
II. N o t e s on D a t a Structuring *

C. A. R. HOARE

l. INTRODUCTION

In the development of our understanding of complex phenomena, the most
powerful tool available to the human intellect :is abstraction. Abstraction
arises from a recognition of similarities between certain objects, situations,
or processes in the real world, and the decision to concentrate on these
similarities, and to ignore for the time being the differences. As soon as we
have discovered which similarities are relevant to the prediction and control
of future events, we will tend to regard the similarities as fundamental and
the differences as trivial. We may then be said to have developed an abstract
concept to cover the set of objects or situations in question. At this stage,
we will usually introduce a word or picture to symbolise the abstract concept;
and any particular spoken or written occurrence of the word or picture may
be used to represent a particular or general instance of the corresponding
situation.

The primary use for representations is to convey information about
important aspects of the real world to others, and to record this information
in written form, partly as an aid to memory and partly to pass it on to
future generations. However, in primitive societies the representations were
sometimes believed to be useful in their own right, because it was supposed
that manipulation of representations might in itself cause corresponding
changes in the real world; and thus we hear of such practices as sticking
pins into wax models of enemies in order to cause pain to the corresponding
part of the real person. This type of activity is characteristic of magic and
witchcraft. The modern scientist on the other hand, believes that the manipu-
lation of representations could be used to predict events and the results of
changes in the real world, although not to cause them. For example, by
manipulation of symbolic representations of certain functions and equations,

*This monograph is based on a series of lectures delivered at a Nato Summer School,
Marktoberdorf, 1970.

83

84 c . A . R . HOARE

he can predict the speed at which a falling object will hit the ground, although
he knows that this will not either cause it to fall, or soften the final impact
when it does.

The last stage in the process of abstraction is very much more sophisticated;
it is the attempt to summarise the most general facts about situations and
objects covered under an abstraction by means of brief but powerful axioms,
and to prove rigorously (on condition that these axioms correctly describe
the real world) that the results obtained by manipulation of representations
can also successfully be applied to the real world. Thus the axioms of
Euclidean geometry correspond sufficiently closely to the real and measurable
world to justify the application of geometrical constructions and theorems
to the practical business of land measurement and surveying the surface of
the earth.

The process of abstraction may thus be summarised in four stages:

(1) Abstraction: the decision to concentrate on properties which are shared
by many objects-or situations in the real world, and to ignore the differences
between them.

(2) Representation: the choice of a set of symbols to stand for the abstrac-
tion; this may be used as a means of communication.

(3) Manipulation: the rules for transformation of the symbolic represen-
tations as a means of predicting the effect of similar manipulation of the real
world.

(4) Axiomatisation: the rigorous statement of those properties which have
been abstracted from the real world, and which are shared by manipulations
of the real world and of the symbols which represent it.

1.1. NUMBERS AND NUMERALS

Let us illustrate this rather abstract description by means of a relatively
concrete example--the number four. In the real world, it is noticed that
objects can be grouped together in collections, for example four apples.
This already requires a certain act of abstraction, that is a decision to ignore
(for the time being) the differences between the individual apples in the
collectionqfor example, one of them is bad, two of them unripe, and the
fourth already partly eaten by birds.

Now one may consider several different collections, each of them with
four items; for example, four oranges, four pears, four bananas, etc. If we
choose to ignore the differences between these collections and concentrate
on their similarity, then we can form a relatively abstract concept of the
number four. The same process could lead to the concept of the number 3,
15, and so on; and a yet further stage of abstraction would lead to the
development of the concept of a natural number.

NOTES ON DATA STRUCTURING 85

Now we come to the representation of this concept, for example scratched
on parchment, or carved in stone. The representation of a number is called a
numeral. The early Roman numeral was clearly pictorial, just four strokes
carved in stone: IIII. An alternative more convenient representation was IV.
The arabic (decimal) representations are less pictorial, but again there is
some choice: both 4 and 04 (and indeed 004 and so on) are all recognised as
valid numerals, representing the same number.

We come next to a representation which is extremely convenient for
processing, providing that the processor is an electronic digital computer.
Here the number four is represented by the varying directions of magnetisa-
tion of a group of ferrite cores. These magnetisations are sometimes repre-
sented by sequences of zeros and ones on line printer paper; i.e., the binary
representation of the number in question.

A simple example of the manipulation of numerals is addition, which
can be used to predict the result of adjoining of two collections of objects
in the real world. The addition rules for Roman numerals are very simple
and obvious, and are simple to apply. The addition rules for arabic numerals
up to ten are quite unobvious, and must be learnt; but for numbers much
larger than ten they are more convenient than the Roman techniques.
Addition of binary representations is not a task fit for human beings; but
for a computer this is the simplest and best representation. Thus we see that
choice between many representations can be made in the light of ease of
manipulation in each particular environment.

Finally we reach the stage of axiomatisation; the most widely known
axiom set for natural numbers is that of Peano, which was first formulated
at the end of the last century, long after natural numbers had been in general
use. In the present day, the axiomatisation of abstract mathematical ideas
usually follows far more closely upon their development; and in fact may
assist in the clarification of the concept by guarding against confusion and
error, and by explaining the essential features of the concept to others. It is
possible that a rigorous formulation of presuppositions and axioms on which
a program is based may reduce the confusion and error so characteristic of
present day programming practice, and assist in the documentation and
explanation of programs and programming concepts to others.

1.2. ABSTRACTION AND COMPUTER PROGRAMMING

It is my belief that the process of abstraction, which underlies attempts to
apply mathematics to the real world, is exactly the process which underlies
the application of computers in the real world. The first requirement in
designing a program is to concentrate on relevant features of the situation,
and to ignore factors which are believed irrelevant. For example, in analysing
the flutter characteristics of a proposed wing design of an aircraft, its elasticity

86 c . A . R . HOARE

is what is considered relevant; its colour, shape, and production technique
are considered to be irrelevant except in so far as they have contributed to its
elasticity. To take a commercial example, the employees working for a
Company have many characteristics, both physical and mental, which will
be ignored when devising a payroll program for the Company.

The next stage in program design is the decision of the manner in which
the abstracted information is to be represented in the computer. An elasticity
function may be represented by its values at a suitable number of discrete
points; and these may be represented in a variety of ways as a two-dimensional
array. Alternatively, the elasticity might be given by a computed function,
and the data be held as a vector of polynomial or chebyshev coefficient for
the function. A payroll file on a computer consists of a number of records,
one relating to each employee. The choice of representation within the
record of each relevant attribute must be made as part of the design of the
program.

The stage of axiomatisation is not usually regarded as a separate stage in
programming; and is often left implicit. In the case of aircraft flutter, the
axiomatisation is the formulation of the differential equations which are
presumed to describe the reaction of the real wing to certain kinds of stresses,
and which (it is hoped) also describe the process of approximate solution
on the computer. In the case of a payroll, the axioms correspond to the des-
criptions of various aspects of the real world which need to be embodied in
the programmfor example, the fact that net pay equals gross pay minus
deductions.

Finally there comes the task of programming the computer to get it to
carry out those manipulations on the representation of the data that corre-
spond to the manipulations in the real world in which we are interested.
The success of a program is dependent on three basic conditions:

(1) The axiomatisation is a correct description of those aspects of the real
world with which it is concerned.

(2) The axiomatisation is a correct description of the behaviour of the
program, i.e., that the program contains no errors.

(3) The choice of representation and the method of manipulation are such
that the cost of running the program on the computer is acceptable.

In order to simplify the task of designing and developing a computer
program, it is very helpful to be able to keep these three stages reasonably
separate and to carry them out in the appropriate sequence. Thus the first
stage (axiomatisation) would culminate in a rigorous logical statement of
presuppositions about the real world, and a formulation of the desired
objectives which are to be achieved by the program. The second stage would
culminate in an algorithm, or abstract program, which is demonstrably

NOTES ON DATA STRUCTURING 87

capable of carrying out the stated task on the given presuppositions. The
third stage would be the decision on how the various items of data are to be
represented and manipulated in the store of the computer in order to achieve
acceptable efficiency. Only when these three stages have been satisfactorily
concluded will there begin the final phase of coding and testing the program,
which embodies the chosen algorithm operating upon the chosen data
representation.

Of course, this is a somewhat idealised picture of the intellectual task of
programming as a steady progression from the abstract formulation of the
problem to the more and more concrete aspects of its solution. In practice,
even in the formulation of a problem, the programmer must have some.
intuition about the possibility of a solution; while he is designing his abstract
program, he must have some feeling that an adequately efficient representa-
tion is available. Quite frequently these intuitions and feelings will be mistaken,
and a deeper investigation of representation, or even the final coding, will
require a return to an earlier stage in the process, and perhaps even a radical
recasting of the direction of attack. But this exercise of intuitive forethought,
together with a risk of failure, is characteristic of all inventive and con-
structive intellectual processes, and does not detract from the merits of at
least starting out in an orderly fashion, with more or less clearly separated
stages.

One of the most important features of the progression is that the actual
coding of the program has been postponed until after it is (almost) certain
that all other aspects of the design have been successfully completed. Since
coding and program testing is generally the most expensive stage in
program development, it is undesirable to have to make changes after this
stage has started. Thus it is advantageous to ensure beforehand that nothing
further can go wrong at this final stage; for example, that the program
tackles the right problem, that the algorithm is correct, that the various
parts of the program cooperate harmoniously in the overall task, and that the
data representations are adequately efficient. It is the purpose of this mono-
graph to explore methods of achieving this confidence.

1.3. ABSTRACTION IN HIGH-LEVEL PROGRAMMING LANGUAGES

The role of abstraction in the design and development of computer programs
may be reinforced by the use of a suitable high-level programming language.
Indeed, the benefits of using a high-level language instead of machine code
may be largely due to their incorporation of successful abstractions, particu-
larly for data. To the hardware of a computer, and to a machine code
programmer, every item of data is regarded as a mere collection of bits.
However, to the programmer in ALGOL 60 or FORTRAN an item of data
is regarded as an integer, a real number, a vector, or a matrix, which are the

88 c . A . R . HOARE

same abstractions that underlie the numerical application areas for which
these languages were primarily designed. Of course, these abstract concepts
have been mapped by the implementor of the language onto particular bit-
pattern representations on a particular computer. But in the design of his
algorithm, the programmer is freed from concern about such details, which
for his purpose are largely irrelevant; and his task is thereby considerably
simplified.

Another major advantage of the use of high-level programming languages,
namely machine-independence, is also attributable to the success of their
abstractions. Abstraction can be applied to express the important characteris-
tics not only of differing real-life situations, but also of different computer
representations of them. As a result, each implementor can select a repre-
sentation which ensures maximum efficiency of manipulation on his particular
computer.

A third major advantage of the use of a high-level language is that it
significantly reduces the scope for programming error. In machine code
programming it is all too easy to make stupid mistakes, such as using fixed
point addition on floating point numbers, performing arithmetic operations
on Boolean markers, or allowing modified addresses to go out of range.
When using a high-level language, such errors may be prevented by three
means:

(1) Errors involving the use of the wrong arithmetic instructions are
logically impossible; no program expressed, for example in ALGOL, could
ever cause such erroneous code to be generated.

(2) Errors like performing arithmetic operations on Boolean markers will
be immediately detected by a compiler, and can never cause trouble in an
executable program.

