computable. A
redexht;m; �i determines the transformed graph uniquely.

Substitutive transformation is more general than the glu-
ing approach [8], since graphs of arbitrary size, namely the
substitutions of variables, can bedeleted or duplicated in a
single transformation step [18]. In example 3, two occur-
rences of the variable nameX in the graphRe duplicate the
item graph�(X) in H , and the ommission ofX in the graph
Rr deletes the item graph substitutingX fromK.

A rule may have many redices, even in the same context.
Instead of the substitution� of Example 3, any substitution
where some of the subgraphs

i

are removed from�(C), and glued to the two points on the
left of �(Z) will also match the patternPe and the graphG.

This reveals a general deficiency of plain graphs: It is
impossible to representidentifiable subgraphs, as the chain
graph denoted byC, or the item graph denoted byX, in a
unique way. This is the reason for introducing a hierarchical
structuring to graphs.

4 Hierarchical Graphs

A hierarchical graph consists of a plain graph where some
edges contain graphs that may be hierarchical again.3 Our
definition follows [7], but allows a wider use of variables.

Hierarchical Graph. The setH of hierarchical graphs
consists of sixtuples

H = hV;E; F; lab; att; ctsi

where bH = hV;E; lab; atti is a plain graph, called thetop
of H , F � E is the set offrame edges (or just frames) that
are not labelled by variable names, andcts : F ! H is the
contents function mapping frames to hierarchical graphs.4

The constituents of a hierarchical graphH are often denoted
by VH , EH , labH , attH , andctsH .

Hierarchical Morphism. Let G;H 2 H�. A hierarchi-
cal morphism m : G! H is a pairm = hm̂;Mi where

� bm : bG ! bH is a plain graph morphism such thatbm(f) 2 FH for all framesf 2 FG, and

� M = (mf : ctsG(f)! ctsH(bm(f)))
f2FG

is a fam-
ily of hierarchical morphisms between the contents of
frames.

As in the plain case, a hierarchical morphismm : G !
H is surjective (injective) if its component morphisms are
surjective (injective, respectively). This induces anisomor-
phism relationG �=m H if m is surjective and injective.

Component Replacement. Frames are nested in a tree-
like hierarchy. Every occurrence of a frame in the hierarchy
designates its contents as an isolated (hierarchical) graph
component that can be freely replaced by another compo-
nent.

Let H be a hierarchical graph. For every framef 2
FH , the hierarchical graphctsH(f) is denoted byH=f
and called a (direct)component of H . The replace-
ment of the componentH=f in H by some hierarchi-
cal graphU is the hierarchical graphH [f U] =
hVH ; EH ; FH ; labH ; attH ; cts

0i with the contents function
cts0(f 0) = U if f 0 = f , andcts0(f 0) = ctsH(f

0) otherwise.
We define theoccurrences in a hierarchical graphH as

the frame sequences

H = f"g [ffw j f 2 FH ; w 2
H=fg

3Here we have not consideredframe nodes that may contain hierarchi-
cal graphs, as they would not add power to the representation. For, if some
nodev shall contain a hierarchical graphHv ,Hv may as well be contained
in a framef attached tov.

4Because of the recursion in the definition, hierarchical graphs are de-
fined inductively asH =

S
i�0

Hi, whereH 2 H0 if FH = ;, and, for
i > 0,H 2 Hi if ctsH(f) 2 Hi�1 for every framef 2 FH .

3

Pe

Y

X

e
!

Re

Y X

X

Pr

X Y r
!

Rr

Y

Figure 3. Hierarchical rules for entering (left) and removing (right) items from a chain

G

)e

H

)r

K

Figure 4. Two hierarchical substitutive transformation steps

and extend the notion of acomponent H=w and of com-
ponent replacement H [w U] to arbitrary occurrences
w 2
H as follows:

H="=H; H=(fw)= (H=f)=w
H [" U] =U; H [fw ! U] =H [f (H=f)[w U]]

From now on, we silently assume that substitutions and
instantiation are extended to hierarchical graphs.

