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1. INTRODUCTION 

In this monograph we shall explore certain ways of program structuring and 
point out their relationship to concept modelling. 

We shall make use of the programming language S I MULA 67 with 
particular emphasis on structuring mechanisms. S IMULA 67 is based on 
A L G O L  60 and contains a slightly restricted and modified version of 
A L G O L  60 as a subset. Additional language features are motivated and 
explained informally when introduced. The student should have a good 
knowledge of A L G O L  60 and preferably be acquainted with list processing 
techniques. 

For a full exposition of the S IMULA language we refer to the "Simula 67 
Common Base Language" [2]. Some of the linguistic mechanisms introduced 
in the monograph are currently outside the " C o m m o n  Base"*. 

The monograph is an extension and reworking of a series of lectures 
given by Dahl at the N A T O  Summer School on Programming, Marktoberdorf  
1970. Some of the added material is based on programming examples that 
have occurred elsewhere [3, 4, 5]. 

2. PRELIMINARIES 

2.1 BASIC CONCEPTS 

Our subject matter as programmers is a special class of dynamic system, 
which we call computing processes or data processes. A programming 

* The Simula 67 language was originally designed at the Norwegian Computing Center, 
Oslo. The Common Base defines those language features which are common to all 
implementations. The Common Base is continually being maintained and revised by the 
"Simula Standards Group", each of whose members represents an organisation responsible 
for an implementation. 8 organisations are currently represented on the SSG. (Summer 
1971). 
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language provides us with basic concepts and composition rules for con- 
structing and analysing computing processes. 

The following are some of the basic concepts provided by ALGOL 60. 

(1) A type is a class of values. Associated with each type there are a 
number of operations which apply to such values, e.g. arithmetic operations 
and relations for values of type integer. 

(2) A variable is a class of values of a given type ordered in a time sequence. 
The associated operations are accessing and assigning its current value. 
Both can be understood as copying operations. 

(3) An array is a class of variables ordered in a spatial pattern. Associated 
is the operation of subscripting. 

Notice that each of the concepts includes a data structure as well as one 
or more associated operations. 

As another example consider machine level programming. The funda- 
mental data structure is a bit string, which is not itself a very meaningful 
thing. However, combined with an appropriate sensing mechanism it has the 
significance of a sequence of Boolean values. In connection with a binary 
adder the bit string has the meaning of a number in some range, each bit 
being a digit in the base two number system. An output channel coupled to a 
line printer turns the bit string into a sequence of characters, and so forth. 
Thus the meaning of the data structure critically depends on the kind of 
operations associated with it. 

On the other hand, no data process is conceivable which does not involve 
some data. In short, data and operations on data seem to be so closely 
connected in our minds, that it takes elements of both kinds to make up any 
concept useful for understanding computing processes. 

2.2. HIGHER LEVEL CONCEPTS 

As the result of the large capacity of computing instruments, we have to 
deal with computing processes of such complexity that they can hardly be 
constructed and understood in terms of basic general purpose concepts. The 
limit is set by the nature of our own intellect: precise thinking is possible 
only in terms of a small number of elements at a time. 

The only efficient way to deal with complicated systems is in a hierarchical 
fashion. The dynamic system is constructed and understood in terms of 
high level concepts, which are in turn constructed and understood in terms of 
lower level concepts, and so forth. This must be reflected in the structure of 
the program which defines the dynamic system; in some way or another the 
higher level concepts will correspond to program components. 
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The construction of concepts suitable in a given situation is a creative 
process which often requires insights obtained at later stages of the system 
construction. Therefore, as programmers are painfully aware, any software 
project tends to be a complicated iterative process involving reconstruction 
and revision at each stage. 

Each concept necessarily concerns a limited aspect of the system and 
should correspond to a piece of program obtained by decomposition of the 
total program. Good decomposition means that each component may be 
programmed independently and revised with no, or reasonably few, impli- 
cations for the rest of the system. Thereby the total iteration process may be 
speeded up. 

Any useful concept has some degree of generality, i.e. it is a class of 
specialised instances. In other words one tries to group phenomena occurring 
in a dynamic system into classes of phenomena and to describe each class by a 
single piece of program. 

As an obvious example consider the arithmetic operations involved in a 
matrix multiplication. They may all be classified as dynamic instances 
(executions) of the single statement 

C[i, j ] :  = C[i, j] + A[i, k] x B[k, j ] ;  

provided that the matrix coefficients are classified as elements of two- 
dimensional arrays A, B, and C, and that the variables i, j, and k are given 
values according to a certain pattern. 

The above statement is not sufficiently well decomposed to be thought of 
as a "concept". The procedure declaration below, however, defines in a concise 
way the concept of matrix multiplication. 

It is important that a concept may be classified as a syntactic category 
(e.g. (block),  (procedure))  in a general language framework. Structured 
thought in terms of given concepts implies the construction of sentences, 
where the concepts have syntactic and semantic relationships to one another. 
The procedure below is related to other program components through calling 
sequences (procedure statements). 

procedure matmult (A, B, C, m, n, p); 
array A, B, C; integer m, n, p; 

begin integer i, j, k; 
for i" = 1 step 1 until m do 
for j: = 1 step 1 until n do 
begin C[i, j] '= O; 

for k: = 1 step 1 until p do 
C[i, j]: = C[i, j] + A[i, k] × B[k, i] 

end 
end; 
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The parameter mechanism of procedures in SIMULA deviates somewhat 
from that of ALGOL 60. The default transmission mode is by value for 
ordinary simple ( type)parameters ,  and by "reference" for parameters of 
other kinds. This deviation is introduced for various pragmatic reasons, one 
of them being the compatibility with class declarations (cf. 3.1). Thus, in 
the above procedure the parameters i, j, and k are called by value, A, B, and 
C by reference. 

2.3. BLOCKS AND BLOCK INSTANCES 

One of the most powerful mechanisms for program structuring in ALGOL 60 
is the block and procedure concept. It has the following useful properties 
from the standpoint of concept modelling. 

(1) Duality. A block head and block tail together define an entity which 
has properties and performs actions. Furthermore the properties may include 
a data structure as well as associated operators (local procedures). 

~,, 

(2) Decomposition. A block where cnly local quantities are referenced is a 
completely selfcontained program component, which will function as 
specified in any context. Through a procedure heading a block (procedure) 
instance may interact with a calling sequence. Procedures which reference 
or change non-local variables represent a partial decomposition of the total 
task, which is useful for direct interaction with the program environment. 

(3) Class of instances. In ALGOL 60 a sharp distinction is made between a 
block, which is a piece of program text, and a dynamic block instance, 
which is (a component of) a computing process. An immediate and useful 
consequence is that a block may be identified with the class of its potential 
activations. (Strictly speaking a "block" in this context means either the 
outermost block or a block immediately enclosed by a dynamic block 
instance.) Through the recursion mechanism of ALGOL 60 different instances 
of the same block may co-exist in a computing process at the same time. 

(4) Language element. A block is itself a statement, which is a syntactic 
category of the language. Furthermore, throughthe  procedure mechanism, 
reference to a block may be dissociated from its defining text. 

Referring back to our earlier discussion it appears that the ALGOL block 
mechanism has all the properties required of a concept modelling mechanism. 
On closer inspection, however, it turns out that the composition rules and 
interaction mechanisms provided place certain restrictions on the range of 
concepts to be formulated. 

In ALGOL 60, the rules of the language have been carefully designed to 
ensure that the lifetimes of block instances are nested, in the sense that those 
instances that are latest activated are the first to go out of existence. It is 
this feature that permits an ALGOL 60 implementation to take advantage of a 
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stack as a method of dynamic storage allocation and relinquishment. But it 
has the disadvantage that a program which creates a new block instance can 
never interact with it as an object which exists and has attributes, since it has 
disappeared by the time the calling program regains control. Thus the calling 
program can observe only the results of the actions of the procedures it calls. 
Consequently, the operational aspects of a block are overemphasised; and 
algorithms (for example, matrix multiplication) are the only concepts that can 
be modelled. 

In SIMULA 67, a block instance is permitted to outlive its calling statement, 
and to remain in existence for as long as the program needs to refer to it. It 
may even-oat4i.~e-the block instance that called it into existence. As a conse- 
quence, it is no longer possible to administer storage allocation as a simple 
stack; a general garbage-collector, including a scan-mark operation, is re- 
quired to detect and reclaim those areas of store (local workspace of block 
instances) which can no longer be referenced by the running program. The 
reason for accepting this extra complexity is that it permits a wider range of 
concepts to be conveniently expressed. In particular, it clarifies the relation- 
ship between data and the operations which may be performed upon it, in a 
way which is awkward or impossible in ALGOL 60. 

3. OBJECT CLASSES 

A procedure which is capable of giving rise to block instances which survive 
its call will be known as a class; and the instances will be known as objects 
of that class. A class may be declared, with or without parameters, in exactly 
the same way as a procedure: 

(class declaration):: = class (class identifier) 

(formal parameter part) ; (specification part) ;  

(class body) 

(class body) :: = (statement) 

Any variables or procedures declared local to the class body are called 
attributes of that class; and so are the formal parameters, whether called by 
value or called by reference. If the class body is not a block, it is regarded 
as if it were surrounded by block brackets begin . . ,  end. 

A call of a class generates a new object of that class. The initial values 
of those of its attributes corresponding to formal parameters are specified in 
the actual parameter part of the generator. A generator always appears as a 
function designator, returning as its value a reference to the newly generated 
object: 

(object generator)::  = new (class identifier) 

(actual parameter part)  
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In order to be able to refer again to a generated object, it is necessary 
to store the reference to it in a variable. Variables used for this purpose 
should be declared as of reference type; and the declaration should also be 
qualified by stating the class of objects to which that variable will refer. 