(3) Errors like the use of a subscript out of range can be detected by
runtime checks on the ranges of array subscripts.

Runtime checks, although often necessary, are almost unavoidably more
expensive and less convenient than checks of the previous two kinds; and
high-level languages should be designed to extend the range of programming
errors which logically cannot be made, or if made can be detected by a
compiler. In fact, skilful language design can enable most subscripts to be
checked without loss of runtime efficiency.

The automatic prevention and detection of programming errors may
again be attributed to a successful appeal to abstraction. A high-level pro-
gramming language permits the programmer to declare his intentions about
the types of the values of the variables he uses, and thereby specify the
meanings of the operations valid for values of that type. It is now relatively

NOTES ON DATA STRUCTURING 89

easy for a compiler to check the consistency of the program, and prevent
errors from reaching the execution stage.

1.4. NOTATIONS

In presenting a theory o fda ta structuring, it is necessary to introduce some
convenient notation for expressing the abstractions involved. These notations
are based to a large extent on those already familiar to mathematicians,
logicians and programmers. They have also been designed for direct expres-
sion of computer algorithms, and to minimise the scope for programming
error in running programs. Finally, the notations are designed to ensure the
existence of efficient data representations on digital computers.

Since the notations are intended to be used (among other things) for the
expression of algorithms, it would be natural to conclude that they constitute
a form of programming language, and that an automatic translator should be
written for converting programs expressed in the language into the machine
code of a computer, thereby eliminating the expensive and error-prone
coding stage in the development of programs.

But this conclusion would be a complete misunderstanding of the reason
for introducing the notations, and could have some very undesirable conse-
quences. The worst of them is that it could lead to the rejection of the main
benefits of the programming methodology expounded in this monograph, on
the grounds that no compiler is available for the language, nor likely to be
widely accepted if it were.

But there are sound reasons why these notations must not be regarded as a
programming language. Some of the operations (e.g., concatenation of
sequences), although very helpful in the design of abstract programs and the
description of their properties, are grotesquely inefficient when applied to
large data objects in a computer; and it is an essential part of the program
design process to eliminate such operations in the transition between an
abstract and a concrete program. This elimination will sometimes involve
quite radical changes to both algorithm and representation, and could not in
general be made by an automatic translator. If such expensive operators were
part of a language intended for automatic compilation, it is probable that
many programmers would fail to realise their obligation to eliminate them
before approaching the computer; and even if they wanted to, they would
have little feeling for what alternative representations and operations would
be more economic. In taking such vital decisions, it is actually helpful if a
programming language is rather close to the eventual machine, in the sense
that the efficiency of the machine code is directly predictable from the form
and length of the corresponding source language code.

There is a more subtle danger which would be involved in the automatic
implementation of the notations" that the good programmer would soon

90 C. A. R, HOARE

learn that some of them are significantly less emcient than others, and he will
avoid their use even in his abstract programs; and this will result in a form
of mental block which might have serious consequences on his inventive
capacity. Equally serious, the implementation of a fixed set of notations
might well inhibit the user from introducing his own notations and concepts
as required by his understanding of a particular problem.

Thus there is a most important distinction to be drawn between an
algorithmic language intended to assist in the definition, design, development
and documentation of a program, and the programming language in which
the program is eventually conveyed to a computer. In this monograph we
shall be concerned solely with the former kind of language. All example
algorithms will be expressed in this language, and the actual coding of
these programs is left as an exercise to the reader, who may choose for this
purpose any language familiar to him, ALGOL, FORTRAN, COBOL, PL/I,
assembly language, or any available combination of them. It is essential to a
realisation of the relative merits of various representations of data to realise
what their implications on the resulting code will be.

In spite of this vigorous disclaimer that I am not embarking on the design
of yet another programming language, I must admit the advantages that
can follow if the programming language used for coding an algorithm is
actually a subset of the language in which it has been designed. I must also
confess that there exists a large subset of the proposed algorithmic language
which can be implemented with extremely high efficiency, both at compile
time and at run time, on standard computers of the present day; and the
challenge of designing computers which can efficiently implement even larger
subsets may be taken up in the future. But the non-availability of such a
subset implementation in no way invalidates the benefits of using the full
set of notations as an abstract programming tool.

1.5. SUMMARY

This introduction has given a general description of the motivation and
general approach taken hereafter. As is quite usual, it may be read again
with more profit on completion of the rest of the monograph.

The second section explains the concept of type, which is essential to the
theory of data structuring; and relates it to the operations and representations
which are relevant to the practice of computer programming.

Subsequent sections deal with particular methods of structuring data,
progressing from the simpler to the more elaborate structures.

Each structure is explained informally with the aid of examples. Then
the manipulation of the structure is defined by specifying the set of basic
operations which may be validly applied to the structure. Finally, a range of

NOTES ON DATA STRUCTURING 91

possible computer representations is given, together with the criteria which
should influence the selection of a suitable representation on each occasion.

Section 11 is devoted to an example, a program for constructing an
examination timetable. The last section puts the whole exposition on a
rigorous theoretical basis by formulating the axioms which express the basic
properties of data structures. This section may be used as a summary of the
theory, as a reference to refine the understanding, or as a basis for the proof
of correctness of programs.

2. T a z CONCEPT OF TYPE

The theory of data structuring here propounded is strongly dependent on
the concept of type. This concept is familiar to mathematicians, logicians,
and programmers.

(1) In mathematical reasoning, it is customary to make a rather sharp
distinction between individuals, sets of individuals, families of sets, and so
on; to distinguish between real functions, complex functions, functionals,
sets of functions, etc. In fact for each new variable introduced in his reasoning,
a mathematician usually states immediately what type of object the vhriable
can stand for, e.g.

"Let f be a real function of two real variables"

"Let S be a family of sets".

Sometimes in mathematical texts a general rule is given which relates the
type of a symbol with a particular printer's type font, for example"

"We use small Roman letters to stand for individuals, capitals to
stand for sets of individuals, and script capitals to denote families of sets".

In general, mathematicians do not use type conventions of this sort to
make distinctions of an arbitrary kind; for example, they would not be
generally used to distinguish prime numbers from non-primes or Abelian
groups from general groups. In practice, the type conventions adopted by
mathematicians are very similar to those which would be of interest to
logicians and programmers.

(2) Logicians on the whole prefer to work without typed variables.
However without types it is possible to formulate within set theory certain
paradoxes which would lead to inescapable contradiction and collapse of
logical and mathematical reasoning. The most famous of these is the Russell
paradox:

"let s be the set of all sets which are no t members of themselves.
Is s a member of itself or not?"

92 C . A . R . HOARE

It turns out that whether you answer yes or no, you can be immediately
proved wrong.

Russell's solution to the paradox is to associate with each logical or
mathematical variable a type, which defines whether it is an individual, a
set, a set of sets, etc. Then he states that any proposition of the form "x is a
member of y" is grammatically meaningful only if x is a variable of type
individual and y a variable of type set, or if x is of type set and y is of type set
of sets, and so on. Any proposition that violates this rule is regarded as
meaningless~the question of its truth or falsity just does not arise, it is just a
jumble of letters. Thus any proposition involving sets that are or are not
members of themselves can simply be ruled out.

Russell's theory of types leads to certain complexities in the foundation
of mathematics, which are not relevant to describe here. Its interesting
features for our purposes are that types are used to prevent certain erroneous
expressions from being used in logical and mathematical formulae; and that a
check against violation of type constraints can be made merely by scanning
the text, without any knowledge of the value which a particular symbol
might happen to stand for.

(3) In a high-level programming language the concept of a type is of
central importance. Again, each variable, constant and expression has a
unique type associated with it. In ALGOL 60 the association of a type with a
variable is made by its declaration; in F O R T R A N it is deduced from the
initial letter of the variable. In the implementation of the language, the type
information determines the representation of the values of the variable, and
the amount of computer storage which must be allocated to it. Type informa-
tion also determines the manner in which arithmetic operators are to be
interpreted; and enables a compiler to reject as meaningless those programs
which invoke inappropriate operations.

Thus there is a high degree of commonality in the use of the concept of
type by mathematicians, logicians and programmers. The salient characteris-
tics of the concept of type may be summarised"

(1) A type determines the class of values which may be assumed by a
variable or expression.

(2) Every value belongs to one and only one type.

(3) The type of a value denoted by any constant, variable, or expression
may be deduced from its form or context, without any knowledge of its
value as computed at run time.

(4) Each operator expects operands of some fixed type, and delivers a
result of some fixed type (usually the same). Where the same symbol is applied
to several different types (e.g. + for addition of integers as well as reals),

NOTES ON DATA STRUCTURING 93

this symbol may be regarded as ambiguous, denoting several different actual
operators. The resolution of such systematic ambiguity can always be made
at compile time.

(5) The properties of the values of a type and of the primitive operations
defined over them are specified by means of a set of axioms.

(6) Type information is used in a high-level language both to prevent or
detect meaningless constructions in a program, and to determine the method
of representing and manipulating data on a computer.

(7) The types in which we are interested are those already familiar to
mathematicians; namely, Cartesian Products, Discriminated Unions, Sets,
Functions, Sequences, and Recursive Structures.

2.1. DATA TYPE DEFINITIONS

Our theory of data structuring specifies a number of standard methods of
defining types, and of using them in the declaration of variables to specify
the range of values which that variable may take in the course of execution
of a program. In most cases, a new type is defined in terms of previously
defined constituent types; the values of such a new type are data structures,
which can be built up from component values of the constituent types, and
from which the component values can subsequently be extracted. These
component values will belong to the constituent types in terms of which the
structured type was defined. If there is only one constituent type, it is known
as the base type.

The number of different values of a data type is known as its cardinality.
In many cases the cardinality of a type is finite; and for a structured type
defined in terms of finite constituent types, the cardinality is also usually
finite, and can be computed by a simple formula. In other cases, the cardinality
of a data type is infinite, as in the case of integers; but it can never be more
than denumerably infinite. The reason for this is that each value of the type
must be constructible by a finite number of computer operations, and must
be representable in a finite amount of store. Arbitrary real numbers, functions
with infinite domains, and other classes of non-denumerable cardinality can
never be represented as stored data within a computer, though they can be
represented by procedures, functions, or other program structures.

Obviously, the ultimate components of a struc, ture must be unstructured,
and the ultimate constituents of a structured type must be unstructured types.
One method of defining an unstructured type is by simple enumeration of its
values, as described in the next section. But in certain cases it is better to
regard the properties of unstructured types as defined by axioms, and assume
them to be provided as primitive types by the hardware of a computer or the
implementation of a high-level programming hmguage. For example, the

94 c . A . R . HOARE

primitive types of ALGOL 60 are integer, real, and Boolean, and these will
be assumed available.

2.2. DATA MANIPULATION

The most important practical aspect of data is the manner in which that
data can be manipulated, and the range of basic operators available for this
purpose. We therefore associate with each type a set of basic operators which
are intended to be useful in the design of programs, and yet which have at
least one reasonably efficient implementation on a computer. Of course the
selection of basic operators is to some extent arbitrary, and could have been
either larger or smaller. The guiding principle has been to choose a set large
enough to ensure that any additional operation required by the programmer
can be defined in terms of the basic set, and be efficiently implemented in
this way also; so an operator is regarded as basic if its method of efficient
implementation depends heavily on the chosen method of data represen-
tation.