Example 4 (Hierarchical Chain Graphs) For a hierar-
chical representation of chains, we turn thec- andi-edges of
Example 1 into frames that contain chain and item graphs,
respectively. Frames are boxes (like ordinary edges), with
their contents drawn inside; they are filled in different
shades of grey, so that their labelsc andi can be omitted.

Figures 3 and 4 shows hierarchical graphs that con-
tain chain graph components. In this representation, chain
graphs and item graphs are isolated components. This helps
to maintain the consistency of the representation, and allows
to compose and decompose them freely.

5 Hierarchical Graph Transformation

It is easy to extend plain graph transformation to hierarchi-
cal graphs: In the definition of rules and substitutions, plain
graphs are replaced by hierarchical graphs, and a rule may
be applied to every component of a hierarchical graph.

We could define a transformation step by requiring that
G=w �= P� for some occurrencew in
G, some hierar-
chical pattern graphP and some substitution�, and con-
struct the transformed graph bycomponent replacement:

H �= G[w R�]. However, this would make it more com-
plicated to impose a shape discipline on transformations in
section 7. We therefore define transformation in a slightly
different way, byembedding pointed pattern and replace-
ment graphs into acontext, which is a hierarchical graph
with a single variable.

Substitutive Hierarchical Transformation. A hierar-
chical graph transformation rule t : P ! R (hierarchi-
cal rule, for short) consists of a pointed hierarchicalpat-
tern graph P wherein all points are pairwise distinct, and a
pointed hierarchicalreplacement graph R.

A hierarchical graph is acontext, and denoted byC[], if
it contains a single straighthole variable named4 in one
of its components. Theembedding of a pointed hierarchical
graphU with rank(U) = rank(4) into C[] is defined by
replacing the4-edge withU , and is denoted byC[U].

A rule t : P ! R matches a hierarchical graphG if
there is a contextC[] and a substitution� such thatG �=m

C[P�]. The tripleht;m; �i is then called aredex in G, and
transforms G into another graphH �= C[R�], denoted by
G)t H . Note that every redex of a rule determines the
result of rewriting this redex uniquely, up to isomorphism.

Example 5 (Hierarchical Chain Graph Transformation)
Figure 3 shows hierarchical versions of the rulese andr in
example 3, and transformations using these rules in figure 4.
As in figure 2, fat lines indicate the matching ofPe inG and
of Pr in H . Figure 5 shows the context and the substitution
for the first transformation step.

Hierarchical substitutive transformation is computable,
as the hierarchical graph matching problemC[P�] �= G

4

C[]

4

� =

(
X 7! ;Y 7!

)

Figure 5. Context and substitution forG)e H

can be solved by matching the finite setfdP=w j w 2
P g
of plain graphs with the corresponding plain graphs in some
component ofG.

6 Shapes

Shape analysis has been used for inferring whether pointer
structures in imperative programs are shaped as doubly-
linked lists, root-connected trees and the like [22]. Here we
devise a means tospecify shapes in a way that is not possi-
ble on the level of imperative languages (nor in functional
or logical languages where pointers are hidden altogether).
The specification is based on edge replacement [6], but we
immediately adopt a terminology fitting to our purposes.

Shape Grammars. A shape rule s has the formn ::= R.
It associates ashape name n 2 � n X with a variable-free
pointed hierarchical graphR. The shape rules directly de-
rives a hierarchical graphG to a hierarchical graphH by re-
placing onen-edge byR; this is written asG)s H . Shape
rules perform edge replacement in hierarchical graphs.

A finite setS of shape rules induces ashape system � =
hH�; N; Si over the shape namesN � � that occur as left
hand sides inS. Then)S denotes direct derivation viaS,
with reflexive-transitive closure)�

S . If G)�

S H , we say
thatG derives H .

For each shape namen 2 N , the shape grammar
�n = hH�; N; S; n

�i with startgraph n� defines the set
Fn = fG 2 H� j n

�)�

S Hg of shape forms.