(reference variable declarat ion) '"  = 

ref  ((qualification)) ,(identifier list) 

( q u a l i f i c a t i o n ) " =  (class identifier) 

The notation ref ((qualification)) may also be used to declare reference 
arrays, procedures, and parameters. An analogous mechanism for "record 
handling" was first proposed by Hoare [6]. 

There is a neutral reference value none which does not refer to any object; 
and this is automatically assigned as initial value to every reference variable. 

Reference values may be assigned, and tested for equality or inequality; 
but in S IMULA these operations are given special symbols, in order to 
emphasise the fact that they operate on references to objects, and not upon 
the current values contained in those objects. 

Thus '  
: -  denotes reference assignment 

denotes reference equality 

= / =  denotes reference inequality. 

Reference values may also be passed as parameters, and they may be returned 
as the result of a function designator. A special example of such a function 
designator is of course the object generator which brings the object into 
existence, and passes back a reference to it as result. 

Example" 
class C ( . . . ) ;  . . .  class body for C . . .  ; 

r e f  (C)X; 

i f  X = = none  then X : -  new C ( . . . ) ;  

The attributes of any object may be inspected or changed by the technique 
of remote identification. If X is a reference variable qualified by class C, 
and A is an attribute identifier (i.e. local quantity) of that class, then X.A  
refers to the attribute A of the object currently referenced by X. If X has 
the value n.one, the remote access is erroneous. If A is a variable attribute, 
t". A may appear to the left of an assignment, as an actual parameter, for in an 
expression. If A is a procedure attribute, X.A  may appear as an actual 
parameter, or as a procedure statement or function designator, in which case 
it will be immediately followed by an actual parameter part. In short , :a  
remote identifier X.A m a y a p p e a r  in any context in which an ordinary 
identifier may appear, except for a defining occurrence in a declaration. 
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In addition to reference variables, every reference parameter, function 
or expression has a qualification associated with it. In every assignment to 
a reference variable, it is possible to check that the assignment is valid, by 
comparing the qualifications of the left hand and right hand sides. 
SIMULA 67 has been designed to ensure that this check can be carried out 
wholly at compile time, thus avoiding the inefficiency of run-time checking, 
and the inconvenience of run-time error. Furthermore all remote identifiers 
can be checked at compile time to ensure that the combination of reference 
variable and attribute identifier is valid, so that the only error that has to be 
detected at run-time is when the reference variable has the value none. 

The following sections provide examples of concepts modelled by means 
of class declarations. 

3.1. FREQUENCY HISTOGRAM 

A frequency histogram of a real random variable with respect to given 
disjoint intervals can be represented by a table of integers To, T1 . . . .  , Tn, 
where T~ is the number of observations falling in the ith interval. A sequence 
of increasing numbers X1, X 2 , . . . ,  Xn partitions the real axis into the 
following n + 1 intervals: 

<-oo, x~>, (x~, x~>, ..., (xo, oo>. 
The ith relative frequency (i = 0, 1, . . . ,  n) is equal to T~/N, where N is the 
total number of observations tabulated in the histogram. 

We wish to represent the concept of a histogram as a self-contained piece 
of program, which can be incorporated in any subsequently written program 
which requires it. In a realistic program, it will be necessary to maintain 
several histograms to tabulate different random variables; for example, it 
may be necessary to record not only random lengths, but also random weights 
and random heights, and this will require three separate histograms, existing 
simultaneously with each other and with the main program which has 
generated them and which is using them. Furthermore, the numbers of the 
intervals and the partitioning values between them may be different in each 
case. This suggests that the histogram should be declared as a class, with 
two parameters: 

class histogram (X, n); array X; integer n; 

where X is a real array of n elements specifying the boundaries of the 
partitions. The main program will use this class in the following way" 

begin ref (histogram) heights, weights, lengths; 

real array All :7], B[1:12]; 

. . .initialise A, B . . .  ; 

h e i g h t s ' -  new histogram (A, 7); 

i 
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w e i g h t s ' -  new histogram (B, 12); 

lengths: - new histogram (A, 7); 

. . . .  rest of program . . . .  

end 

In the rest of the program, the three histograms may be referred to by the 
names of the three reference variables. In order to record each new obser- 
vation (say h or w) in the appropriate histogram, the program will contain 
the corresponding calls on a procedure tabulate: 

weights, tabulate (w); 

heights, tabulate (h); 

The procedure "tabulate" must therefore be an attribute of the histogram 
class. Another attribute of the class must be the array T which counts the 
number of observations in each interval; and also a variable N to count the 
total number of observations recorded so far. Finally, a function frequency (i) 
is required so that the relative frequency of observations in the ith interval 
may be read out. The only action required of the class body is to initialise 
these variables. 

The declaration of the histogram class may be given: 

class histogram (X, n); array X; integer n; 

begin integer N; integer array T[O: n]; 

procedure tabulate (Y); real Y; 

begin integer i; i" = O; 

while (if i < n then Y < X[i + 1] else false) 
d o i : =  i + 1 ;  

T[ i ] := T[i] + I ; N : =  N + I  

end of tabulate; 

real proeedure frequency (i); integer i; 

f requency:= T[i]/N; 

integer i; 

for i: = 0 step 1 until n do T[i]: = 0; N: = 0 

end of histogram; 

Note. (1) In SIMULA 67, all simple parameters of a class or a procedure 
are called by value, even if the value parts are omitted. Arrays and other 
parameters are called by name. 

(2) In SIMULA 67 all variables are automatically initialised on declara- 
tion to neutral values, false for Booleans, 0 for numbers, none for references. 
Thus in the examples given above the statements i: = 0, N: = 0, and the 
loop initialising T could have been omitted. 
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It seems reasonable to claim that this piece of program adequately repre- 
sents the concept of a histogram, in that it expresses the close relationship 
between the data items X, n, T and N, and the operation of tabulation which 
is to be performed on them. It would be possible, of course, to write the 
operation in ALGOL 60 as a separate procedure with many parameters: 

procedure tabulate (X, n, T, N, y); 

which records observation y in the histogram T in accordance with partitions 
defined by X, and also increments N. But this would be an artificial separation 
of the operational aspect of the histogram from the data storage aspect; and 
the failure in adequately representing the concept is evidenced by the com- 
plexity of the specification of the procedure and the awkwardness of its use. 

It is worth while to explain ttJe effect of creating a new object of class' 
histogram by means of the statement 

weights : -  new histogram (B, 12). 

First, a new object is created, consisting of the variables brought into 
existence by execution of the declarations for T, N, i, and the parameters X 
and n, which are initialised to B and 12 respectively. The body of the class 
declaration is now executed to initialise the other variables. On exit from the 
body, the variables are not deallocated. Rather a reference (pointer, address) 
to them is passed back and assigned to the variable "weights". It is con- 
venient to think of an object as a complete textual copy of the class body 
(including the specification part), in which the parameters and local variables 
and arrays correspond to actual storage locations. Thus an object may well 
contain local procedure (and even class - )  declarations, as well as executable 
statements. 

Subsequently, on execution of the procedure call weights.tabulate (w), 
it is the tabulate procedure local to the object referenced by "weights" that 
is actually executed, and causes updating of the local attributes T and N of 
that object and no other. 

3.2. GAUSS-INTEGRATION 

A definite integral may be approximated by an "n-point Gauss formula", 
which is a weighted sum of n function values computed at certain points in 
the integration interval. 

f f  f ( x ) d x  ~ i= l ~ wif(xi) 

The weights and abscissa values are chosen such as to give an exact result for 
the integral of any polynomial of degree less than 2n. By a suitable trans- 
formation we find 

w~ = (b - a )Wi  and xi = a + (b - a)Xi,  

i= 
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where Wi and Xi(i=l ,  2 , . . . ,n )  only depend on n, and not on a or b. 
The idea of Gauss-integration is expressed in the following partly informal 
class declaration. 

class Gauss (n); integer n; 

begin array W, X[1 :n]; 

real procedure integral (f, a, b); 

real procedure f ;  real a, b; 

integral '= ~ W[i] xf(a + (b - a) × X[i]) x (b - a); 
i=1  

compute W[1] . . . . .  Win], Y([I], . . . .  X[n] as 

functions of n 

end of Gauss; 

ref (Gauss) G5, G7; 

G 5 : -  new Gauss (5); G 7 : -  new Gauss (7); 

. . .  G5.integral (F, A, B) . . . . . .  G7.integral (F, A, B) . . . . .  

Comments. The variables G5 and G7 refer to the concepts "5-point" and 
"7-point Gauss-integration". Each of them is a specialised instance of the 
more general concept of "n-point Gauss-integration", represented by the 
class. 

A Gauss object computes once and for all the values of its local array 
elements, after which control returns to the (object generator). The pro- 
cedure "integral" is intended for repeated use from outside the object. 

The example indicates that the own-concept of ALGOL is superfluous in 
this framework. 

4. COROUTINES 

In ALGOL 60, a most powerful method of combining two pieces of program 
to accomplish some task is to declare one of them as a procedure, and to 
invoke it (possibly repeatedly) from within the other. However, in some 
cases the relationship between the two pieces of program is not fairly repre- 
sented by this form of master/subordinate relationship; and it is better to 
regard them as eoroutines operating in some sense at the same level. 
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A simple example of coroutine structuring is provided by a games-playing 
program, which calculates its own move and outputs it to its opponent, inputs 
the opponent's response, computes its next move, and so on until the game is 
complete. Suppose now that two different programs have been constructed to 
play the same game, and it is desired to see which of them is the stronger 
player. The complete program to play the game is very naturally structured 
from its two component players, but the structuring method is that of the 
coroutine rather than the subroutine. 