The most important and general operations defined for data of any type
are assignment and test of equality. Assignment involves conceptually a
complete copy of a data value from one place to another in the store of the
computer; and test of equality involves a complete scan of two values
(usually stored at different places) to test their identity. These rules are those
that apply to primitive data types and there is no reason to depart from
them in the case of structured types. If the value of a structured type is very
large, these operations may take a considerable amount of time; this can
sometimes be reduced by an appropriate choice of representation; alter-
natively, such operations can be avoided or removed in the process of
transforming an abstract program to a concrete one.

Another general class of operators consists in the transfer functions, which
map values of one type into another. Of particular importance are the
constructors, which permit the value of a structured type to be defined in
terms of the values of the constituent types from which it is built. The
converse transfer functions are known as selectors; they permit access to
the component values of a structured type. In many cases, we use the name
of a defined type as the name of the standard constructor or transfer function
which ranges over the type.

Certain data types are conveniently regarded as ordered; and comparison
operators are available to test the values of such types. But for many types,
such an ordering would have no meaningful interpretation; and such types
are best regarded from an abstract point of view as unordered. This will
sometimes be of advantage in giving greater freedom in the choice of repre-
sentation and sequencing strategies at a later state in the concrete design.

NOTES ON DATA STRUCTURING 95

In the case of a large data structure, the standard method of operating
efficiently on it is not by assigning a wholly new value to it, but rather by
selectively updating some relatively small part of it. The usual notation for
this is to write on the left of an assignment an expression (variable) which
uses selectors to denote the place where the structure is to be changed.
However, we also introduce special assignment operators, always beginning
with colon, to denote other more general updating operations such as adding
a member to a set, or appending an item to a sequence. For both kinds of
selective updating, it must be remembered that, from a conceptual or abstract
point of view, the entire value of the variable has been changed by updating
the least part of it.

2.3. REPRESENTATIONS

It is fundamental to the design of a program to decide how far to store
computed results as data for subsequent use, and how far to compute them
as required. It is equally fundamental to decide how stored data should be
represented in the computer. In many simple and relatively small cases there
is an obvious standard way of representing data, which ensures that not too
much storage is used, and not too much time expended on carrying out the
basic operations. But if the volume of data (or the amount of processing)
is large, it is often profitable (and sometimes necessary) to choose some
non-standard representation, selected in accordance with the characteristics
of the storage media used (drums, discs, or tapes), and also taking into
account the relative frequencies of the various operations which will be
performed upon it. Decisions on the details of representation must usually
precede and influence the design of the code to manipulate the data, often
at a time when the nature of the data and the processing required are relatively
unknown. Thus it is quite common to make serious errors of judgement in
the design of data representation, which do not come to light until shortly
before, or even after, the program has been put into operation. By this time
the error is extremely difficult to rectify. However, the use of abstraction
in data structuring may help to postpone some of the decisions on data
representation until more is known about the behaviour of the program and
the characteristics of the data, and thus make such errors less frequent and
easier to rectify.

An important decision to be taken is on the degree and manner in which
data should be compressed in storage to save space; and also to save time on
input/output, on copying operations, and on comparisons, usually at the
expense of increasing the time and amount of code required to perform all
other operations. Representations requiring less storage than the standard
are usually known as packed; there are several degrees of packing, from

96 C. A. R. HOARE

loose to tight. Of theoretical interest is the minimal representation, which
uses the least possible space. In this representation the values of the type are
represented as binary integers in the range 0 to N - 1, where N is the cardi-
nality of the type. In the case of a type of infinite cardinality, a minimal
representation is one in which every possible bit pattern represents a value of
the type. Minimal representations are not often used, owing to the great
expense of processing them.

Another method of saving space is to use an indirect representation. In
the standard direct representation of data, each variable of a type is allocated
enough space to hold every value of the type. In the indirect representation,
the variable is just large enough to contain a single machine address, which at
any given time points to a group of one or more machine locations con-
taining the current value. This technique is necessary when the type has
infinite cardinality, since the amount of storage used will vary, and is not
known when writing the code which accesses the variable. It can also be
profitable when the actual amount of storage is variable, and during a large
part of a program run is significantly less than the maximum. Finally, it
can be used when it is believed that many different variables will tend to have
the same values; since then only one copy of the value need be held, and the
variables may just contain pointers to it; copying the value is also very cheap,
since only the pointer need be copied. However, such shared copies must
never be selectively updated.

Unfortunately, indirect representations often involve the additional expense
and complexity of a dynamic storage allocation and garbage collection
scheme; and they can cause some serious problems if data has to be copied
between main and backing stores.

This chapter describes only a small but useful range of the possible
representations of data, and the skilful programmer could readily add to the
selection. In many cases, the representation of an abstract data type can be
constructed by means of a more elaborate but more efficient data type
definition; for instance a large set may be represented as a sequence of items
of some suitable type. Examples of this are given in later sections.

3. UNSTRUCTURED DATA TYPES

All structured data must in the last analysis be built up from unstructured
components, belonging to a primitive or unstructured type. Some of these
unstructured types (for example, reals and integers) may be taken as given
by a programming language or the hardware of the computer. Although
these primitive types are theoretically adequate for all purposes, there are
strong practical reasons for encouraging a programmer to define his own
unstructured types, both to clarify his intentions about the potential range of

NOTES ON DATA STRUCTURING 97

values of a variable, and the interpretation of each such value; and to permit
subsequent design of an efficient representation.

In particular, in many computer programs an integer is used to stand not
for a numeric quantity, but for a particular choice from a relatively small
number of alternatives. In such cases, the annotation of the program usually
lists all the possible alternative values, and gives the intended interpretation
of each of them. It is possible to regard such a quantity as belonging to a
separate type, quite distinct from the integer type, and quite distinct from
any other similar set of markers which have a different interpretation. Such
a type is said to be an enumeration, and we suggest a standard notation for
declaring the name of the type and associating a name with each of its
alternative values"

type suit = (club, diamond, heart, spade);

ordered type rank = (two, three, four, five, six, seven, eight, nine, ten, Jack,

Queen, King, Ace);

type primary colour = (red, yellow, blue);

ordered type day of week = (Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday);

type day of month = 1.. 31 ;

ordered type month = (Jan, Feb, March, April, May, June, July, Aug, Sept,

Oct, Nov, Dec);

type year = 1900.. 1969;

type Boolean = (false, true);

ordered type floor = (basement, ground, mezzanine, first, second);

type coordinate = 0 . . 1023;

Our first two examples are drawn from the realm of playing cards. The first
declaration states that club, diamond, heart, and spade are suits; in other
words, that any variable or expression of type suit can only denote one of
these four values; and that the identifiers "club heart" "diamond" and
"spade" act as constants of this type. Similarly, the definition of the type
rank displays the thirteen constants denoting the thirteen possible values of
the type. In this case it is natural to regard the type as ordered. The next
examples declare the names of the primary colours and of the days of the
week. In considering the days of the month, it is inconvenient to write out
the thirty-one possible values in full. We therefore introduce the convention
that a . . b stands for the finite range of values between a and b inclusive.
This is known as a subrange of the type to which a and b belong, in this case

98 C. A. R. HOARE

integers. This convention is used again in the declaration of year. Other
examples of enumeration are:

The Boolean type, with only two values, false and true.

The Month type, with twelve vaIues listed in the required order.

The coordinate type, taking values between 0 and 1023, representing
perhaps a coordinate on a CRT display.

Having defined a type in a suitable fashion, the programmer will use the
type name to specify the types of his variables. For this purpose it is useful
to follow the current practice of mathematicians and to write the type name
after the variable, separated from it by a colon:

trumps: suit; today: day of week;

pc: primary colour;

If several variables of the same type are to be declared at the same time,
it is useful to adopt the abbreviation of listing the variable names without
repeating the type name, thus:

arrival, departure:day of month;

x, y, z: coordinate.

If only a few variables of a given type are to be used, it is convenient to
write the type definition itself in place of and instead of the type name:

answer : (yes, no, don't know);

The cardinality of a type defined by enumeration is obviously equal to
the length of the defining list; and for a subrange, it is one more than the
difference between the end points of the subrange.

3.1. MANIPULATION

The operations required for successful manipulation of values of enumeration
types and subranges are:

(1) test of equality, for example:

if arrival = departure then go to transit desk;
if trumps = spade t h e n . . .

(2) assignment, for example:

pc: = yellow;
trumps: = club;

(3) case discrimination, for example:

case pc of (red: ,

ye l low: . . . ,
b l u e : . . .)

NOTES ON DATA STRUCTURING 99

where pc is a variable or expression of type primary colour, and the limbs
of the discrimination are indicated by lacunae. A case discrimination may be
either a statement, in which case the limbs must be statements; or it may be
an expression, in which case the limbs must be all expressions of the same
type.

The effect of a case discrimination is to select for execution (or evaluation)
that single statement (or expression) which is prefixed by the constant equal
to the current value of the case expression. In some cases, it may be convenient
to prefix several constants to the same limb, or even to indicate a subrange of
values which would select the corresponding limb; but of course each value
must be mentioned exactly once"

ease digit of (0. . 2:

3:7: ,

4 . . 6 : 8 : 9 : . . .) .

In this last case, it would be convenient to replace the labels of the last limb
by the basic word else, to cover all the remaining cases not mentioned
explicitly on the preceding limbs.

When the limbs of a discrimination are statements, we shall sometimes use
braces instead of brackets to surround them.

(4) In the case of a type declared as ordered, it is possible to test the
ordering relationships among the values"

if May ~< this month & this month ~< September then
adopt summer timetables.

In other cases, the ordering of the values is quite irrelevant, and has no
meaning to the programmer.

(5) In conjunction with ordering, it is useful to introduce a successor and a
predecessor function (succ and pred) to map each value of the type onto the
next higher or lower value, if there is one. Also, if T is any ordered type, the
notation T.min will denote the lowest value of the type, and T.max the
highest value. This helps in formulating programs, theorems, and axioms in a
manner independent of the actual names of the constants.

(6) In a computer program we will frequently wish to cause a variable to
range sequentially all through the values of a type. This may be denoted by a
form of for statement or loop

for a: alpha d o . . . ;

for i : l . . 99 d o . . . ;

In this construction, the counting variable (a or i) is taken to belong to the
type indicated, and to be declared locally to the construction, in the sense
that its value does not exist before or after the loop, and its name is not

100 c . A . R . HOARE

accessible outside the loop. In addition, the value of the counting variable
is not allowed to be changed inside the body of the loop, since this would
frustrate the whole intention of declaring the variable by means of the for
construction.

In the case of" an ordered type, it is natural to assume that the counting
variable sequences through the values of the type in the defined order,
T.min, succ(T.min) , T.max. But if the type is an unordered one, it is
assumed that the sequence of the scan does not matter at the current level of
abstraction, and will be defined at some later stage in the development of a
concrete program.