Example 6 (Shapes of Chain Graphs and Item Graphs)
Figure 6 defines the shape of chain and item graphs.5 Shape
names are denoted by lower case greek letters, like� and�
in this case. We writen ::= R1 j : : : j Rk for shape rules
n ::= R1 to n ::= Rk with the same shape name.

Shape grammars generate a kind of graph languages that
seems to be one of the largest classes that can be called

5The numbers attached to the node in the first shape of� expresses that
this node is the firstand second point of an empty chain.

� ::= 1 2 j � � j � �

� ::= j j j � � �

Figure 6. The shape of chain and item graphs

context-free. (See [6, section 2.5] for details.) In particu-
lar, they allow to define therecursive algebraic data types
of functional languages that are constructed with disjoint
union+ and cartesian product�. Moreover, doubly-linked
or cyclic lists, leaf- or root-connected trees, and other im-
perative data structures employing structure sharing can be
specified as well [10].

7 Shapely Hierarchical Graph Transforma-
tion

We now define shaped graphs, and define shapely hierarchi-
cal graph transformation so that it preserves shapes.

Shaped Graphs. For the rest of this paper, we fix a shape
system� = hG�; N; Si, and assume that every variable
namex 2 X is typed with a shape nametype(x) 2 N .

Theshape dGc of a (pointed) hierarchical graphG is the
(pointed) hierarchical graph obtained by relabelling every
x-variable with its shape nametype(x), for all x 2 X (G).

The setG� of shaped graphs is defined by uniting the
sets ofn-shaped graphs Gn = fG 2 G� j dGc 2 Fng for
all n 2 N . We writetype(G) = n if G 2 Gn.

A substitution pairx 7! hU; pi is shaped if U 2 Gtype(x).
The shaped substitutions consist of shaped substitution
pairs and are denoted bySubst�.6

Lemma 2 For all hierarchical graphs G 2 G� and all
shaped substitutions � 2 Subst�:
(1) dGc)�

S dG�c.
(2) G 2 G� implies G� 2 G� with type(G) = type(G�).

Proof. (1) For every shaped substitution pairx 7! U in �,
n�)�

S dUc if n = type(x). If the replacement of some
x-variable occurring inG yields a hierarchical graphG 0,
this corresponds to the replacement of ann-edge indGc by
dUc, yieldingdG0c. ThendGc)�

S dG
0c follows from the

definition of)S . Since edge replacement is associative [6,
sect. 2.2.2], we conclude thatdGc)�

S dG�c.

6Note that the pairs in such substitutions may have different shapes.

5

(2) LetdGc 2 Fn for somen 2 N . This means thatn�)�

S

dGc, so thatn�)�

S dG�c by transitivity of derivations.
ThusG;G� 2 G� with type(G) = type(G�) = n. 2

Shapely Transformation. From now on, we restrict our
attention to the transformation of shaped graphs by shapely
rules.

A rule t : P ! R is shapely if its pattern and re-
placement graphsP andR are shaped so thattype(P) =
type(R). Such a rulematches a shaped graphG if there is a
shaped context graphC[] 2 G� with type(4) = type(P)
and a shaped substitution� such thatG �= C[P�]. Thent
transforms G to the hierarchical graphH �= C[R�], written
GVt H .

Lemma 3 For all shaped context graphs C[] 2 G� and
all pointed shaped graphs U with type(U) = type(4),
C[U] 2 G� with type(C[]) = type(C[U])).

Proof. SinceC[U] = C[]� for the (shaped) substitution
� = f4 7! Ug, lemma 2 applies directly. 2

The shape discipline is consistent, since the result of a
shapely transformation is a shaped graph again.

Theorem 1 If G Vt H by some shapely rule t, then H is
an shaped graph whenever G is an shaped graph.

Proof. Let ht;m; �i be the redex such thatG �=m C[P�].
SinceC[] is a shaped graph by definition,R� andC[R�]
are shaped graphs by lemmata 2 and 3. 2

In most cases, only variable-free shaped graphs will be
transformed. So the question arises whether variable-free
shaped graphs are also closed under shapely hierarchical
transformation. This is only true if the rules do not intro-
duce new variables in their replacement graphs that do not
appear already in their pattern graphs.