Another example of coroutine structuring is provided in a two-pass 
compiler for a programming language. The first pass normally outputs a long 
sequence of messages which are subsequently input by the second pass. 
However, if sufficient main storage is available to accommodate the program 
for both passes simultaneously, it is possible to arrange for the whole trans- 
lation to be carried out apparently in a single pass, where the sequence of 
messages is transmitted piecewise from the first pass to the second pass. 
First, the second pass is executed until it reaches its first request for an input 
message. The first pass program is then executed until it produces its first 
output message. The message is then handed over to the second pass, and the 
process is repeated until the second pass is complete. In some circumstances 
it might be possible to restructure one of the passes as a subroutine to the 
other; but since the choice would be arbitrary, it is better to regard the 
two programs as coroutines. 

This case may be distinguished from the games-playing example in that 
the flow of information is in one direction only, from the first pass program 
which "produces" it to the second pass program which "consumes" it. This 
suggests that a single coroutine may profitably be regarded as a complete 
selfcontained program whose input and output instructions have been 
replaced by calls upon other coroutines to produce and consume the data. 
Each time a coroutine passes control to another coroutine for this purpose, 
it will expect to resume at the next following instruction. The instruction 
which causes transfer of control to another coroutine is known as 

resume (X) 

where X refers to the coroutine being resumed. 
In SIMULA, a coroutine is represented by an object of some class, co- 

operating by means of resume instructions with objects of the same or another 
class, which are named by means of reference variables. The communication 
of information may be accomplished in variables either global to all the 
objects or local to one of them; a producing coroutine assigns values to these 
variables, and the consuming coroutine accesses them. In the case of two-way 
communication, both coroutines may update the same global variables in turn. 
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When an object is first generated, it has a subordinate, procedurelike 
relationship to the block instance which generated it. This is evidenced by the 
fact that control automatically returns to the generator upon passage through 
the end of the object. The object does not in general know the identity of its 
generating block instance; it cannot therefore use a resume instruction to 
achieve the effect of a coroutine exit. A special, parameterless "detach" 
instruction is therefore provided by which a generated object can return 
control to the generator. The generator may then resume the detached object 
at the point following its (most recently executed) detach instruction by the 
statement 

call (X) 

where X is a reference to the detached object. Now the object is again in a 
subordinate position, with respect to the caller, and has an obligation to 
return to it either by a detach instruction or by going through its own end. 

Thus a main program may establish a coroutine relationship with an object 
that it has generated, using the call/detach mechanism instead of the more 
symmetric resume/resume mechanism. In this case, the generated object 
remains subordinate to the main program, and for this reason is sometimes 
known as a Semicoroutine. But a semicoroutine may also be a full coroutine 
with respect to a group of other generated objects, with which it communi- 
cates by means of resume statements. In this case, if any of the group issues 
a detach, control returns to the master program which originally called a 
particular member of the group. Thus a coroutine issuing a resume statement 
imposes on the resumed coroutine its own responsibility, eventually to pass 
control back to the original caller by means of a detach. 

Let X and Y be objects, generated by a "master program" M. Assume that 
M issues a call (X), thereby invoking an "active phase" of X, terminated by a 
detach operation in X; and then issues a call (Y), and so forth. In this way 
M may act as a "supervisor" sequencing a pattern of active phases of X, Y, 
and other objects. Each object is a "slave", which responds with an active 
phase each time it is called for, whereas M has the responsibility to define the 
large scale pattern of the entire computation. 

CV f 
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Alternatively the decision making may be "decentralised", allowing an object 
itself to determine its dynamic successor by a resume operation. 

resume . ~ , ~ ,  re,me __ ['--'1 
1^1  ~(y) = i Y J  . . . . . .  1 I 

The operation resume (Y), executed by X, combines an exit out of X (by 
detach) and a subsequent call (Y), thereby bypassing M. Obligation to 
return to M is transferred to Y. 

The history of a typical coroutine object may be summarised as follows: 

(1) Upon generation, an object starts performing the operations of its 
class body, and is said to be operating and attached to (the block instance 
containing) the object generator which calls it into existence. 

(2) The object issues a detach statement which returns control to the 
point at which the object was generated. The object is then said to be detached, 
but not yet terminated. The detach statement leaves a mark in the body of 
the object specifying where its operations will be continued. This mark is 
positioned at the end of the detach statement most recently executed by that 
object. 

(3) Control  returns to the object on execution of either a call statement 
or a resume statement specifying that object by means of its reference 
parameter. It is then reattached to the calling block instance if called, or 
to the original caller if resumed. The object may then temporarily relinquish 
control again, either by a detach or by a resume, in which case it becomes 
detached again. 

(4) Alternatively, it may relinquish control finally by passing through 
its end, which has the same effect as a detach. But in this case it is said 
to be terminated, and it may not be reactivated either by a call or a resume. 
However, it remains in existence as an item of data, which may be referenced 
by remote identification of its attributes, including procedure and function 
attributes, as in the case of the histogram. 

Note. The detach operation represents a coroutine exit out of an object, 
and is only available textually within objects, i.e. textually within class bodies. 
If issued in a subblock or in a procedure body, a detach instruction still 
represents an exit out of the (smallest) textually enclosing object. The same 
is true for the resume instruction (which includes a coroutine exit). The call 
instruction is, however, available at any point in a program. 

i 
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4.1. TEXT TRANSFORMATION 

AS an example of the cooperation of coroutines we take a problem posed 
by Conway [7]. A text is to be read from cards and listed on a line printer. 
The cards each contain 80 characters, but the line printer prints 125 
characters on each line. It is intended to pack as many characters as possible 
on each output line, marking the transition from one card to the next only by 
insertion of an extra space. In the text, any consecutive pair of asterisks 
is to be replaced by "~". The end of the text is marked by a special character 
known as "end". 

We assume the existence of a coroutine "incard", which on each resump- 
tion will fill the array C[1:80] with characters read from the next card in the 
card hopper, and pass the card through to the stacker. Also, we are given a 
coroutine "lineout", which on each resumption will print on the next line of 
paper the characters from the array L[1'125], and then throw the line. 

The task is carried out by three coroutines, which will be known by 
reference as: 

ref disassembler, squasher, assembler; 

The disassembler inputs a card (through C) and outputs individual characters 
(through c l) to the squasher, after inserting a space between cards. The 
squasher performs the transformation on double asterisks, and outputs 
individual characters through c2 to the assembler. The assembler groups the 
characters into lines and outputs them; it also detects the "end" character 
and takes appropriate action. 

The required class declarations are: 

class pass 1 ; 

begin detach; 

while true do 

begin integer i; resume (incard); 

for i : =  1 step 1 until 80 do 

begin c l : =  C[i]; resume (squasher) end; 

cl : = blank; resume (squasher) 

end infinite loop; 

end pass 1 ; 

class pass 2; 

begin detach; 

while true do 

begin if cl = "*" then 
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begin resume (disassembler); 

if cl = "*" then ¢2"= "T" 

else begin c2: = "*";  resume (assembler); 

c2: = cl 

end; 

end 
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else c 2 : =  c l;  

resume (assembler); resume (disassembler) 

end infinite loop; 

end pass 2; 

class pass 3; 

begin detach; 

while true do 

begin integer i; 

for i: = 1 step 1 until 125 do 

begin L[i]: = c2; 

if c2 = "end" then 

begin for i: = i + 1 step 1 until 125 do 

L[i]: = blank; 

resume (lineout); 

detach; comment back to main program; 

end 

else resume (squasher) 

end of this line; 

resume (lineout) 

end infinite loop 

end pass 3; 

The main program generates one instance of each of the passes. Each pass 
immediately detaches itself from the main program. The system of coroutines 
is initiated by calling the disassembler. On detection of the end of the task, 
the assembler issues a detach instruction. Since the assembler obtained control 
(indirectly) by resume instructions from the disassembler, its detach has the 
same effect as it would have had if issued by the disassembler, and takes 
control back to the main program, which then immediately terminates. 
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The main program is: 

begin disassembler: - new pass l; 

squasher: - new pass 2; 

assembler : -  new pass 3; 

call (disassembler); 

end 

The relationships between the five coroutines and the main program may 
be represented pictorially: 

~ t a c h  _ 

The horizontal arrows represent resume/resume relations. Their direction 
corresponds to the flow of information; and they are annotated by the name 
of the variable used to hold the communicated information. 

In this example, it is intended that each class should only ever have one 
object in it; and therefore the full class/generation/reference mechanism is 
unnecessarily elaborate. The elaboration is inconvenient in that separate 
names have to be invented for the class and its unique object (e.g. pass 1 and 
disassembler). Furthermore, in the implementation it should be possible to 
take advantage of this special case to save both space and time. But SIMULA 
67 provides no means of achieving this. 

4.2. PERMUTATION GENERATOR 

We wish to define a class "permuter" representing the concept of permuta- 
tions. An object of this class should be capable of generating all permutations 
of the integers between 1 and n, where n is a parameter of the class. One of 
the attributes of the class will be an integer array p[1 :n], which is to be 
initialised to the value (1, 2, . . . ,  n) (representing the identity permutation) 
when an obje& of the class is generated. Every subsequent call of the object 
causes the array p to take a new permutation as value. When all permutations 
are exhausted, an attribute 

Boolean more; 

(initially true) will be assigned the value false, and the object will terminate. 
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A typical structure for a program which wishes to inspect all permutations 
of N numbers will be: 

ref (permuter)P; 

P: - new permuter (N); 

while P. more do 

begin. . . inspect  P . p . . .  ; call (P) end; 

The structure of the permuter class will be a semicoroutine, which issues a 
detach instruction after each updating o fF :  

class permuter (n); integer n; 

begin integer array p[1 :n]; 

Boolean more; 

integer q; 

for q: = 1 step 1 until n do p[q]: = q; 

m o r e "  = t l ' f i ¢ ,  

. . .  generate all permutations of p, 

issuing a "detach" after each of t h e m . . .  ; 

more: = false 

end 

It remains to find an algorithm to carry out all the permutations of 
p[1], p[2] . . . . .  p[n], and restore them to their original state. This algorithm 
may be recursively structured. Let  us assume that we know how to generate 
all  permutations of the numbers 

p[1], p[2] . . . .  , p [k  - 1], 

and finally return these to their original state. This will be accomplished by 
a procedure call 

permute (k - 1). 