(7) For subrange types, particularly integer subranges, it is sometimes
required to perform operations which are defined for the original larger type.
In principle, it is simple to accomplish this by first converting the subrange
value to the corresponding value of the larger type, and then performing the
operation, and finally converting back again if necessary. This requires a
type transfer function; and for this purpose it is convenient to use the name
of the destination/.ype, for example:

xdistance: = integer(x) - integer(y);

z : - coordinate(integer(z) + xdistance);

where xdistance is an integer variable. Of course, this is an excessively
cumbersome notation, and one would certainly wish to adopt the convention
of omitting the conversions, where the need for their re-insertion can be
established from the context:

xdistance: = x - y;

z: = z + xdistance.

Exercise
Given m 'month and y 'year , write a case discrimination expression giving
the number of days in month m.

3.2. REPRESENTATION

The standard representation of an enumeration type T is to map the values
in the stated order onto the computer integers in the range 0 to n - 1, where
n is the cardinality of the type. Thus in this case the standard representation
is also minimal. The standard representation of a subrange is to give each
value the same representation that it had in the original type; thus transfer
between the types involves no actual operation; though of course conversion
from the base type to the subrange type should involve a check to ensure that
the value is within the specified range.

The minimal representation of a subrange value is obtained by subtracting
from the standard form the integer representation of the least value of the

NOTES ON DATA STRUCTURING 101

subrange. In this case, conversion to a subrange involves subtraction as well
as a check, and conversion in the opposite direction involves an addition.

Apart from these conversions, enumerations and subranges in either
representation can be treated identically. Tests of ordering can be accom-
plished by normal integer instructions of the computer, and succ and pred
involve addition or subtraction of unity, followed by a test that the result is
still within range.

The case discrimination can be most efficiently carried out by a switch-
jump. For example, in ALGOL 60 the first example quoted above (3.1.(3))
would be coded:

begin switch ss: = red, yellow, blue;

go to ss[pc + 1];

red:begin ; go to end end;

y e l l o w : b e g i n . . . ; go to end end;

blue:begin ; go to end end;

end: end.

This can be efficiently represented in machine code, using an indexed
jump and a switch table, indicating the starting addresses of the portions of
code corresponding to the limbs of the discrimination.

The implementation of the for statement corresponds in an obwous way
to the for statement of ALGOL 60, with a step length of unity. The con-
ventions proposed above, which regard the counting variable as a local
constant of the loop, not only contribute to clarity of documentation, but
also assist in achieving efficiency on a computer, by taking advantage of
registers, special count and test instructions, etc.

3.3. EXAMPLE

The character set of a computer peripheral is defined by enumeration:

type character = (. . . .);

The set includes the subranges

type digit = nought. , nine;

type alphabet = A. . Z;

as well as individual symbols, point, equals, subten, colon, newline, space,
as well as a number of other single-character operators and punctuation
marks.

There is a variable

buffer: character

which contains the most recently input character from the peripheral. A

i=

102 c . A . R . HOARE

new value can be input to buffer from the input tape by the procedure "read
next character".

In a certain representation of ALGOL 60, basic words are not singled out
by underlining, and therefore look like identifiers. Consequently, if they are
followed or preceded by an identifier or a number, they must be separated
from it by one or more spaces or newline symbols.

In the first pass of an ALGOL translator it is desired to read in the
individual characters, and assemble them into meaningful symbols of the
language; thus, an identifier, a basic symbol, a number, and the " : = "
becomes sign, each count as a single symbol, as do all the other punctuation
marks. Space and newline, having performed their function of separating
symbols, must be ignored. We assume that each meaningful symbol will be
scanned by a routine designed for the purpose, and that each such routine
will leave in the buffer the first input character which is n o t part of the
symbol.

As an example of the analysis of the symbols of a program, input of the
text

!: beta1" = beta x 12;

should be analysed into the following symbols"
!

betal

beta
×

12

The general structure of the program is a case discrimination on the first
character of the symbol, which determines to which class the symbol belongs.

read first character;

repeat case buffer of

(alphabet'scan identifier,

digit: point" subten" scan number,

space" newline" read next character,

colon" begin read next character;

if buffer = equals then

begin deal with "becomes"; read next character end

NOTES ON DATA STRUCTURING 103

else deal with single character

end

else begin deal with single character;

read next character

end

)

until end of tape

4. THE CARTESIAN PRODUCT

Defined enumerations and subranges, like primitive data types, are in principle
unstructured. Of course, any particular representation of these types will be
structured, for example, as a collection of consecutive binary digits; but
from the abstract point of view, this structuring is essentially irrelevant. No
operators are provided for accessing the individual bits, or for building up a
value from them. In fact, it is essential to the successful use of an abstraction
that such a possibility should be ignored; since it is only thus that detailed
decisions can be postponed, and data representations can be decided in the
light of the characteristics of the computer, as well as the manner in which
the data is to be manipulated.

We now turn to deal with data types for which the structure is meaningful
to the programmer, at least at some stage in the development of his program.
The basis of our approach is that, as in the case of enumerations, the pro-
grammer should be able by declaration to introduce new data types; but for
structured data, the definition of a new type will refer to other primitive or
previously defined types, namely the types of the components of the structure.
Thus the declaration of a new type will be somewhat similar to the declara-
tion of a new function in a language such as ALGOL and FORTRAN. A
function declaration defines the new function in terms of existing or pre-
viously declared functions and operations. Just as a declared function can be
invoked on many occasions from within statements of the program or other
function declarations, so the new type can be "invoked" many times from
within other declarations of the program; these may be either declarations
of variables specified to range over the newly declared type, or they may be
declarations of yet another new type.

We will deal first with elementary data structures, Cartesian products and
unions. These elementary structures are almost as simple and familiar to
mathematicians and logicians as the natural numbers. Furthermore, from

104 c . A . R . HOARE

the point of view of the computer programmer, the properties of elementary
data structures are very favourable, provided that the constituent types are
also elementary.

(1) Firstly, each data item occupies a fixed finite, and usually modest
amount of core store, which increases only linearly with the size of the
definition.

(2) The store required to hold each value can efficiently be allocated
either permanently in main storage or on a run-time stack. There is no need
for more sophisticated dynamic storage allocation systems.

(3) The most useful manipulations of the data items can be performed
with high efficiency on present-day computers by simple and compact
sequences of machine-code instructions.

(4) The structures do not require pointers (references, addresses) for their
representation, and thus there is no problem with the transfer of such data
between main and backing storage.

(5) For any given structure, the choice of an appropriate representation
usually presents no difficulty to the programmer.

The first data structuring method which we shall discuss is the Cartesian
product. A familiar example of a Cartesian product is the space of complex
numbers, each of which is constructed as a pair of floating point numbers,
one considered as its real part and the other as its imaginary part. The
declaration of the complex type might take the form

type complex = (realpart" real; imagpart" real);

or more briefly:

type complex = (realpart, imagpart: real).

The names realpart and imagpart are introduced by this definition to provide
a means of selecting the components of a complex number. For example,
if n is of type complex defined above, n. realpart will denote its real part and
n. imagpart its imaginary part.

A constant denoting a value from a Cartesian product type may be defined
in terms of a list of constants denoting the values of the components. As
mentioned before, the name of the type is used as a transfer function to
indicate the type of the resulting structure, and it takes a list of parameters
rather than a single one. Thus the complex number 13 + i may be written

complex (13, + 1).

Another example of a Cartesian product is the declaration of a type whose
values represent playing cards. Each card can be specified by giving first its
suit (for example, heart) and then its rank, say Jack. Both items of information

NOTES ON DATA STRUCTURING 105

are required uniquely to specify a given card. Thus the type cardface can be
defined as the Cartesian product of the types suit and rank:

type cardface = (s:suit; r:rank).

Typical constants of this type are"

cardface (club, two), cardface (heart, Jack).

Another simple example of a Cartesian product, this time with three
components, is the date. In the normal way, this can be specified by three
values, the first selected from among the possible values of the type day of
month, say the seventh; the second from among the possible values of the
type month, say March; and the third from among the values of the type
year, say 1908. This date can be written:

date (7, March, 1908).

It belongs to the type declared thus:

type date = (day: day of month; m:month; y:year);

The defining feature of the Cartesian product type is that it comprises
every possible combination of values of its component types, even if some of
them should never be encountered in practice. So date (31, Feb, 1931) is a
normal value of type date, even though in the real world no such date exists.
However date (28, Feb, 1899) is no t a value of type date, since 1899 is not a
value of type year, as defined above. Thus the definition of the type date does
not correspond exactly to the real world situation, but the correspondence
is close enough for most purposes; and it is the responsibility of the pro-
grammer to ensure that the manipulation of the variables of this type will
never cause them to take values which he would regard as meaningless.

This example shows that the means provided for defining new types in
terms of other types are simpler and less powerful than the general mathe-
matical techniques for defining new sets in terms of other sets; for it certainly
is possible to define a set which excludes all unwanted dates. In fact, when
declaring a type or variable, it is good documentation practice to specify
rigorously the properties which will be possessed by every meaningful value.

The last example shows how the set of point positions on a two-dimensional
raster can be declared as the Cartesian product of one-dimensional co-
ordinates"

type raster = (x, y: coordinate)

This is the standard method by which two-dimensional spaces are con-
structed out of a single-dimension by the method of Cartesian coordinates;
for every point in two-dimensional space can be named as an ordered pair
of simple one-dimensional numbers. This explains the use of the term
"Cartesian product" to apply to the given method of defining types. If r is a

106 c . A . R . HOARE

variable of type raster, r . x and r . y are commonly known as the projections
of r onto the x and y axes respectively; however, we shall refer to the functions
x and y as selectors rather than projections.

The cardinality of a Cartesian product type is obtained by multiplying
together the cardinalities of the constituent types. This is fairly obvious
from the visualisation of a Cartesian product as a rectangle or box with
sides equal in length to the cardinalities of the types which form the axes.
thus the cardinaiity of the card type is thirteen times four, i.e., fifty-two, which
is, as you might expect, the number of cards in a standard pack. The number
of dates is 26 040, which slightly overestimates the actual number of days in
the interval, since as explained above, it includes a small number of invalid
dates.

4.1 MANIPULATION

Apart from assignment and test of equality, which are common to all types,
the main operations defined for a product type are just those of constructing
a value in terms of component values, and of selecting the components.
When constructing a value of a Cartesian product type, it is in principle
necessary to quote the name of the type as a transfer function. However,
it is often more convenient to follow the traditional mathematical practice,
and leave the transfer function implicit in cases where no confusion would
arise. This is in any case necessary when a type is not even given an explicit
name. For example, one may write (heart, Jack) instead of cardface (heart,
Jack).

For selection of a component, a dot-notation has been used, e.g.,
n. imagpart. This is more convenient than the normal functional notation
imagpart (n), since it avoids unnecessarily deep nesting of brackets.

Another most important operation is the selective updating of the com-
ponents of a variable. This may be denoted by placing the component name
on the left of an assignment

u. imagpart: = 0;

r . x : = a x r . x + b x r . y .

If a Cartesian product is declared as ordered, it is necessary that all the
constituent types be ordered, and it is natural to define the ordering in a
lexicographic manner, taking the earlier components as the more significant.
Thus if suit and rank are ordered, the cardface type could be declared as
ordered in the traditional ranking whereby all clubs precede all diamonds,
and these are followed by all hearts and all spades; whereas within each suit,
the cards are ordered in accordance with their rank.