Corollary 1 Let G Vt H for shaped graphs G, H , and
some shapely hierarchical rule t with X (R) � X (P).

If G is variable-free, then H is variable-free as well.

Proof. If G is variable-free, the substitutions�(x) are
variable-free for allx 2 X (P). Since all variables ofR
are required to occur inP , they are all inDom(�) so that
R� andH are variable-free as well. 2

Example 7 (Chain and Item Graph Substitutions)
Consider example 5 and the shapes specified in figure 7.
Assume that the variable names in Figures 3 and 5 have the
typestype(X) = �, type(Y) = �, andtype(�) = Æ. Then
the substitution� is shaped, the graphsPe andRe have the
typeÆ, and the contextC[] has the type
. By theorem 1,

 ::= Æ � Æ ::=

�

�

Figure 7. The shape of graphs in Figure 3–5

the graphsG andH are thus (variable-free) shaped graphs
of type
, and thee-step is shapely. (Ther-step is shapely
as well.)

It is decidable whether some hierarchical graph is shaped
or not, since membership in a context-free hypergraph lan-
guage is decidable [6, sect. 2.7]. Thus shapes set up a prac-
tical shape discipline that allows to detect errors in hierar-
chical graphs and hierarchical rules automatically.

Like most other type disciplines that can bestatically
checked (just by inspecting programs), this may also make
the application of rules more efficient: The host graph to be
transformed can be type-checked byparsing it according to
its shape grammar. If the shape grammars areunambiguous
so that every shaped graph hasexactly one derivation tree,
graphs can be represented by these trees, and rule matching
boils down to matching a pattern derivation tree to the host
graph derivation tree. This would be nearly as efficient as
pattern matching in functional languages. (D.A. Watt fol-
lowed a similar idea when he devised an analysis-oriented
restriction of two-level string grammars [24].)

However, the shape of chain graphs as defined in ex-
ample 6 is ambiguous. It must be, since otherwise either
Re or Pr would fail to be shaped. For ambiguous shapes,
the adaptation of the Cocke-Kasami-Younger parsing algo-
rithm to graphs devised in [15] can still be employed, as it
parses ambiguous grammars as well. However, the number
of derivation trees may be exponential in general. C. Laute-
mann defined a class of shape grammars where the number
of derivation trees is at most polynomial [14].

8 Conclusions

We have extended graphs by a compositional notion of hi-
erarchy, and have devised a notion of hierarchical graph
transformation that extends the rewriting of terms [13]
(which are trees over function symbols) to trees over graphs
(namely, hierarchical graphs) in a straight-forward way:
Transformation substitutes variables in a rule pattern, em-
beds the instantiated pattern into a context, and then inserts
an instantiated replacement into that context. This way of
graph transformation is quite intuitive from a programming

6

point of view. Furthermore, it can easily be refined by a
shape discipline that is consistent and decidable, and may
also allow for more efficient implementation. Hopefully
this is accepted as excuse for inventing yet another varia-
tion of graph transformation.

Related Work. T.W. Pratt was probably the first to define
hierarchical graph languages [19]. He specified the seman-
tics of programming languages by context-free graph gram-
mars, but did not consider further transformation of these
graph languages. Engels and Heckel [9] study hierarchi-
cal graph transformation as the basis for system modeling
languages like UML [21]. They allow edges betwen com-
ponents (crossing frame borders), which is necessary in that
application domain, but would not be adequate for program-
ming since it would give away (de-)compositionality of hi-
erarchical graphs.

Substitutive hierarchical graph transformation is a (mod-
est) extension of hierarchical graph transformation [7],
where variables denote theentire contents of frames. With
our kind of transformation, it is essential that variables may
denote arbitrary subgraphs (see Figure 3).