Now all that need be done is to use this procedure to permute every com-  

b inat ion  of k - 1 numbers from the original k numbers. Thus there must be 
k calls of permute (k - 1), and on each call, exactly one of the p[i] for 
1 ~< i ~< k must be excluded from the operation. A good way of excluding it 
is to exchange its value with that ofp[k], which remains untouched by permute 
(k - 1). In order to ensure that each of the k values is excluded exactly once, 
we may take advantage of the assumption that the procedure returns the 
given sequence unchanged. In that case p[k] will be assigned each value once 

i 
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if we first swap p[1] and p[k], then p[2] and p[k ] ,  . . . ,  and then p [ k  - 1] and 
p[k] .  Thus we are led to the following kernel: 

integer i; 

permute (k - 1); 

for i: = 1 step 1 until k - 1 do 

begin swap (p[i], p[k]); permute (k - 1) end; 

On the assumption that permute (k - 1) leaves p unchanged, this kernel has 
the net effect of rotating the elements p[1], p[2] . . . .  , p [ k ]  one place cyclically 
to the right. This can be seen from the example" 

original state: 1 2  

after swap (p[1], p[5]): 5 2  

after swap (p[2], p[5]): 5 1  

after swap (p[3], p[5]): 5 1  

after swap (p[4], p[5]): 5 1  

3 4 5  

3 4 1  

3 4 2  

2 4 3  

2 3 4  

Since the overall effect of the operation must be to leave the array p as it was 
before, the right rotation must be followed by a compensatory left rotation. 

q: = pil l ;  

for i : = l  step 1 until k - 1  d o p [ i ] : = p [ i + l ] ;  

p[k]: = q 

Finally it is necessary to determine an appropriate action for the case where 
k = 1. Recall that the purpose of the procedure is to 

"generate all permutations of k objects, issuing a detach command after 
each of them". 

Since the only permutation of one number is that number itself, all that is 
necessary is to issue a single detach instruction. 

The permute procedure must be written as an attribute of the permuter 
class, so that the detach which it issues relates to the relevant object. The 
whole class may now be declared: 

class permuter (n); integer n; 

begin integer array p[1 "n]; integer q; Boolean more; 

procedure permute (k); integer k; 

if k = 1 then detach else 

begin integer i; permute (k - 1); 

for i : =  1 step 1 until k - 1 do 

begin q: = p[i]; p[i]: = p[k]; 

p[k]: = q; permute (k - 1) end; 
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q: = p[1]; 

f o r i : = l  step 1 u n t i l k - 1  d o p [ i ] : = p [ i + l ] ;  

p[k]: = q 

end of permute; 

for q: = 1 step 1 until n do p[q]: -- q; 

more: = true; permute (n); more: = false 

end of permuter; 

Note.  The detach issued by a permute procedure instance is not an exit 
out of the procedure instance, and does not return control to the call of the 
procedure. Rather, it is an intermediate exit out of the object as a whole 
(including the entire recursion process) and passes control back to the main 
program which generated or called the object. A subsequent call on the object 
will thus resume the recursion process exactly where it left off. 

The decision (assumption) that the procedure permute should leave the 
sequence unchanged is really quite arbitrary. The reader is invited to convince 
himself of this fact by writing a procedure based on the same swapping 
strategy, which returns with the numbers in the reverse order. 

5. LeST STRUCTURES 

The facilities introduced above for declaration of classes and reference to 
objects may be used to represent recursive data structures such as stacks and 
trees, and even cyclic structures such as two-way lists. This is accomplished 
by declaring attributes of a class to be references to objects of the very same 
class. 

5.1.  BINARY SEARCH TREES 

A binary tree may be defined as 

either (i) none 

or (ii) a node, 

where a node consists of 

(a) a left component which is a tree 

(b) a right component which is a tree 

(c) a val which is an integer. 

The val component may be regarded as being associated with each node of 
the tree. A node whose left and right subtrees are both none is a terminal 
element of the tree (leaf). 
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A binary search tree is defined as a binary tree which is either none, or 
else it is a node which has a val lying between all vals of its left subtree and 
all vals of its right subtree, which are themselves both binary search trees. 
The purpose of a binary search tree is to provide for any integer a swift access 
to the node which has val equal to that integer; and also to provide swift 
means of inserting a new node with any given val. Thus a class representing 
the concept of a binary search tree will have the form: 

class tree (val); integer val; 

begin ref (tree) left, right; 

procedure insert (x); integer x; 

• , ,, • • , , ~ 

ref (tree) procedure find (x); integer x; 

. . . . . .  • ~ 

end of tree; 

The bodies of the two procedure components are quite simple recursive 
procedures, matching the recursive structure of the tree" 

insert" if x < val then 

begin if  left = = none then l e f t : -  new tree (x) 

else left. insert (x) 
end 

else if right = = none then r i g h t : -  new tree (x) 

else right, insert (x); 

find: if x = val then this tree 

else if x < val then 

(if left = = none then none 

else left. find (x)) 

else if right = = none then none 

else right, find (x); 

In the body of "find" there occurs the expression 

this tree 

which is intended to yield as value a reference to the current node, that is, the 
one which owns this particular instance of the find attribute. For example, if 
the find procedure of X is called by the function designator 

X. find (x) 

and X. val = x, then the result of the function is the reference value of X itself. 
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Another operation which is meaningful for a binary search tree is that of 
scanning all its values in ascending order. This operation may be implemented 
by a "producing" semicoroutine, which on each call assigns to its attribute 

integer current; 

the next higher value of a node on the tree. On exhaustion of the tree, the 
attribute current will take the maximum integer value. 

The scanning can be accomplished by a recursive procedure attribute, 
local to the relevant instance of the coroutine. 

class scanner (X); ref (tree) X; 

begin integer current; 

procedure traverse (X); ref (tree) X; 

if X = / =  none then 

begin traverse (X. left); 

current" = X. val; 

detach; 

traverse (X. right) 

end traverse; 

traverse (X); 

current: = integer max 

end scanner; 

As an example of the use of these concepts, we consider the task of merging 
values from several binary search trees, held in an array: 

ref (tree) array forest [1 :N]; 

and outputting the values in ascending order. In order to do this we will 
require N scanners, one operating on each tree of the forest: 

ref (scanner) array trav [1 :N]; 

for i: = 1 step 1 until N do trav [ i ] : -  new scanner (forest [i]); 

Each scanner has now detached with its own minimal val assigned to its own 
current. All that is now necessary is to locate the minimum of the N currents 
and output it. The corresponding scanner should then be reinvoked to produce 
its next higher val. When the minimum takes the maximum integer value, 
the merge is complete. 
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integer min, j, i; 

min: = 0; 

while min < integer max do 

begin min: = trav [1]. current; j :  = 1 ; 

for i: = 2 step 1 until N do 

if min > trav [i] . current then 

begin min: -- tray [i]. current; 

j : = i  
end search for smallest current; 

if min < integer max then 

begin output (min); 

call (trav [j]) 

end 

end of merge process; 

5.2.  SYNTAX ANALYSER 

As a more substantial example of list processing, we take a general table- 
driven context-free syntax analyser. We shall use a top-down back-tracking 
algorithm, which will detect all possible analyses (more than one if the 
grammar is ambiguous), on condition that the grammar does not contain 
left recursion. The symbol string is represented by a "tape" with the following 
operators. 

procedure move right; . . . .  ; 

procedure move left; . . . . .  ; 

integer procedure symbol; . . . . .  ; 

The "move" operations move a reading head one symbol to the right or left. 
The "symbol" procedure reads the symbol under the reading head, and 
converts it to an integer according to a one-one mapping. 

A given function "meta"  determines whether a given integer represents 
a meta-symbol. 

Boolean procedure meta (S); integer S; . . .  ; 

For simplicity the grammar is represented by a three-dimensional array G 

integer array G[' . . . . . . . . . . .  ]; 

where G[i, j, k] contains the kth symbol of the j th  alternative right hand side 
for the meta-symbol represented by i. There is an 

integer array jm[.. .  ]; 
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where jm[i] is the number of right hand sides for a given meta-symbol. 
Each right hand side is followed by a special symbol " ± "  outside the 
vocabulary of the grammar. If one of alternative definitions of the syntactic 
class is (empty) ,  it will be represented by this symbol alone. 

For example, consider a simple context-free grammar for a subclass of 
arithmetic expressions: 

(1) (exp): :  = ( term) l< te rm)(addop)(exp)  

(2) ( term) :: = (primary>l(primary)<mulop)<term> 

(3) (primary) :: = <constant) i(variable>l(<exp)) 

(4) ( a d d o p > : : =  + [ -  

(5) (mulop) : :  = X[/ 
(6) <cons tant ) : :=  1121314151617181910 

(7) <variable> :: = II JI K] L I M[ N 

There are seven meta-symbols which may be given integer values 1 to 7. 
The 22 terminal symbols may be given values 8 to 29 inclusive, and the 
"_!_" terminating symbol may be given value 0. 