NOTES ON DATA STRUCTURING 107

In inspecting or processing a structured value, it is often required to make
many references to its components within a single small region of code.
In such a case it is convenient to use a with construction

with s v do S;
where sv names the structured variable (or expression) and S is a program
statement defining what is to be done with it. Within the statement S, the
components of sv will be referred to simply by their selector names, s 1,- •., sn,
instead of by the usual c o n s t r u c t i o n ' s v . s l , s v . s 2 , . . . s v . s n . The reasons for
using this construction are:

(1) To clarify the purpose of the section of program.

(2) To abbreviate its formulation.

(3) To indicate the possibility of improved efficiency of implementation.

Example" Given today" date, test whether it is a valid date or not.

with today do case m of

{Sept:April :June: Nov:

if day > 30 then go to invalid,

Feb:if day > (if (y + 4) x 4 = y then 29 else 28)

then go to invalid,

else do nothing }.

Exercise

Write functions to represent the four standard arithmetic operations on
complex numbers.

4.2. REPRESENTATION

The standard method of representing a value of Cartesian product type is
simply by juxtaposing the values of its components in a consecutive region of
store, usually in the order indicated. However, there is considerable variation
in the amount of packing and padding which may be involved in the juxta-
position. In the standard unpacked representation, each component value is
made to occupy an integral number of words, where a word is the smallest
conveniently addressable and efficiently accessible unit of storage on the
computer.

If the values can fit into less storage than one word, there is the option of
packing more than one component into a word. In a tightpacked repre-
sentation, the bitpatterns of the components are directly juxtaposed. In a
loosely packed representation, the components may be fitted within certain
subdivisions of a word, which are "natural" in the sense that special machine
code instructions are available for selecting or updating particular parts of a
word--for example, character boundaries, or instruction fields of a word.

108 c . A . R . HOARE

The sequence of the components may be rearranged to fit them conveniently
within such boundaries; but such rearrangement is usually inadvisable if the
type is ordered.

If a packed representation stretches over several words, there is a possi-
bility that a single component value may overlap word boundaries. The
selection or updating of such a component on many machines would be
much more time-consuming than normal; and it is therefore a common
practice to leave some unused space (padding) at the end of words to prevent
such overlaps.

In order to construct a minimal representation of a structured value, it is
necessary to use minimal representation of all the components. Then each
component is multiplied by the product of the cardinalities of all the types of
all subsequent components, and these results are summed to give a minimal
representation in the Cartesian product type. For example, the representation
of 7th, Mar, 1908 is 6x 12x70 + 2 x 7 0 + 8 = 5188.

The choice between the various representations depends on the wider
context within which the values are processed. If selection and selective updat-
ing are frequent, it pays to use an unpacked representation, so that the normal
selection mechanism of word-addressed hardware may be used directly in
these operations. However if copying and comparison of the value as a
whole is comparatively frequent, then it pays to use a packed representation,
so that these operations can be carried out with fewer instructions and fewer
stores accesses. A particular case of copying which should be taken into
consideration is that which takes place between the main store of the com-
puter and a backing store. If such transfers are frequent, considerable
efficiency may be gained if the volume of material transferred is reduced by
judicious packing.

day
m

Y

Standard Loose Packed Tight Packed
(Character Boundaries)

(a)

day m y
day m y

i , l i 5 4 7 '
6 6 12 bits

(b) (c)

FIG. 1 Representations of date (7, March, 1908)

bits

A second occasion for using packed representations is when data storage
is scarce, either in main store or on external backing stores. However, care
must be taken that space saved on data s torage is not outweighed
by the expansion of the code which results from having to unpack and
repack the data whenever it is inspected or updated.

NOTES ON DATA STRUCTURING 109

The minimal representation is not often used for data storage, since the
small amount of extra space it saves (always less than one bit per component)
is usually more than outweighed by the extra time taken by multiplying and
dividing on every access to the components, as compared with the more
usual shifting and masking. However, the technique can be useful, possibly
in conjunction with more conventional packing, if there is no other way of
fitting the value within convenient word boundaries. Also, if the value is to
be used solely or primarily as an index to a multi-dimensional array, the
minimal representation is to be preferred; since this will save a significant
amount of space in the representation of the array (see Section 6.2).

In representing the with construction in machine code, it is sometimes
convenient to compute the address of the structure being referenced and
store it in a register; this may achieve shorter and faster code for accessing
the components. If the components have been packed, it may pay to unpack
them into separate words before starting to process them, so that they can
be easily referenced or updated; and if they have been updated, they must be
packed up again and stored in the structure when the processing is complete.
On some machines, it is more economic to pack and unpack a whole structure
at the same time, rather than to perform these operations one at a time on
the components.

Exercise
Given a variable

today: date;

write a program to assign the value of the next following date to the variable
tomorrow:date. Translate this program into the machine code of your
choice using a tightly packed representation. Rewrite the program using an
unpacked and then a minimal representation. Compare the lengths of the
code involved, and the time taken to execute them.

5. THE DISCRIMINATED UNION

In defining sets of objects, it is often useful to define one set as the union
of two previously known sets. For example, when jokers~ are added to a
standard pack of cards, the extended set may be described as the union of
the standard set plus the set consisting of the "wild" cards, joker 1 and
joker 2. A type whose values range over the members of this set may be
declared as the union of two alternatives, the card type, and an enumeration
type with two distinct values:

type pokercard = (normal: (s: suit; r: rank),

wild : (joker 1, joker 2)).

110 c .A .R . HOARE

Each value of type pokercard corresponds either to an ordered pair with
components indicating suit and rank; or else it corresponds to one of the
two jokers in the enumeration type.

In specifying a constant of a discriminated union type, it is necessary to
indicate to which of the alternative types the value denoted is intended to
belong. This is done by writing the name of the alternative explicitly, for
example:

pokercard (normal (heart, Jack))

denotes a value from the first alternative, whereas

pokercard (wild (joker 2))

denotes a value from the second alternative. In general, it is convenient to
omit the type name, where the type can be inferred from context.

A second example of a discriminated union might be found in the main-
tenance of a register of all cars in a country. Cars may be distinguished as
local cars owned by residents of the country, and visitor cars brought into
the country temporarily by non-residents. The information required is rather
different in the two cases. In both cases the number and the make of the car
is considered relevant. However, for a local car, the name of the owner of
the car is required, and the date on which the car was first registered in that
owner's name. For visitor cars, this information is not relevant:all that is
required is the standard three-letter abbreviation of the name of the country
of origin. Thus the definition of the two alternative types of car might be:

type local car = (make: manufacturer; regnumber: carnumber;

owner: person; first registration: date);

type visitor car = (make" manufacturer; regnumber" carnumber;

origin'country);

Now it is possible to define a type covering both kinds of car:

t y p e c a r = (local:localcar,

foreign:foreign car).

But here it is inconvenient to define the structure of tocal and foreign cars
separately; and we would like to take advantage of the fact that several of
their components are the same. This may be done by bringing the common
components in front of both alternatives:

type car -~ (make: manufacturer;

regnumber: carnumber;

(local: (owner:person;

first registration: date),

foreign: (origin: country))
).

NOTES ON DATA STRUCTURING 111

Every car has a make and regnumber but only local cars have an owner or
first registration date; and only foreign cars have an origin.

A third example is the definition of geometric figures, which in some
application might be categorised as either rectangles, triangles, or circles

type figure = (position: point; rect: R, tri: T, circ: C).

The method of specifying the figure varies in each case. For a rectangle, the
angle of inclination of one of the sides is given, together with the two lengths
of the sides"

type R = (inclination:angle; side 1, side 2:real).

A triangle is specified by the angle of inclination and length of one of its
sides together with the angles formed between it and the other two sides"

type T = (inclination" angle; side" real; anglel, angle2" angle).

For a circle, all that is necessary is to specify the diameter as a real number.

type C = (diameter: real).

When a type is defined as the union of several other types, it is important
to recognise that its values must be considered wholly distinct from those
of any of the types in terms of which it is defined. Otherwise there would be
an immediate violation of the rule that each value belongs to only one type.
Thus the union of types must be clearly distinguished from the normal
concept of set union. Furthermore, for each element of the union type, it is
possible to determine from which of the constituent types it originated, even
if the same type has been repeated several times. For example, a double pack
of cards used for playing patience may be defined as the union of two packs,
i.e.,

type patience card = (red: cardface, blue: cardface).

Each value of type patience card is clearly marked as having originated either
from the red pack or from the blue pack, even if perhaps in the real world
the colours of the backs are the same. This fact explains the use of the term
"discriminated union" to apply to this form of type definition. It folloWs that
the cardinality of a discriminated union is always the sum of the cardinalities
of its constituent types.

5.1. MANIPULATION

Any value of a discriminated union carries with it a tag field indicating
which of the particular constituent types it originated from; on assignment
this is copied, and on a test of equality, the tag fields must be the same if the
values are to be equal.

112 c .A .R . HOARE

On constructing a value of a discriminated union type, it is necessary to
name the alternative type from which the value originated:

patience card (red (spade, Jack)).

This will automatically cause the value "red" to be assigned to the tag field
of the result.

A particular car may be denoted by

car (Ford, "RUR157D",

local (me, date (1, Sept, 1968))).

In order to access and operate on the information encoded as a dis-
criminated union, it is necessary to convert it back to its original type.
This may be accomplished by theconvention of using the label of this type
as if it were a selector, e.g."

cardl , wild

carl . foreign

figl. tri

is of type (joker 1, joker 2)

is of type (origin' country)

is of type T

If the constituent type is a Cartesian product, its selectors may be validly
applied to the resulting value, using the convention that the operator
associates to the left.

cardl , normal, r

carl . local, owner

figl. circ. diameter

If the programmer attempts to convert a discriminated union value
back to a type from which it did n o t originate, this is a serious programming
error, which could lead to meaningless results. This error can be detected
only by a runtime check, which tests the tag field whenever such a conversion
is explicitly or implicitly invoked. Such a check is timeconsuming and when
it fails, highly inconvenient. We therefore seek a notational technique which
will guarantee that this error can never occur in a running program; and
the guarantee is given by merely inspecting the text, without any knowledge
of the runtime values being processed. Such a guarantee could be given by an
automatic compiler, if available.

The proposed notational technique is a mixture between the with con-
struction for Cartesian products and the case construction for discrimination.
Suppose that a value sv of union type is to be processed in one of several

NOTES ON DATA STRUCTURING 113

ways in accordance with which of the alternative types it came from. Then
one may write

with s v do { a l " s l ,

a2;$2~

a n " a n } ;

where S~ is the statement to be selected for execution whenever the value of
the tag field of sv is a~. Within S~ it is guaranteed safe to assume that the
value came from the corresponding alternative type, provided that the value
of sv remains unchanged. Consequently it is safe to use the component
selectors which are defined for that alternative type by themselves to refer
to the components of sv, just as in the case of a simple with statement
described previously for a Cartesian product.

If it is desired to regard a union type as ordered, the most natural ordering
is that defined by taking all values corresponding to earlier alternatives in
the list before any of the values of the later alternatives.

Exerc i se
Write a function that will compute the area of a figure as defined above.

5.2. REPRESENTATION

In representing a value from a discriminated union it is necessary first to
represent the tag as an integer between zero and n - 1, where n is the number
of alternative types. The tag is followed directly by the representation of the
value of the original type. As with the Cartesian product, there is a choice of
the degree of packing used in a representation.