Busattoet al. [3] investigate a generic notion of hierar-
chical graph transformation by which other approaches can
be simulated [2], also that of [7], and probably shapely hi-
erarchical graph transformation as well.

The way we define shapes has been inspired by the work
of P. Fradet and D. LeMetayer onStructured Gamma [10]
that uses structured multiset rewriting, a notion that can be
“translated” to graph transformation and edge replacement
in a straight-forward way.

Next Steps. Transformation may be highly nondetermin-
istic. This may lead to an overload of backtracking. So,
nondeterminism has to be restricted to the degree that is re-
ally needed for solving a particular problem. Good design
of rule patterns, hierarchical structure, and shapes can al-
ready reduce nondeterminism. However, even for a given
context and rule, there may be many substitutions� match-
ing the rule to the host graph (see example 3). An impor-
tant goal will thus be to bind the nondeterminism imposed
by substitution. For instance, one could require that every
frame in a pattern contains at most one variable. (The pat-
tern graphs in Figure 3 are of this kind.) This would make
rule matching nearly as efficient and deterministic as for the
gluing approach in [7]. However, already the search for a
pattern skeletonP in a graphG (thesubgraph isomorphism
problem) is known to be NP-hard in general.

Shapes are just a “structural” way of classifying values
according to their (graph-ical) representation. More type
discipline would be useful, for instance as in [9] or in PRO-
GRES [23]. Also, context-free graph languages might be

too restricted for specifying the shapes of graphs that oc-
cur in certain applications. Then Church-Rosser graph lan-
guages [17] could be considered.

The reader may also have noticed that it might be nice to
havepolymorphic shapes: The chain type� in example 6
should rather be atype schema �(�) with a type parame-
ter � that can be instantiated by concrete types�, �(�) and
the like. Then the rulese andr could be defined polymor-
phically for chains containing items ofany shape, as in a
functional language.

The Perspective. Shapely hierarchical graph transforma-
tion shall become the computational model for the rule-
based language DIA PLAN for programming with hierarchi-
cal graphs [11]. Further concepts of DIA PLAN shall be de-
fined on top of this model:

� Transformation predicates with parameters shall allow
to abstract from transformation sequences.

� Application conditions andpredicate parameters shall
allow to specifycontrol in an imperative or functional
way.

� Classes shallencapsulate shape rules and transforma-
tion predicates.

� Primitive values likenumbers andstrings shall be in-
tegrated into the graph model.

Moreover, DIA PLAN shall be integrated with the DIAGEN

tool [15] for generating diagram editors, yielding a lan-
guage and tool forprogramming with diagrams that is itself
visual [12]:

� DIAGEN can generate editors for arbitrary diagram
languages that are represented as shaped hierarchical
graphs. Such editors allow to construct input of DIA -
PLAN programs, and to display their results, in a di-
agram notation tailored to the program’s application
domain.

� DIA PLAN can be used to program the semantics of dia-
grams in terms of the shaplely hierarchical graphs that
represent them internally. These semantic operations
can then be called from the user interface of the edi-
tors.

For instance, DIA PLAN could then be used to extend the
Statecharts editor generated by DIAGEN in [16] with op-
erations that animate the behavior of Statecharts, or with
transformations that simplify them.

7

References

[1] R. Bardohl, M. Minas, A. Sch¨urr, and G. Taentzer. Ap-
plication of graph transformation to visual languages.
In G. Engels, H. Ehrig, H.-J. Kreowski, and G. Rozen-
berg, editors,Handbook of Graph Grammars and
Computing by Graph Transformation, Vol. II: Speci-
fication and Programming, chapter 3, pages 105–180.
World Scientific, Singapore, 1999.

[2] G. Busatto and B. Hoffmann. Comparing notions of
hierarchical graph transformation.Electronic Notes in
Theoretical Computer Science, 2001. to appear.

[3] G. Busatto, H.-J. Kreowski, and S. Kuske. An abstract
hierarchical graph data model. Technical report, Fach-
bereich Mathematik-Informatik, Universit¨at Bremen,
to appear 2001.