The array G representing this grammar may now be declared: 

integer array G[1:7, 1:10, 1:4] 

The first plane of this array will take the value 

G[1,. ,  .] = 2, 0, 0, 0 first alternative 

2, 4, 1, 0 second alternative 

0, 0, 0, 0 the other 8 rows 

. . . . . .  are irrelevant. 

0, 0, 0, 0 

Note also that: 
jm[1] = 2, jm[6] = 10 

meta (1) = meta (77) = true 

meta (8) = meta (29) = false 

The desired result obtained by generating an instance of the syntax analyser, 
with the first symbol of text under the reading head, will be a complete 
syntax tree representing the text; the character after the last character of the 
analysed text will be under the reading head, and a variable "good" will be 
set to true. Subsequent calls of the same instance will produce trees repre- 
senting alternative analyses. When no further analyses are possible, the input 
text will be stepped back to the beginning, and the variable good will be set 
false. This will happen on first generation, if the input text contains a syntax 
o r r o r .  

i 
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Note that the analyser will discover all successful analyses of any initial 
segment of the text. 

The syntax tree output on each call of the analyser will contain a node for 
each phrase identified in the text. Each phrase has the following attributes: 

integer i" indicating the syntactic class of the phrase 

integer j: indicating which alternative of its class it belongs to 

ref (phrase) sub:refers to the last subphrase of the given phrase 

ref (phrase)left:refers to the phrase immediately preceding this phrase 
on the same level of analysis. The left of the first 
subphrase of any phrase is none. 

Thus the expression 
M x N + 7  

should give rise to a tree of the form shown in Fig. 1. 

The syntax analyser will be recursively structured, as a class of phrase 
objects, each of which reproduces on a single phrase the intended behaviour 
of the analyser as a whole. 

A phrase object accepts a meta-symbol i and a left neighbour as parameter, 
and is responsible for producing all possible syntax trees of the given syntax 
class which match a portion of text to the right of (and including) the current 
symbol. The input text will on each occasion be stepped on to the first 
symbol which does not match the stated analysis. When all possible analyses 
are complete, the tape is stepped back to the position it was before entry to 
the given phrase, a global variable good is set to false, and the phrase 
terminates. 

We are now in a position to outline the general structure of the phrase 
class: 

class phrase (i, left); integer i; ref (phrase) left; 

begin integer j; ref (phrase) sub; 

for.j: = 1 step 1 until jm[i] do 

. . .  match remainder of text in all possible 

ways to alternative j of class i, 

issuing a detach after each successful ma tch . . .  ; 

good: = false 

end of phrase; 

Assume that an object has successfully matched the first k -  l(k > 0) 
symbols of a chosen alternative (j) for the given meta-symbol (i). We now 
formulate a piece of program for matching the kth symbol to the input in all 
possible ways. We assume that the remainder, if any, of the right hand side is 
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i' [ 1 t expression 
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FIGURE 1 

matched to the input in all possible ways by thestatement "match remainder", 
and that this statement leaves unaltered the position of the reading head and 
the part of the syntax tree so far constructed. We make the latter assumption 
also for an object which has failed to identify (another) phrase. 

1. begin integer g; g ' =  G[i, j, k]; 

2. if g = "J_" then begin good: = true; detach end 

3. else if g = symbol then 

4. begin move right; match remainder; move left end 

5. else if meta (g) then 

6. begin s u b : -  new phrase (g, sub); 

= 
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10. end 

11. end 
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while good do 

begin match remainder; call (sub) end; 

sub: - sub. left 

Comments. 

Line 1. The kth symbol of the right hand side numberj is called g for brevity. 

Line 2. If g is the terminator symbol the whole right-hand side has been 
successfully matched to the input. The object reports back to its 
master. Line 2 does not alter the syntax tree or the position of the 
reading head. 

Line 4. Since we have a match the object moves the reading head to the next 
symbol. After having matched the remainder in all possible ways the 
object restores the position of the reading head. Thus, according to 
assumptions, line 4 has a null net effect. 

Line 6. Since g is a meta-symbol, a new phrase object is generated to 
identify sub-phrases of the syntax class g. It becomes the new 
rightmost sub-phrase. Its left neighbour phrase is the old rightmost 
sub-phrase. 

Line 7. We have assumed that an object when failing sets "good" to false. 

Line 8. Since "good" is true, a sub-phrase has been identified matching g. 
After having matched the remainder in all possible ways, "sub" is 
called to identify the next possible sub-phrase. Since we want to 
match g in all possible ways, line 8 is repeated until the sub-phrase 
object fails. 

Line 9. According to assumptions a phrase object which has failed, has had 
a null net effect. The total effect of lines 6-8 is thus to add an 
object to the syntax tree. Line 9 restores the syntax tree to its 
original state. 

The comments show that the block above matches the symbol g followed by 
the remainder of thejth right-hand side of i in all possible ways and has a null 
net effect. Consequently the block itself satisfies the assumptions made for the 
"match remainder" statement. It follows that the whole matching algorithm 
may be expressed in a simple way by a recursive procedure. The whole 
computing process is described by the following class declaration. 
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class phrase (i, left); integer i; ref (phrase) left; 

begin integer j;  ref (phrase) sub; 

procedure match (k); integer k; 

begin integer g; g "= G[i, j, k]; 

if g = "3_" then begin good: = true; detach end 

else ff g = symbol then 

begin move right; match (k + 1); move left end 

else if meta (g) then 

begin s u b : -  new phrase (g, sub); 

while good do 

begin match (k + 1); call(sub)end; 

sub: - sub. left 

end 

end of match; 

for j:  = 1 step 1 until jm[i] do match (1); 

good: = false 

end of phrase 

A master program could have the following structure 

ref (phrase) tree; 

201 

e . . . .  o . , .  I . . • o ,  • 

t ree : -  new phrase (start, none); 

while good do begin found: . . . . .  ; call(tree)end; 

where "start" represents the start symbol of the grammar. At  the ]abe] 
"found" a sentence has been identified and the variable "tree" refers to its 
syntax tree represented as described above. For each node its associated 
meta-symbol (i), the rhs alternative number (j), and the links to other nodes 
(sub, left) are available through remote identification, for example 

tree. i, tree. sub.j, tree.sub, left. left. sub. 

We must expect in general that the strings matched by different successful 
trials may be of unequal lengths, starting at the same location of the tape. 
This may be avoided by defining the language in such a way that no initial 
segment of a valid text is also valid. Alternatively, the whole text should be 
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followed by some symbol outside the alphabet, say "_1_", and the master 
program might have the following structure 

ref(phrase)parse; Boolean good; 

p a r s e : -  new phrase (start, none); 

while good do 

begin if symbol = "_/_" then inspect successful parse; 

call(parse) 

end 

It is a remarkable feature of the phrase class that the result it yields on 
each call is a tree whose nodes consist in phrase objects which have been 
activated reeursively and not yet terminated. Each of these phrase objects 
plays a dual role, both as a part of the syntactic tree which is to be inspected 
by the master program, and as the set of local variables for the recursive 
activations of other phrase objects. It is this close association of data and 
procedure which permits the algorithm to be so simply and concisely 
formulated. 

Notice that each phrase object is the nucleus of a separate stack of recursive 
activations of its local "match" procedure. At the time when a detach is 
issued on behalf of an object, signalling a successful (sub-) parse, its stack 
has attained a temporary maximum depth, one level for each symbol in the 
current right-hand side, plus one level corresponding to the rhs terminator _l_, 
which issued the detach. 

Thus the whole dynamic context of a successful parse is preserved. When an 
object is called to produce an alternative parse a backtracking process takes 
place, during which the "match" stack of the object is reduced. At a level 
corresponding to a meta-symbol in the rhs the match procedure calls on the 
corresponding phrase object to produce an alternative sub-parse (line 8) and 
so on. (cf. the row of officers in Chaplin's Great Dictator). 

6. PROGRAM CONCATENATION 

In the preceding sections we have seen how the class mechanism is capable of 
modelling certain simple concepts, by specifying data structures and defining 
operations over them. In this section, we develop a method by which more 
elaborate concepts can be constructed on the basis of simpler ones. This will 
establish potential hierarchies of concepts, with complex concepts sub- 
ordinate to the more simple ones in terms of which they are defined. The 
structuring technique gives a new method of composing a program from its 
constituent parts, and is known as concatenation. 
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Concatenation is an operation defined between two classes A and B, or a 
class A and a block C, and results in formation of a new class or block. 
Concatenation consists in a merging of the attributes of both components, 
and the composition of their actions. The formal parameters of the con- 
catenated object consist of the formal parameters of the first component 
followed by formal parameters of the second component;  and the same for 
specification parts, declarations and statements (if any). 

A concatenated class B is defined by prefixing the name of a first com- 
ponent A to the declaration of B: 

A class B(bl ,  b2, • • .); . .  • specification of b's; 

b e g i n . . ,  attributes of B . . .  ; . . .  actions of B . . .  end 

Suppose the class A has been defined: 

class A(al ,  a2, . . . ) ;  . . .specification of a ' s . . .  ; 

begin . . ,  attributes of A . . .  ; . . .  actions of A . . .  end. 

According to the concatenation rules, the effect of the prefixed declaration 
for class B is the same as if B had been declared without a prefix thus: 

class B(a 1, az . . . . .  b 1, b2 . . . .  ); . . .  specification of a ' s . . .  

specifications of b ' s . . .  ; 

begin . . ,  attributes of A . . .  ; . . .  attributes of B . . .  ; 

. . .  statements of A . . .  ; . . .  statements of B . . .  end; 

Note. If any local identifiers of A are the same as local identifiers of B, 
the collision of names is resolved by systematic change of B's identifiers. 
A block also may be prefixed by a class identifier: 

A begin . . ,  declarat ions . . .  ; . . .  statements end, 

and the effect is similar to that described above, except that the result of the 
concatenation is a block, not a class. (If the class A has parameters, the 
prefix must include an actual parameter part 1). The effect of prefixing a 
block is to make available within that block the library of procedures and 
related data (including even classes) declared within the class declaration 
for A. 