In the unpacked representation the tag occupies a complete word, and the
space occupied by each value of a union type is one word more than that
occupied by values from the largest alternative type. In a packed representa-
tion, this overhead can be reduced to a few bits. In the minimal representa-
tion, each value is obtained by adding its minimal representation in the
original type to the sum of the cardinalities of all preceding types in the
union. Thus a value originating from the first type, for example (diamond,
four), has exactly the same value as it has in the original type, namely 16.
But joker 1, with value zero in the original enumeration type, has added to it
the cardinality of the card type.

The choice between unpacked, packed and tight packed representations
is based on the same considerations as for Cartesian products; however the
runtime speed penalty for the minimal representation is a great deal less,

114 c .A .R . HOARE

since recovery of the original value requires only subtraction rather than
division.

In general the values of the different alternative types occupy different
amounts of storage, so the shorter values have to be "padded out" to
equalise the lengths, thus observing the convenient rule that elementary
data types occupy a fixed amount of storage. In later chapters it will be seen
that this padding can often be omitted when the value is a component of
some larger structure.

A local car A foreign car

,Ford -~l make
RUR157D Jregnumber

of tag
CARH J owner
1 SePt 1968 I first registration

iFiat I make 7 - 27-19 regnumber
tag,

I Italy origin
!

L j padding (sometimes omitted)

FIG. 2. Representation of cars

In present-day programming practice, it is quite common to omit the tag
field in the representation of unions. In order to operate correctly on such a
representation, the programmer needs to "know" from other considerations
what the interpretation of the value ought to be, since it is not possible to
find out from the value itself. If his belief is mistaken, this is not detectable
either by a runtime or compile-time check. Since the effect of such an error
will depend on details of bitpattern representation, it will give rise to results
unpredictable in terms of the abstractions with which the programmer is
working. It would therefore in general seem advisable to use tag fields and
compile-time checkable case discriminations as standard programming
practice, to be bypassed only in exceptional circumstances.

5.3. EXAMPLE

We return to the context of the example in section 3.3, the analysis of
language text into meaningful symbols. We wish to give a rigorous abstract
definition of what these symbols are.

type symbol =

(realconst: real,

integerconst: integer,

identifier: ident,

basic'delimiter);

where we will leave the type ident undefined for the time being, and assume
that the delimiters are defined by enumeration.

NOTES ON DATA STRUCTURING 115

6. TIlE ARRAY

The array is for many programmers the most familiar data structure, and in
some programming languages it is the only s t ruc tu re explicitly available.
From the abstract point of view, an array may be regarded as a mapping
between a domain of one type (the subscript range) and a range of some
possibly different type (the type of the array, or more accurately, the type of
its elements).

The type of a mapping is normally specified by a mathematician using an
arrow:

M: D ~ R;

where D is the domain type and R is the range type. An alternative notation
which will be more familiar to programmers is"

M:array D of R.

This notation is more expressive of the manner in which the data is repre-
sented, whereas the mathematical notation emphasises the abstract character
of the structure, independent of its representation.

When a particular value M of a mapping type is applied to a value x of the
domain type, it specifies some unique element of the range type, which is
known as M of x, and is written using either round or square brackets

M(x) or Mix].
Another name for a mapping is a function" the term "mapping" is used to
differentiate the data structure from a piece of program which actually
computes a value in its range from an argument in its domain. The essence of
the difference is that a mapping M is specified not by giving a computation
method but by explicitly listing the value of M(x) for each possible value x
in its domain. Thus an array can be used only for functions defined at a
finite set of points, whereas the domain of a computed function may be
infinite.

An example of a finite mapping is a monthtable, which specifies for each
month of the year the number of days it has:

type monthtable = array month of 28 . . 31.

The domain is the month type and the range type consists of the integers
between 28 and 31 inclusive. A typical value of this tyiae may be simply
specified by listing the values of M(x) as x ranges over its domain. Thus
if M: monthtable is specified as

monthtable (Jan: 31, Feb: 28, March: 31, April: 30,

May: 31, June: 30, July: 31, Aug: 31,

Sept: 30, Oct: 31, Nov: 30, Dec: 31)

then M[Jan] = 31, M[Feb] = 28, and so on.

116 c .A .R . HOARE

The array provides a method of representing a particular arrangement of
cards in a pack, since each arrangement may be regarded as a mapping which
indicates for each of the fifty-two possible positions in a pack the value of the
card which occupies that position. Thus each possible arrangement may be
regarded as a value of the mapping type:

type cardpack = array 1.. 52 of cardface.

Of course, not all values of this type represent actual cardpacks, since there is
nothing to prevent some value of the type from mapping two different
positions onto the same card; which in real life is impossible.

Arrays with elements that are of Cartesian product type are sometimes
known as tables.

A third example of an array is that which represents all possible con-
figurations of character punching on a conventional punched card. This
may be regarded as a mapping M which maps each column number into a
character, namely the character punched in that column.

type punchcard = array 1.. 80 of character.

Any possible text punched into a card may be regarded as a single value of
type punchcard.

A fourth example shows an array which represents a possible value of a
page on a cathode ray tube display device. There are assumed to be 40 rows
and 27 character positions in each row. The effect of two dimensions can be
achieved by specifying the domain of the mapping as a Cartesian product of
the possible rows and the possible character positions within each row. This
is written as follows"

type spot = (row: l . . 40; column : l . . 27);

type display page = array spot of character.

An alternative method of dealing with a multidimensional array is to
regard it as an array of rows, where each row is an array of characters"

type display page = array I . . 4 0 of row;

type row = array 1. .27 of character.

This is a more suitable abstract structure if the rows are to be processed
separately and the columns are not.

The cardinality of an array type is computed by raising the cardinality
of the range type to the power of the cardinality of the domain type, i.e.

cardinality (D -~ R) = cardinality (R) cardinality (D)

This may be proved by considering the number of decisions which have to
be made to specify completely a value of an array type. For each value of
the domain we have to choose between cardinality (R) possible values of the
range type. We have to make such a choice independently for each element
of the array, that is cardinality (D) times.

NOTES ON DATA STRUCTURING 117

6.1. MANIPULATION

A mapping which maps all values of its domain onto the same value of its
range is known as a constant mapping. A natural constructor for arrays is
one which takes as argument an arbitrary range value, and yields as result
the constant array, aU of whose elements are equal to the given range value.
It is convenient to use the type name itself to denote this constructor, e.g.

M = monthtable (31)

is an array such that M[m] = 31 for all months m.

cardpack (cardface (heart, King))

is obviously a conjuror's pack.
The basic constructive operation on an array is that which defines a new

value for one particular element of an array. If x is a value of an array type T,
d a value from its domain type, and r a value from its range type, then we
write:

T(x, d: r)

to denote a value of type T which is identical to x in all respects, except
that it maps the value d into r. The T may be omitted if its existence can be
inferred from context. Similarly, the constant array T(x) may be denoted by
all (x).

The basic selection operator on arrays is that of subscripting. This is
effectively a binary operation on an array and a value from its domain type;
and it yields the corresponding value of its range type.

The most common and efficient way of changing the value of an array is
by selective updating of one of its components, which is accomplished by
the usual notation of placing a subscripted array variable on the left of an
assignment:

a[d]: = r.

This means the same as

a: = T(a, d:r).

Note that from an abstract point of view a new value is assigned to the whole
array.

Normally an array type would be regarded as unordered; but in some
cases, particularly character arrays, it is desirable to define an ordering
corresponding to the normal lexicographic ordering; this is possibte only
when domain and range types are ordered. In this case the ordering of two
arrays is determined by that of the lowest subscripted elements in which the
two arrays differ. Thus

"BACK" < " B A N K "

because the third letter is the first one in which they differ, and

118 c .A.R. HOARE

"C" < "N"

A convenient method of specifying an array value is by means of a for
expression, which is modelled on the for statement:

for i:D take E

where E is an expression yielding a value of the range type, and containing
the variable i. As i scans through the domain type D, evaluation of the
expression E yields the value of the corresponding element of the array.

If certain operations are defined on the range type of an array, it is natural
to extend these operations to apply to the array type as well. For example,
if A and B are real arrays with the same domain, it is natural to write

A + B , A - B ,

to denote arrays (with the same domain) whose elements are the sum and
difference of the values of the corresponding elements of A and B. But the
programmer must retain his awareness that these can be expensive operations
if the arrays are large, and he should seek ways of eliminating the operations
in progressing from an abstract to a more concrete program.

6.2. REPRESENTATION

The representation of arrays in a computer store is familiar to most pro-
grammers. The most usual representation is the unpacked representation,
which allocates one or more whole words to each element of the array. In
this case, the computer address of each element is simply computed" first,
the value of the subscript is converted to a minimal representation; then this
is multiplied by the number of words occupied by each element; and finally
the result is added to the address of the first element of the array. The normal
word-selection mechanism of the computer can be used to access and update
this value independently of the other elements of the array.

An alternative representation involves packing of elements within word
boundaries, so that each element occupies only a certain fixed number of
bits within a word, although the array as a whole may stretch over several
words. In the example of a monthtable, each element can take only four
values, 28 to 31; therefore it can be accommodated in only two bits in the
minimal representation; the whole array can therefore be accommodated in
twenty-four consecutive bits.

When an array is packed in this way, the task of selecting the value of a
subscripted variable is far more complicated. In order to select the right
word, the subscript (in minimal form) must be divided by the number of
elements in each word. The quotient is added to the address of the first word
of the array, which is then accessed. The remainder is multiplied by the
number of bits in each element, and the result is used as a shift-count, to

NOTES ON DATA STRUCTURING 119

shift the required value into a standard position within the word. The
unwanted values of neighbouring elements of the array can then be masked
off. The method of selectively updating an element of a packed array is
even more laborious, since the new value must be inserted at the right position
within the word, without disturbing the values of the neighbouring elements.
The efficiency of both operations may be slightly increased if the number of
elements per word is an exact power of two, since then the integer division
of the subscript may be replaced by a shift to find the quotient, and a mask
to find the remainder. On some machines, further efficiency may be gained
if each element is stored in a single character position.

The minimal representation for an array is similar to that for a Cartesian
product, except that the multiplier of each element value is equal to the
cardinality of range type, raised to the power of the subscript value. The
process of selecting or updating a value of an element of an array stored in
minimal representation is even more laborious than that described above,
unless the cardinality of the range type is an exact power of two. It would
be prohibitive if the array were to stretch over more than one normal com-
puter word. For this reason, the minimal representation for arrays is of
mainly academic interest.

Standard Loose Packed Tight Pecked

'r ~ I~I~! A [o] A~ !A[o] AB] A[2]]
A [~] i A[2] A[32
A [2] . iA[4] A[5] ~I IA[6]IA[711)
A [3] iAE6] A[7] A[~]

.