[4] V. Claus, H. Ehrig, and G. Rozenberg, editors.Proc.
Graph Grammars and Their Application to Computer
Science and Biology, number 73 in Lecture Notes in
Computer Science. Springer, 1979.

[5] J. E. Cuny, H. Ehrig, G. Engels, and G. Rozenberg,
editors.Proc. Graph Grammars and Their Application
to Computer Science, number 1073 in Lecture Notes
in Computer Science. Springer, 1996.

[6] F. Drewes, A. Habel, and H.-J. Kreowski. Hyper-
edge replacement graph grammars. In Rozenberg [20],
chapter 2, pages 95–162.

[7] F. Drewes, B. Hoffmann, and D. Plump. Hierarchi-
cal graph transformation.Journal of Computer and
System Sciences, to appear 2001. (A short version ap-
peared in number 1784 of Lecture Notes in Computer
Science, pages 98–113, 2000).

[8] H. Ehrig. Introduction to the algebraic theory of graph
grammars. In Claus et al. [4], pages 1–69.

[9] G. Engels and R. Heckel. Graph transformation as
a conceptual and formal framework for system mod-
elling and evolution. In U. Montanari, J. Rolim, and
E. Welz, editors,Automata, Languages, and Program-
ming (ICALP 2000 Proc.), number 1853 in Lecture
Notes in Computer Science, pages 127–150. Springer,
2000.

[10] P. Fradet and D. L. M´etayer. Structured Gamma.
Science of Computer Programming, 31(2/3):263–289,
1998.

[11] B. Hoffmann. From graph transformation to rule-
based programming with diagrams. In M. Nagl,
A. Schürr, and M. Münch, editors,Int’l Workshop on

Applications of Graph Transformations with Indus-
trial Relevance (AGTIVE’99), Selected Papers, num-
ber 1779 in Lecture Notes in Computer Science, pages
165–180. Springer, 2000.

[12] B. Hoffmann and M. Minas. A generic model for
diagram syntax and semantics. In J. D. P. Polim,
A. Z. Broder, A. Corradini, R. Gorrieri, R. Heckel,
J. Hromkovic, U. Vaccaro, and J. B. Wells, editors,
ICALP Workshops 2000, number 8 in Proceedings
in Informatics, pages 443–450, Waterloo, Ontario,
Canada, 2000. Carleton Scientific.

[13] G. Huet. Confluent reductions: Abstract properties
and applications to term rewriting systems.Journal of
the ACM, 27(4):797–821, 1980.

[14] C. Lautemann. The complexity of graph languages
generated by hyperedge replacement.Acta Informat-
ica, 27:399–421, 1990.

[15] M. Minas. Concepts and realisation of DIAGEN. Sci-
ence of Computer Programming, to appear 2001.

[16] M. Minas and B. Hoffmann. Specifying and im-
plementing visual process modeling languages with
DIAGEN. Electronic Notes in Theoretical Computer
Science, to appear 2001.

[17] D. Plump. Church-Rosser hypergraph languages. Talk
at the Workshop “Automaten und Formale Sprachen”,
Schauenburg-Elmshagen, Germany, September 1999.

[18] D. Plump and A. Habel. Graph unification and match-
ing. In Cuny et al. [5], pages 75–89.

[19] T. W. Pratt. Definition of programming language se-
mantics using grammars for hierarchical graphs. In
Claus et al. [4], pages 389–400.

[20] G. Rozenberg, editor.Handbook of Graph Gram-
mars and Computing by Graph Transformation, Vol. I:
Foundations. World Scientific, Singapore, 1997.

[21] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified
Modeling Language Reference Manual. Object Tech-
nology Series. Addison Wesley, 1999.

[22] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-
analysis problems in languages with destructive updat-
ing. ACM Transactions on Programming Languages
and Systems, 20(1):1–50, 1998.

[23] A. Schürr, A. Winter, and A. Z¨undorf. The PROGRES

approach: Language and environment. In Rozenberg
[20], chapter 13, pages 487–550.

8