A single class may be used as prefix to several different concatenated 
classes. For example, suppose a program requires to deal with trucks, buses, 
and private cars. These are three separate classes, and each has its own 
attributes. But there are certain attributes (for example license number) 
which are common to all of them, by virtue of the fact that they are all vehicles. 
The concept of vehicle is a more general one, and could be declared as a 
separate concept; 

i 
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class vehicle (license no); integer license no; . . .  ; 
This Class can now be used as a prefix in the remaining class declarations. 

vehicle class truck (load); real load; . . .  ; 

vehicle class bus (seating); integer seating; . . .  ; 

vehicle class car; . . .  ; 

An object belonging to a prefixed class is a compound object, which has 
certain attributes and operations in addition to those defined in the prefix 
part. Thus a truck object has a license no and a load, and a bus object has a 
license no and a seating. It is reasonable to regard "truck" and "bus" and 
"car" as subclasses of the vehicle class; any object of a subclass also belongs 
to the prefix class "vehicle". 

A reference variable may be qualified as belonging to a prefix class or to a 
concatenated class. If it belongs to the prefix class it may point to objects of 
any of the subclasses, and may be used in a remote identifier to access any of 
the attributes of the prefix class but not to access any attributes of the sub- 
classes. A reference qualified by a subclass may point only to objects of the 
subclass, but may be used in a remote identifier to access all its attributes. 
Thus given the reference variables: 

ref (vehicle) V; ref (bus) B; 

the following are valid remote identifiers: 

V.license no, B.license no, B. seating, 

but V.seating is not valid. 

Thus the subclass notion provides a useful flexibility of object referencing. A 
"weak" qualification permits a wide range of objects referencing, at the cost 
of inability to make remote access to attributes declared in a subclass. 

Assignment of a subclass reference to a prefix class reference variable 
(e.g. V : -  B) is always valid, and can be recognised as such at compile time. 
But assignment in the other direction (e.g. B: - V) may give rise to an error 
(detected only at run time), if the object referenced does not in fact belong 
to the expected subclass (bus). 

6.1. BINARY SEARCH TREE 

Suppose it is desired to set up a binary search tree to hold information about 
stock items in an inventory. Each node of the tree should contain not only a 
val (indicating the stock number of the item) but also certain other information 
about quantity on hand, price, reorder point, etc. The simplest way of achiev- 
ing the required effect is to prefix the class "stock item" by the class tree, 
and then declare the additional attributes required, for example: 
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tree class stock item; 

begin integer qoh, price, reorder point; 

Boolean ordered; 

procedure reduce; 

beg|n if qoh = reorder point & -1 ordered then 

issue reorder; 

qoh:= q o h - 1  

end of remove; 

end of stock item; 

6.2. TWO WAY LIST 

Taking advantage of the concatenation technique, it is possible to design 
classes which are intended solely or primarily to act as prefixes to other classes 
or to blocks. In this section we give an example of a class TWLIST, which is 
intended to be used as a prefix to a block, and to make available within that 
block the concept of two-way chained cyclic lists. Such a list consists of a 
list head, which contains two pointers, one to the first element of the chain and 
one to the last. Each link in the chain must also contain two pointers, suc 
which points to the successor in the list (or the list head if there is none), 
and pred which points to the predecessor in the list (or the list head if there is 
none). In an empty list, the two pointers from the list head point to the list 
head itself. 

Each pointer in the system must be capable of pointing either to another 
link in the list or to a list head. Therefore these pointers must be qualified by a 
class which embraces both links and heads, i.e. a class "l inkage" of which 
they are both subclasses. Since both list heads and links require two reference 
attributes, suc and pred can be declared as attributes of the prefix class 
linkage. 

The single concept of a two-way list is represented by the triple of classes 
linkage, link, and list head. In order to indicate that they are to be considered 
in conjunction as a single concept, the declarations for all three classes are 
grouped together in a single class declaration TWLIST, which is to be used as a 
prefix to any block which requires to use the concept. Within such a block 
the "l ink" class is intended to be used as a prefix to other classes specifying 
the nature of the items; for example, if stock items were to be held in a two- 
way list instead of in a binary search tree, the declaration would be: 

link class stock; . . .  as be fore . . .  ; 
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It is now necessary to decide on a basic set of operations on lists and links. 
A link I should be removable from its list by a procedure statement 

/ . ou t ;  

and it should be capable of being reinserted in a list just before link J by a 
procedure statement: 

I. precede (J); 

Since a link can belong to at most one list, this operation should also remove 
I from any list it happens to belong to before. Finally a link should be insert- 
able as the last item of a list with head H by a procedure statement" 

I. into (H); 

For a list head H, it seems useful to define the following functions 

H. empty, 

which tests whether the list is empty, 

H. first 

which yields H's first item, if any; otherwise none, and 

H. last 

which yields H's last item, if any; otherwise none. 

The declaration of the class TWLIST can now be given" 

1. class TWLIST; 

2. begin $lass linkage; begin ref (linkage) suc, pred; end; 
- , ' o  

. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

linkage class link; 

begin procedure out; 

if suc = / = none then 

begin suc. pred: - pred; pred. suc: - suc; 

suc: - pred: - none 

end of out; 

procedure precede (x); ref (linkage) x; 

begin out; s u c : -  x; p r e d : -  x .pred;  

suc. pred: - pred. suc: - this link 

end of precede; 

procedure into (L); ref (list) L; 

precede (L); 
comment suc and pred of a link object should have the 
standard initial value none indicating no list membership; 

end of link; 



16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 
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linkage class list; 

begin ref  (link) procedure first; 

f i r s t ' -  if empty then none else suc; 

ref  (link) procedure last; 

l a s t ' -  if empty then none else pred;  

Boolean procedure empty;  

e m p t y ' =  suc = = this list; 

s u c ' -  p r e d ' -  this list 

comment suc and pred of  a list head should be 
initialized to indicate an empty list; 

end of  list; 

25. end of  T W L I S T ;  

Let P be an arbitrary block instance prefixed by TWLIST,  which, outside 
its prefix part,  contains no explicit reference assignment  to any variable suc 
or pred of  any linkage object. Then the assertions (1) and (2) below are valid 
th roughou t  the lifetime of  P (at times when control  is textually outside the 
body of  TWLIST) .  

(1) Any linkage object x in P is either an object with no list membership ,  
in which case x. suc - = x. pred = = none and x ~ list, or x. suc. pred - - 
x. pred.  suc - = x. 

It follows that  all lists conta ined in P are circular. Fu r the rmore :  

(2) Each circular list in P contains exactly one list head, which is an 
object of  the class "list".  

The assertions are e s t ab l i shed  by observing that  each of  the operat ions  
below preserves their validity, and that  P contains no linkage object initially. 

new link (or new C, C ~ linkage-list) generates a link object, which is not  
a list member  (its suc and pred are automatical ly  initialised to none). 

new list (or new C, C ~ list) generates an " e m p t y "  circular list containing 
the generated list head and initially nothing else. 

In the following we assume x ~ link, y, z ~ linkage, and L E list. x ~ y is an 
abbreviat ion for x. suc = = y & x = = y.  pred. 

x. out If  z ~-~ x ~ y the result is z ~ y and x is not  a list member .  (Notice 
that  (2) together  with x ~ link implies x = / = y, z.) If x was not  a list member ,  
the result is to do nothing.  

x.precede (y), where x ---/= y A z ~ y. The result is x ~ y (and z ~ x if 
x = / - -  z). If  x was a list member ,  x is first removed  f rom that  list. 
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x. into(L), where z ~ L. The result is z ~ x ~ L, which implies x = = L. last. 
If x was a list member, x is first removed from that list. 

Any use of out, precede, or into not satisfying the above assumptions, is 
either textually illegal or leads immediately to a run time error and program 
termination caused by an invalid remote identifier. E.g. the operation 
x.precede (y) sets x .p red  to none if x = = y or y is not a list member. 
Consequently the remote identifier pred. suc in the body of precede is invalid. 
Notice that x . in to  (L) is a "safer" operation, since x s link, L e list implies 
that x = / = L and L. pred = / = none. 

The assertions (1) and (2) provide a guarantee that our lists are well 
behaved, provided that no explicit assignment to any variable suc or pred 
occurs. The construction TWLIST is thus a reliable "mental  platform," 
which in a certain sense cannot break down, whatever programming errors 
are made. When programming on top of TWLIST one is entitled to ignore 
the list processing details involved in manipulating the circular two-way lists. 
Each list object  may be regarded as representing an ordered set of link 
objects, with the proviso that a link object may be member of at most one 
such set at a time. The last fact is reflected in the design of the procedures 
into and precede. Explicit use of the attributes suc and pred, e.g. for scanning 
through a list, may, however, require the user to be conscious of the fact 
that the "last" member has a successor and the "first" member a predecessor, 
which are both identical to the list object itself. A design alternative is to 
suppress this fact by declaring the following procedures as attributes to link. 

ref (link) procedure successor; 

inspect suc when list do s u c c e s s o r ' -  none 

otherwise successor" - s u c ;  

ref (link) procedure predecessor; 

inspect pred when list do predecessor' -  none 

otherwise predecessor" - pred; 

Note the construction 

inspect r when C d o . . .  

enables the programmer to test whether the object referenced by r belongs 
to one of its possible subclasses C. 