A E4] ~,
A [5] padding

A [6]
A [7]

(a) (b) (c)
FIG. 3. Representation of A" array 0 . . 7 of T

When the domain of a finite mapping is itself a data structure, for example,
a Cartesian product, it is usual to represent this domain in the minimal
representation, so as to avoid allocation of unused storage space. For
example, the display page has a domain which is the Cartesian product of
the integer ranges I to 40 and 1 to 27. In the minimal representation, this
gives a range of integers between 0 and 40x 27 - 1 = 1079. Consequently
1080 consecutive words are allocated to hold values of elements of the array.
In order to access any element in a given row and character position, it is
necessary first to construct a minimal representation for the subscript, in
the manner described in Section 4.2.

i

120 c . A . R . HOARE

An alternative method of representation of multidimensional arrays is
sometimes known as a codeword or descriptor method, but we shall give it
the title of "tree representation". The essence of the method is to allocate a
single-dimensional base array with one element corresponding to each row
of the array, and to place in it the address of a block of consecutive storage
locations which holds the values of that row. These rows do not have to be
contiguous. Now the process of accessing or updating each element does
not have to be done by computing a minimal representation of the subscript.
All that is necessary is to add the row-number to the address of the first
element of the base of the tree, and thus access the address of the first element
of the required row, to which the value of the next subscript is added to give
the address of the required element.

Standard
A [0,o]
A [0, I]
A [0,2]
A [1,o]
A[1,1]
A [1,2]

row 2

A [3,O]
A[3,1]
A [3,2]

Tree

AE3,o]
A[3,:]
A [~,Z]

A[0,O]
A[0,1]
A[0,2]

A[I,0]
A l l , l]
AIZ1,2]

i t row2

(a) (b)
FIG. 4. Representation of two-dimensional arrays

The choice between unpacked and packed representations of arrays is
made on grounds similar to the choice in the case of a Cartesian product.
The unpacked representation is used when fast access and updating is
required; it is also the obviously appropriate choice when the range type
naturally fits within computer word boundaries, for example if the elements
are floating point numbers. The packed representation is recommended if
the size of the elements is considerably shorter than a single word, and if
storage is short, or if copying and comparison of the arrays is frequent
compared with subscripting and selective updating. A particularly common
case of packed arrays is the representation of identifiers in a programming
language, where it is acceptable in the interests of efficiency to truncate
identifiers which are too long to fit into the standard array, and pad out
those that are too short with blanks.

NOTES ON DATA STRUCTURING 121

The choice between representations of multidimensional arrays is made
on quite different grounds. The standard representation is more economical
of storage, and gives good efficiency on sequencing through elements of the
array by rows, columns, or both. Furthermore, it is more convenient when
the arrays must be transferred as a whole between main and backing store.
However, on a machine with slow multiplication, it will be faster to use the
tree representation, and accept the extra storage required to hold the array
of addresses, which is small provided that the rows are not too short. If
each row contains only two words, there would be a fifty per cent overhead
on data storage.

There are several other possible reasons for choosing the tree represen-
tation:

(1) In some computing environments, where dynamic storage allocation
is standard, it may be difficult to obtain large consecutive areas, in which
case a large two-dimensional array can be split up into a number of smaller
rows which can be accommodated without trouble.

(2) It is possible to set up a scheme whereby some rows of the array are
held on backing store while other rows are being processed, and then the
backing store address of a row replaces the main store address in the base
array when that row is absent from store. Thus it is hoped to be able to process
arrays which are too large to be wholly accommodated in main store together
with the program that processes them. However, the economics of this
operation need to be carefully examined to ensure that the number of
backing store transfers involved is acceptable.

(3) In some applications, it is known that several matrices share the same
rows. In the tree representation it is possible to set up a single copy of such a
shared row, and merely take copies of its address rather than its full value.
But in such a case, the shared row must not be selectively updated.

(4) The tree representation is recommended even in the case of single-
dimensional arrays if the size of the individual elements is highly variable;
and on multidimensional arrays, if the length of the rows is highly variable.

Exercise
The character set of an input device includes only thirty characters, defined
by enumeration; they include the characters space, newline, newpage.
Characters may be read in one at a time from an input device to a buffer,
using a procedure call

read next character.

They should be assembled line by line into an array

page'display page,

122 c . A . R . HOARE

and on receipt of a newpage character, this should be output to a display
device by the instruction

outpage.

The display device does not recognise the characters newline or newpage;
consequently the ends of Iines and pages have to be filled up with spaces.

Write a program in a suitable language to perform this operation, using a
selection of representations for the display page, e.g.

unpacked

loosely packed

tightly packed

indirect.

Rewrite the program, using different representations. Compare the lengths
and speeds of the code and data involved in the different representations.

Write the corresponding programs to read a page from the display, and
output the individual characters, taking care to eliminate redundant spaces
at the ends of each line and blank lines at the end of each page wherever
possible.

7. THE POWERSET

The powerset of a given set is defined as the set of all subsets of that set;
and a powerset type is a type whose values are sets of values selected from
some other type known as the base of the powerset. For example, the primary
colours have been defined by enumeration as red, yellow and blue. The
other main colours are made up as a mixture of two or three of these colours:
orange is a mixture of red and yellow; brown is a mixture of all three primary
colours. Thus each main colour (including the primary colours) can be
specified as that subset of the primary colours out of which it can be mixed.
For example, orange may be regarded as the set with just two members,
red and yellow. Using the traditional notation for sets defined by enumeration,
this may be written: {red, yellow}. The pure colour red may be regarded as
the set whose only member is the primary colour red, i.e. {red }. In this way it
is possible to represent the seven main colours, red, orange, yellow, green,
blue, purple and brown. When no primary colour is present (i.e. the null or
empty set) this may be regarded as denoting the absence of colour, i.e.
perhaps white. The type whose values range over the colours may be declared
as the power set of the type primary colour:

type colour = powerset primary colour.

A second example is provided by considering a data structure required to
represent the status of the request buttons in a lift. A simple variable of type

NOTES ON DATA STRUCTURING 123

floor (see Section 3) is capable of indicating one particular stop of a lift.
But if we wish to record the status of the whole panel of buttons inside a
lift, it would be necessary to represent this as a subset of all possible floors
in the building, namely, the subset consisting of those floors for which a
request button has been depressed. Thus the type liftcall may be defined
as the powerset of the floor type:

type liftcall = powerset floor.

A third example is provided by a hand of cards in some card game, for
example, poker or bridge. A hand is a subset of playing cards, without
repetitions, and is therefore conveniently represented by a value from the
powerset type:

type hand = powerset cardface;

This type covers all hands of up to fifty-two cards, even though for a
particular game there may be standard size of a hand, or a limit less than
fifty-two.

A final example expresses the status of a computer peripheral device, for
example, a paper tape reader. There are a number of exception conditions
which can arise on attempted input of a character:

(1) Device switched to "manual" by operator.

(2) No tape loaded.

(3) Parity error on last character read.

(4) Skew detected on last character read.

These conditions can be defined as an enumeration

type exception = (manual, unloaded, parity, skew);

and since several of these conditions can be detected simultaneously, the
status of the reader can be specified as a value of a powerset type:

type statusword = powerset exception.

The cardinality of the powerset type is two raised to the power of the
cardinality of the base type, i.e.

cardinality (powerset D) = 2 cardinality (D)

This may be proved by considering the number of decisions which have
to be made to specify completely a value of the type. For each value of the
base type there are two alternatives, either it is in the set or it is not. This
decision may be made independently cardinality (D) times.

7.1. MANIPULATION

The basic construction operation on sets is the one that takes a number of
values from the domain type, and converts them into a set containing just

i

124 c . A . R . HOARE

those values as members. As in the case of the Cartesian Product, the type
name is used as the transfer function, but for sets, the number of arguments
is variable from zero upwards. For example"

primary colour (red, yellow) i.e. orange

liftcall (ground) i.e. only a single button has been
pressed

statusword () i.e. no exception condition.

The last two examples illustrate the concept of a unit set (which must be
clearly distinguished from its only member) and the null or empty set, which
contains no member at all. If the type name is omitted in this construction,
curly brackets should be used instead of round ones in the normal way.

The converse of the null set is the universal set, which contains all values
from the base type. This may be denoted

T. all.

However, this universal set exists as a storable data value only when the base
type is finite.

The basic operations on sets are very familiar to mathematicians and
logicians.

(1) Test of membership: If x is in the set s, the Boolean expression "x in s"
yields the value true, otherwise the value false.

(2) Equality: two sets are equal if and only if they have the same members.

(3) Intersection" sl ^ s2 contains just those values which are in both sl
and s2.

(4) Unions" sl v s2 contain just those values which are either in sl or s2,
or both.

(5) Relative complement" s 1 - s2 contains just those members of sl which
are not in s2.

(6) Test of inclusion: s l c s2 yields the value true whenever all members
of s l are also members of s2, and false otherwise.

(7) The size of a set tells how many members it has.

If the domain type of a set has certain operators defined upon it, it is often
useful to construct corresponding operations on sets. In particular, if the
domain type of a set is ordered, the following operators apply:

(8) rain (s) the smallest member of s; undefined if s is empty.

(9) x down n is a set containing just those values whose nth successors are
in s.

(10) x up n is a set containing just those values whose nth predecessors
are in s.

NOTES ON DATA STRUCTURING 125

(11) Range (a, b) is the set containing a, succ(a) , . . . , b if a ~< b, and which
is empty otherwise.

The most useful selective updating operations on sets are:

x ' v y; join the set y to x

x : v T(a) add the member a to x

x: ^ y; exclude from x all members which are not also members
o f y

x : - y exclude from x all members which are also members
o f y

x: down n subtract n from every member ofx and exclude members
for which this is not possible

x:up n add n to every member of x, and exclude members for
which this is not possible

It is also sometimes useful to select some member from x and simultaneously
remove it from x. This operation can be expressed by the notation"

a from x.

If the domain type of x is ordered, it is natural that the selected member
should be the minimum member of x; otherwise the selection should be
regarded as arbitrary.

It is often useful to define the value of a set by giving some condition B
which is satisfied by just those values of the domain type which are intended
to be members of the set. This may be denoted:

{i:OrB}
where i is a variable of type D regarded as local to B,

and B is a Boolean expression usually containing and depending on i.

In order for this expression to denote a value of the powerset type it is
essential that the cardinality of D be finite, and that B is defined over all
values of the type.

Finally, it is frequently required to perform some operation on each
member of some set, that is to execute a loop with a counting variable which
takes on successively all values in the set. A suitable notation for expressing
this is:

for x in s d o . . .

If the base type of s is an ordered type, it seems reasonable to postulate that
the elements will be taken in the natural order, starting with the lowest.
For an unordered base type, the programmer does not care in which order
the members are taken, and he leaves open the option to choose an order
that contributes best to efficiency.

126 c . A . R . HOARE

7.2 REPRESENTATION

In choosing a computer representation for powersets, it is desirable to
ensure that all the basic operations can be executed simply by single machine
code instructions; and further, that the amount of store occupied is
minimised. For most data structure storage methods, there is a fundamental
conflict between these two objectives, and consequently a choice between
representation methods must be made by the programmer; but in the case
of" powersets the two objectives can be fully reconciled, provided that the
base type is not too large.

The recommended method of representation is to allocate as many bits
in the store as there are potential members in the set. Thus to each value
of the base type there is a single bit which takes the value one if it is in fact a
member, or zero if it is not. For example, each value of type colour can be
represented in three bits; the most significant corresponding to the primary
colour red, and the least significant corresponding to blue. Thus the orange
colour is represented as 110 and red as 100. Each set of size n is represented
as a bitpattern with exactly n ones in the appropriate positions. The null set
is accordingly represented as an all-zero bitpattern.