7. CONCEPT HIERARCHIES 

At the outset of a programming project there is a problem, more or less 
precisely defined and understood in terms of certain problem oriented con- 
cepts, and a programming language, perhaps a general purpose one, providing 
some (machine oriented) basic concepts, hopefully precisely defined and com- 
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pletely understood. There is a conceptual distance between the two, which 
must be bridged by our piece of program. We may picture that distance as a 
vertical one, the given programming language being the ground level. 

Our difficulty in bridging such gaps is the fact that we have to work 
sequentially on one simple part problem at a time, not always knowing in 
advance whether they are the right problems. 

In order to better overcome such difficulties we may build pyramids. 
Unlike the Egyptian ones ours are either standing on their heads (bottom-up 
construction) or hanging in the air (top-down construction). The construction 
principle involved is best called abstraction; we concentrate on features 
common to many phenomena, and we abstract away features too far removed 
from the conceptual level at which we are working. Thereby we have a 
better chance of formulating concepts which are indeed useful at a later stage. 

In the bottom-up case we start at the basic language level and construct 
abstract concepts capable of capturing a variety of phenomena in some 
problem area. In the top-down case [8, 9] we formulate the solution to a given 
problem in terms of concepts, which are capable of being implemented (and 
interpreted) in many ways, and which are perhaps not yet fully understood. 
In either case system construction may consist of adding new layers of 
pyramids (above or below) until the conceptual gap has finally been bridged. 
Each such layer will correspond to a conceptual level of understanding. 

For instance, given some problem which involves queueing phenomena, 
we could take TWLIST of the preceding section as the first step of a bottom-up 
construction. Then, for the remainder of the construction we are free to think 
and express ourselves in terms of dynamic manipulation of ordered sets of 
objects. 

Layers of conceptual levels may be represented as a prefix sequence of 
class declarations. For example, it is possible to construct a series of class 
declarations, each one using the previous class as prefix 

class C i ;  . . . .  ; 

C1 class C 2 ;  . . . .  ; 

° ° o • • 

C . _  x class C . ;  . . . .  ; 

The list C i, C 2 , . . . ,  C,_ ~ is known as the prefix sequence for C,. The 
outermost prefix C~ is built at the ground level. Every other level rests on 
the one(s) below, in that it may take advantage of all attributes of its entire 
prefix sequence. Making use of this language mechanism, bottom-up con- 
struction of a program is to plan and write the classes of a prefix sequence 
one by one in the stated order. The program itself is finally written as a 
prefixed block on top of the whole sequence. 

C.  begin ~ end 
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The top-down strategy would correspond to constructing the members of 
the prefix sequence, including the prefixed block, in the reverse order. 
(SIMULA 67 contains additional mechanisms, not considered here, for 
facilitating top-down and mixed mode construction.) 

A well-formed coaceptual level (bottom-up) is a set of well-defined inter- 
related concepts, which may be combined to make more elaborate concepts. 
It may serve for further construction as a mental platform, raised above 
ground towards some application area, i.e. as an "application language". A 
preconstructed application language may serve to shorten the conceptual 
gap that has to be bridged for many problems in the area. The usefulness of' 
such a platform is closely related to its ruggedness, that is with the way in 
which it tolerates or even forestalls misuse. As we saw in the last section 
TWLIST supplies an exceptionally rugged mental platform; and in this 
section we shall build on it a small but useful application language, which 
may in its turn be used as a platform for the solution of realistic problems. 

7.1. DISCRETE EVENT SIMULATION 

Simulation is a method for studying the behaviour of Iarge systems of' 
interacting objects, and evaluating the effect of making changes which would 
be too expensive to make on an experimental basis in real life. The object of a 
simulation model could be a production line, a tramc system, a computer 
system (hardware and software), a social system composed of interacting 
individuals, etc. The following notions are common to most such systems. 

(1) Processes taking place in parallel, giving rise to discrete events at 
irregular intervals of time. 

(2) Queueing phenomena, arising when an object has to wait for service 
from a currently busy server. 

In order to represent processes occurring in parallel, it is not necessary 
that the corresponding program components should be multiprogrammed in 
the computer; but it is necessary that the programs should be able to suspend 
themselves temporarily, and be resumed later from where they left off. Thus 
the active objects or "processes" in a simulation will be represented by 
(semi-)coroutines, operating in pseudo-parallel under control of a scheduling 
mechanism. 

For example, in a job shop simulation, an incoming order gives rise to a 
sequence of events on the shop floor, to satisfy the order. Each order may be 
regarded as a process whose activity is to proceed from one machine to the 
next, requesting and obtaining service from it. The sequence of requests is 
determined by the nature of the order. If the requested machine is free, the 
order is served immediately, and the machine goes busy for a period equal 
to the length of the service. Otherwise, the order joins a queue of orders 
waiting for the machine to become free. 
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In the implementation of the concept of simulated time, the first require- 
ment is that each process have access to a variable "time" which holds 
the current time, and which is incremented on appropriate occasions by the 
time-control mechanism. Note that the updating of this variable must be 
entirely independent of the passage of computing time during the simulation, 
since actions which take a long time on a computer might take only a short 
time in the real world, and vice versa. As far as simulated time is concerned, 
the active phases of the processes must be instantaneous; "time" does not 
move until all the participating processes are passive. 

Thus in order to simulate the passing of time, a process simulating an 
active system component must relinquish control for a stated interval T of 
simulated time; and it must be reactivated again when the time variable has 
been incremented by T. This will be accomplished by the process calling the 
procedure 

hold (T). 

For example, an order which has found its required machine ready to serve it 
needs to indicate how long this service will take, by the statement 

hold (service interval); 

The order will now become inactive until all other orders which were due to 
be reactivated before time + service interval have been reactivated, and have 
relinquished control again. At this point, the given order will be reactivated, 
and will find that its time has been appropriately incremented. 

While a process is held, it will be necessary to record its reactivation 
time as one of its attributes. It is convenient therefore to use the time 
attribute of the process itself for this purpose. 

The method of holding for a specified interval is possible only if the 
process knows how long it has to wait before the next "event" in its life. But 
sometimes it may require to wait until the occurrence of some event in the life 
of some other process. For example, an order, on finding its required machine 
busy, must join a queue and wait until the machine is free; and an order on 
releasing a machine must activate the first other order in the queue (if not 
empty). Thus two additional procedures are required: 

wait (Q), 

and activate (X), 

where Q refers to the queue (two-way list) on which the calling process is to 
wait while it is passive, and X refers to some passive process, which is to be 
removed from its queue and allowed to proceed. 

Finally, a means must be provided of starting and stopping the simulation. 
This may be accomplished by a procedure statement 

simulate (start, finish), 
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where start refers to the process with which the simulation starts, and finish 
gives the time limit for the simulation. Any process requesting to be held 
beyond this limit may be ignored. Presumably, the start process will activate 
other processes to participate in the simulation. 

We now proceed to implement the mechanism described above. It will be 
implemented as a class MINISIM, which is intended to be used as a prefix 
to a simulation main program. In order to take advantage of the two-way list 
mechanism, the MINISIM class must be prefixed by TWLIST. This ensures 
that TWLIST is also available in any simulation program which is prefixed 
by MINISIM. 

A class of objects which are to be capable of participating in a simulation 
should be declared as a subclass of the "process" class. This will make 
available to it the necessary time control and queueing mechanisms. Each 
process must have the capability of inserting itself into a two-way list; 
therefore the process class itself must be declared as a subclass of the class of 
links. 

Processes waiting for the elapse of their holding interval are held on a 
unique two-way list known as the sequencing set (SQS). The processes are 
ordered in accordance with decreasing reactivation times. A specially created 
finish process is always the first link in SQS, and the last link is always the 
one that is currently active. Its time represents the current time of the 
system. When it goes inactive, its predecessor in the SQS will (usually) 
become the last, and its local time has already been updated to the time at 
which that process was due to be reactivated. 

We are now in a position to give the general structure of MINISIM, 
omitting for the time being the procedure bodies. 

TWLIST class MINISIM 

begin ref (list) SQS; 
ref (process) procedure current; 

current: -- SQS. last; 

link class process; 

begin real time; 

procedure hold (T); real T; 

• , • • • ~ 

procedure wait (Q); ref (list) Q; 

. . . .  o ; 

procedure activate (X); ref (process) X; 

• • • • • ~ 

detach; comment a new process doesn't actually 
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do anything until it is activated 

end of process; 

procedure simulate (start, finish); 

ref (process) start; real finish; 

" ° ' ' ' 7  

end of MINISIM. 

We shall give the bodies of the procedures in reverse order. 

simulate: begin SQS:- new list; 

new process.into (SQS); current.time: = finish; 

if start, time < finish then start, into (SQS); 

while --7 SQS. empty do 

begin call (current); 

213 

current, out; 

comment this ensures that a terminated 

or detached process leaves the SQS; 

end 

end of simulate 

wait:begin into (Q); resume (current) end; 

The active process inserts itself into the queue, and thereby leaves the SQS. 
It also resumes the process on the SQS which is next due to be reactivated. 
Notice that the standard sequencing mechanism of the simulate procedure 
must be bypassed, since the old active process already is out of the SQS. 

activate:begin X. into (SQS); comment as its last and current member; 

X. time: = time; comment i.e. now; 

resume (current); 

end of activate. 

The calling process places X ahead of itself in SQS, but with the same time. 
Since the calling and the activated process X have the same time, it does not 
matter to the timing mechanism in what order they are placed; our choice 
implies that an active phase of X is invoked immediately in real time. Control 
returns to the calling one at the same moment of simulated time, but after the 
completion of the active phase of X. 



214 OLE-JOHAN DAHL AND C. A. R. HOARE 

hold: 

begin ref (process) P; 

P : -  pred; 

comment the holding process is necessarily active, and 

therefore also the last member of SQS. Since the 

finish process never holds, there will always be a 

second-to-last process on SQS 

if T > 0 then t i m e ' =  time + T; 

comment set local reactivation time, 

time should never decrease; 

if time f> P. time then 

begin comment this process must be moved in SQS; 

out; comment of SQS, now P is current; 

P: - SQS. first; comment the finish process; 

if time < P. time then 

begin comment reactivation time is 

within the time limit; 

while time < P. time do P" - P. suc; 

comment terminates since 

time f> current, time; 

precede (P) 

end; comment ignore a process that would 

exceed the limit; 

resume (current) 

end; 

end of hold; 

Notice that a process object is allowed to relinquish control simply by 
saying detach or by passage through its end. In both cases control returns to 
the standard sequencing mechanism of the simulate procedure. The basic 
activation instructions call and resume, however, should not be explicitly 
applied to process objects; that would illegally bypass the timing mechanism. 

7.2. THE LEE ALGORITHM 

As a simple but unexpected example of the use of simulated time, we take 
the Lee algorithm for finding the shortest path between a city A and a city B 
connected by a network of one-way roads. The algorithm may be envisaged 
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as the propagation of a pulse from the destination city B at equal speed along 
all roads leading into it. Each time a pulse reaches a city not reached by a 
previous pulse, it records the road it has come along, and then sends pulses 
outward along all roads leading into the city. When a pulse reaches a city 
which has already been reached by another pulse, it dies. When a pulse 
reaches the city A, the task is completed. 

Cities and roads may be represented by classes. 

class city; begin ref (road) roadsin, wayout; . . . .  end 

class road; begin real length; ref (road) nextin; 

ref (city) source, destination; . .. end 

The variable wayout holds the recommended wayout from the city towards B. 
For an unvisited city, its value is none. 

The class representing a pulse takes as parameter the road along which 
it is first to pass. 

process class pulse (rd); ref (road) rd; 

begin ref (city) c; c: - rd.  source; 

hold ( rd .  length); 

if c. wayout = / = none then 

begin c. wayout: - rd; 

if c = = A then go to done; 

comment stops the simulation by 

going to a non-local label; 

rd" - c . roadsin; 

while rd  = / =  none do 

begin activate (new pulse (rd)); 

r d : -  rd.nextin 

end propagation of pulses 

end 

end of pulse 

The algorithm will be invoked by calling a procedure with parameters 
indicating the starting and final cities, and an upper limit L on the length of 
the path that is to be printed. It is assumed that the wayout of every city is 
initially none. The time and process concepts are made available by the 
prefix MINISIM to the procedure body. 
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procedure Lee (A, B, L); ref (city) A, B; real L; 

MINISIM begin process class pulse (rd); ref (road) rd;  

. .. as before . . .  ; 

process class starter; 

begin ref (road) rd;  

r d  : - B . roadsin; 

while r d  = / =  none do 

begin activate (new pulse (rd)); 

rd:  = rd.nextin 

end 

end of starter; 

simulate (new starter, L); 

done: end of Lee; 

After a procedure statement such as 

Lee (Oslo, Belfast, 1000); 

where ref (city) Oslo, Belfast; the required route may be printed out, provided 
that it exists. 

if Oslo. wayout = / = none then 

begin ref (city) c; procedure print . . . . . .  ; . . . . .  ; 

prin$ (Oslo. wayout); c" - Oslo. wayout, destination; 

while c = / =  Belfast do 

begin print (c); print (c. wayout); 

c: - c. wayout, destination 

end 

end else outtext ('no road connection within limit); 

It is assumed for the print procedure that cities and roads are objects 
belonging to a common class, by having the same prefix to the two classes. 
The prefix part of an object might contain the necessary identifying text, 
such as 'London'  or 'MI '  as data. 

7.3. A JOB SHOP MODEL 

As a second application of MINISIM we shall design a model of a simple 
job shop system. The model may be used to evaluate the capacity of the shop 
in relation to a given order load. The line numbers below refer to the 
program on page 218. 
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The system consists of machine groups (lines 3-10), numbered from 1 to 
nmg (lines l, 11), and order objects (lines 12-22). The machines of a group are 
identical and therefore need not be represented individually; however, their 
number is specified initially by the value of the attribute nm (line 3). 
Associated with the group is also a queue of orders waiting to be processed, 
which is empty initially (lines 4, 9), and procedures to request a machine 
for processing (lines 5-6) and to release it when finished (lines 7-8). 

The variable nm is used to represent the number of available machines, 
say m, as well as the number of orders, say w, waiting in the queue, as 
described by the following assertion. 

i f n m  > 0 t h e n m  = n m  A w =  0 

else m = 0 A W = abs(nm) 

The assertion is valid for each machine group (outside the procedure bodies 
request and release). 

When a machine is requested and m = 0, the caller must enter the queue 
and wait for its turn (line 6). When a machine is released and w # 0, one of 
the waiting processes should proceed. The first member of the queue is 
activated and thereby leaves the queue. The queueing discipline is thus first 
come first served. 

The orders are process objects, each of which generates its successor, 
(line 18) and which goes from one machine group to the next (lines 20-21) 
according to an individually defined schedule. For a given order the schedule 
has n steps, and for each step s(s = l, 2 . . . .  , n) a machine group number 
(mg[s]) and an associated processing time (pt[s]) are given. Thus the order 
should spend the time pt[s] in being processed at machine group number 
rag[s] (line 21, hold). Notice that the request statement of line 21 will require 
some additional amount of simulated time for its completion, if the group 
regroup [mg[s]] currently has no available machine. 

The model is driven by input data. In particular, each order object during 
its first active phase reads in its own schedule, consisting of length of 
schedule (line 18) arrival time (inreal, line 15), and the values of mg and p t  

(lines 16-17). The main program sets up machine groups of specified sizes 
(lines 24, 25) and generates the first order at time zero. (The procedures inint, 
inreal, and lastitem are procedures associated with a standard input file, 
which is part of the program environment). 

It is assumed that the input file starts with the following data: 

nmg, timelimit, nm ~, nm 2 . . . .  , nmnmo, 

defining the structure of the job shop; and this is followed by an occurrence 
of 

n, T, mg ~, pt~, mg2,  pt2,  • • . ,  mg . ,  p t . ,  
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for each order to be generated. Each value T defines the arrival time of the 
order. It is assumed that the T values are in a non-decreasing sequence. 

The JOB SHOP goes as follows. 

1. begin integer n m g ;  n m g :  = inint; 

2. MINISIM begin 

3. class machine group (nm); integer nm;  

4. begin ref (list) Q; 

5. procedure request; 

6. begin nm:  -- n m  - 1; if nm < 0 then current, wait (Q) end; 

7. procedure release; 

8. begin nm:  -- nm  + 1 ; if nm ~ 0 then current, activate (Q. first) end; 

9. Q: - new list 

10. end of machine group; 

11. ref (machine group) array regroup [1 :nmg]; 

12. process class order (n); integer n; 

13. begin integer array rag[1 : n]; array pt[1 :n]; integer s; 

14. ref (machine group) M; 

15. hold ( inreal- t ime);  comment arrival time is now; 

16. for s : =  1 step 1 until n do 

17. begin regis]: = inint; pt[s]: = inreal end; 

18. if --7 lastitem then activate (new order (inint)): 

19. comment generate next order, if any; 

20. for s ' =  1 step 1 until n do 

21. begin M : - m g r o u p  [mg[s]]; M.request;  hold (pt[s]);  

M. release end 

22. end of order; 

23. integer k; real lim; lim' = inreal; 

24. for k: = 1 step 1 until n m g  do regroup [k]: - new machine group (inint); 

25. simulate (new order (inint), lira); 

26. comment initial time is zero by default; 

27. end of program; 
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The model above should be augmented by mechanisms for observing its 
performance. We may for instance very easily include a "reporter" process, 
which will operate in "parallel" with the model components and give output 
of relevant state information at regular simulated time intervals. 

process class reporter (dr); real dr;  

while true do 

begin hold ( d t ) ;  

give output, e.g. of 

regroup [k].nm v ( k  = 1, 2,  . . . ,  n m g )  

end of reporter; 

The first order could generate a reporter object and set it going at system 
time zero. 

activate (new reporter (inreal)) 

Output will then be given at system time t, 2t, 3t, . . . ,  where t is the actual 
parameter value. 

As a further example we may wish to accumulate for each machine group a 
histogram of waiting times of orders at the group. Then define the following 
subclass of machine group, redefining the operation "request". 

machine group class Machine Group; 

begin ref (histogram) H; 

procedure request; 

begin real T; 

T: = time; n m  : = n m  - 1; 

if n m  < 0 then wait (Q); 

H.tabulate (time - T) 

end of new request; 

H : -  new histogram (X, N) 

end of Machine Group; 

It is assumed that "histogram" is the class defined in section 3.1, and 
that array X[1 :N] and integer N are nonlocal quantities. Now replace the 
lower case initials by upper case in the class identifier of lines 11, 14, and 24. 
Then all machine groups will be objects extended as above, and since the 
qualification of the reference variable M is strengthened, the "request" of 
line 21 refers to the new procedure. Thus a histogram of waiting times will be 
accumulated for each group. 

Finally it should be mentioned that the "machine group" concept might 
have considerable utility as a general purpose synchronisation mechanism for 
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pseudo-parallel processes. It might be useful to phrase it in more abstract 
terminology and possibly include it as part of a "third floor', platform for 
"resource oriented" simulation. In fact well known special purpose languages 
[10, 11] have elaborations of this concept ("facility", "store") as fundamental 
mechanisms. The analogy to the semaphore mechanism [12] for the synchroni- 
sation of truly parallel processes should be noted. The procedures request 
and release correspond to the P and V operations, respectively. 
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