Another example is afforded by the "hand" type, which requires fifty-two
bits for its representation, one corresponding to each value of type cardface.
In this case, it is advisable to use the minimal representation of the base
type, to avoid unused gaps in the bitpattern representation.

Since the number of values of a powerset type is always an exact power of
two, for powersets of small base there can be no more economical method
of utilising storage on a binary computer than that of the bitpattern repre-
sentation. It remains to show that the operations defined over the powerset
type can be executed with high efficiency.

(1) The unitset of x may be obtained by loading a single 1 into the signbit
position, and shifting it right x places. On computers on which shifting is
slow, the same effect may be obtained by table lookup. The construction of a
set out of components may be achieved by taking the logical union of all the
corresponding unit sets.

(2) A membership test x in s may be made by shifting s up x places and
looking at the most significant bit: 1 stands for true and 0 for false.

(3) Logical intersection, union, and complementation are often available
as single instructions on binary computers.

(4) The size of a set can sometimes be discovered by a builtin machine
code instruction for counting the bits in a word. Otherwise the size can be
determined by repeated standardisation, masking off the next-to-sign bit on

NOTES ON DATA STRUCTURING 127

each occasion. A third method is to split the bitpattern into small parts, and
use table lookup on each part, adding together the results.

(5) The up and down operations can obviously be accomplished by right
or left shifts.

(6) The min of a set can be efficiently discovered by a standardise instruc-
tion, which automatically counts the number of shifts required to move the
first one-bit into the position next to the sign.

(7) The for statement may also be emciently constructed using standardi-
sation, masking off each one-bit as it is reached.

(8) The range operation can be accomplished by two shifts, the first of
which regenerates the sign bit.

Thus when the cardinality of the domain type is not greater than the
number of bits in the largest computer word to which logical and shift
operations can be applied, all these operations can be carried out with great
efficiency. If significantly more than one such word is involved, it will usually
pay to use selective updating operations rather than the normal result-
producing operators. Furthermore, operations such as size and min can
become rather inefficient, and it will often pay to store these values re-
dundantly together with the set, and keep them up to date whenever the value
of the set is updated, rather than recomputing them whenever they are
required.

When it is known that the cardinality of the base type is very large (perhaps
even infinite) compared with the size of the typical set, the bitpattern repre-
sentation altogether loses its attraction, since it no longer pays to store and
operate upon large areas of zeroes. The treatment of such sparse sets is
postponed to Section 10.

7.3. EXAMPLE

Problem: Write a program to construct a set

primes:powerset 2. . N;

containing all prime numbers in its base type.
Use the method of Eratosthenes' sieve to avoid all multiplications and
divisions.

The method of Eratosthenes is first to put all numbers in the "sieve" and
repeat the following until the sieve is empty:
Select and remove the smallest number remaining in the sieve (necessarily a
prime), and then step through the sieve, removing all multiples of that
number.

128 c . A . R . HOARE

The program can be written easily

begin n, n e x t : 2 . . N ; sieve:powerset 2 . . N ;

sieve: = range (2, N);

primes: = { };

while sieve ~ empty do

begin next: = min (sieve);

primes: v (next };

for n ' = next step next until N do

sieve" - {n}

end

end primefinder.

But if N is significantly large, say of the order of 10 000, this program
cannot be directly executed with any acceptable degree of efficiency. The
solution is to use this program as an abstract model of the algorithm, and
rewrite it in a more efficient fashion, using only operations on sets not
exceeding the word-length of the computer. We therefore need to declare
an array of words to represent the two sets, assuming that "wordlength"
is an environment enquiry giving the number of bits in a word"

primes, sieve:array O.. W of powerset O.. wordlength - 1

where W = (N + 1) + wordlength + 1.

This means that the two sets may be slightly larger than N, but for con-
venience we shall accept that harmless extension.

In order to access an individual bit of these sets, it is necessary to know
both the wordnumber and the bitnumber. Since we do not wish to use
division to find these, we will represent the counting variables n and next as
Cartesian products

n, next: (w, b :integer);

where w indicates the wordnumber and b indicates the bitnumber.

It is now as well to check the efficiency of this representation by recoding
the innermost loop first.

for n: = next step next until N flo s i e v e : - {n };

is recoded as"

n: = next;

while n. w ~< W do

begin sieve [n. w]: - {n. b };

n . b : = n . b + next.b;

NOTES ON DATA STRUCTURING 129

n . w : = n . w + next .w;

if n. b >i wordlength then begin n. w: -- n. w + 1 ;

n. b: = n. b - wordlength

end

end

Since this appears acceptably efficient we will code the other operations of
the outer loop, starting with the most dimcult"

next" = rain (sieve);

Here we do not wish to start our search for the minimum at the beginning
of the sieve set each time, since towards the end of the process this would
involve scanning many empty words. We therefore take advantage of the
fact that the new value of next must be larger than the old value.

The search consists of two parts, first finding a nonempty word, and then
its first bit. But if the search for a word reaches the end of the array, the
whole program is completed

while sieve [next. w] = { } do {next. w: = next. w + 1 ;

if next. w > W then exit primefinder };

next. b: = min (sieve [next. w]);

The remaining operations are trivial Since the outer loop is terminated
by a n exit, there is no need to test a separate while condition; and the
statement

primes" v {next };

can be coded as

primes [next. w]: v {next. b }.

The whole program including initialisation is as follows"

primes, sieve:array 0 . . W of powerset 0 . . wordlength - 1 ;

begin primefinder;

n, next:(w, b:integer);

for t :O. . W do begin primes [t]: = (};

sieve [t]: = range (0 . . wordlength - 1

end;

sieve [0]: - (0, 1 };

next. w: = O;

while true do

begin while sieve [next. w] = () do

130 c .A.R. HOARE

end

end primefinder

begin next. w" -- next. w + 1 ;

if next. w > W then exit primefinder

end;

next. b: = min (sieve [next. w]);

primes [next. w]: v {next. b);
, n" = next,

while n. w ~< W do

begin sieve [n. w]: - {n. b);

n . b : = n . b + next.b;

n . w : = n . w + next.w;

if n.b >~ wordlength then

beginn.w'= n .w + l ;

n. b: = n. b - wordlength

end

end

One feature of this program is that it uses an environment enquiry word-
length to achieve the full efficiency of which a machine is capable, and yet
does so in a completely machine-independent fashion. The program will not
only work, but work with high efficiency, on machines with widely varying
word lengths.

But the most interesting feature about the program is the way in which
it is related to the previous version. From an abstract point of view it
expresses an identical algorithm; all that has changed is the manner in which
the data has been represented on the computer. The original design acted as
a framework or pattern, on which the more intricate coding of the second
version was structured. By carrying out the design in two stages, we simplify
the task of ensuring that each part of the f inalprogram works successfully
in conjunction with the other parts.

E x e r c i s e

Rewrite the program using sets representing only the odd numbers. (Hint:
rewrite the more abstract program first.)

8. THE SEQUENCE

The previous chapters have dealt with the topic of elementary data structures,
which are of great importance in practical programming, and present very

NOTES ON D A T A S T R U C T U R I N G 131

little problem for representation and manipulation on modern digital com-
puters. Furthermore, they provide the essential basis on which all other more
advanced structures are built.

The most important distinction between elementary structured types and
types of advanced structure is that in the former case the cardinality of the
type is strictly finite, provided that the cardinality of the constituent types is.
The distinction between a finite and an infinite set is one of profound mathe-
matical significance, and it has many consequences relating to methods of
representation and manipulation.

(1) Since the number of potential values of the type may be infinite, the
amount of storage allocated to hold a value of an advanced structure is not
determinable from the declaration itself. It is normally only determined
when the program is actually running, and in many cases, varies during the
execution of the program. In the case of an elementary structure, the number
of different potential values is finite, and the maximum amount of storage
required to hold any value is fixed and determinable from the form of the
declaration.

(2) When the size of a structured value is fairly large, it is more efficient
to update individual components of the structure separately, rather than to
assign a fresh value to the entire structure. Even for elementary types, it
has been found sometimes more efficient to perform selective updating,
particularly for unpacked representations of Cartesian products and for
arrays. The increased efficiency of selective updating is usually even more
pronounced in the case of advanced data structures.

(3) Advanced data structures, whose size varies dynamically, require some
scheme of dynamic storage allocation and relinquishment. The units of
storage which are required are usually linked together by pointers, sometimes
known as references or addresses; and their release is accomplished either by
explicitly programmed operations, or by some form of general garbage
collection. The use of dynamic storage allocation and pointers leads to a
significant complexity of processing, and the problems can be particularly
severe when the data has to be transferred between the main and backing
store of a computer. No problems of this kind need arise in the case of
elementary data structures.

(4) The choice of a suitable representation for an advanced data structure
is often far more difficult than for an elementary structure; the efficiency of
the various primitive operations depends critically on the choice of repre-
sentation, and therefore a sensible choice of representation requires a
knowledge of the relative frequency with which these operations will be
invoked. This knowledge is especially important when a part or all of the
structure is held on a backing store; and in this case, the choice of repre-

i

132 c .A.R. HOARE

sentation should take into account the characteristics of the hardware device;
that is, arrangement of tracks and cylinders on a rotating medium, and times
of head movement and rotational delay. In the case of elementary structures,
the primitive operations are of roughly comparable efficiency for most
representations.

Thus the differences between advanced and elementary structures are quite
pronounced, and the problems involved are significantly greater in the
advanced case. This suggests that the practical programmer would be well
advised to confine himself to the use of elementary structures wherever
possible, and to resort to the use of advanced structures only when the
nature of his application forces him to do so.

The first and most familiar example of an advanced data structure is the
sequence. This is regarded as nothing but a sequence of an arbitrary number
of items of some given type. The use of the term "sequence" is intended to
cover sequences on magnetic tapes, disc, or drum, or in the main store.
Sequences in the main store have sometimes been known as streams, lists,
strings, stacks, deques, queues, or even sets. The term file (or sequential
file) is often used for sequences held on backing store. The concept of a
sequence is an abstraction, and all these structures may be regarded as its
various representations.

Our first example of a sequence is the string, familiar to programmers in
ALGOL and SNOBOL. Since a string is constructed as a sequence of
characters of arbitrary length, it may be defined:

type string = sequence character.

The next example is drawn from a data processing application; the
maintenance of a file of data on cars. Each item of the file (sometimes known
as a record) represents a single car, and is therefore of type car; an example
of a possible definition of the car type has been given previously"

type car file = sequence car.

The third example gives an alternative method of dealing with a pack of
cards. This may be regarded as just a sequence of cards, of length which
perhaps varies as the cards are dealt:

type deck = sequence card;

Of course, not all card-sequences represent actual decks of cards in real life;
for example, sequences which contain the same card twice are invalid, and
should be avoided by the programmer. Thus the maximum length of a valid
deck is 52, although this fact is not expressed in the declaration.

The next example is drawn from the processing of a particular class of
symbolic expression, namely the polynomial. A polynomial

anXn q_ an_ 1xn-1 a l x + ao

NOTES ON DATA STRUCTURING 133

can be represented as the sequence of its coefficients ai. If the degree n of the
polynomial is unpredictable or variable during the course of a calculation,
a sequence is the most appropriate method of defining it:

type polynomial = sequence integer.

Our final example shows how it is possible to represent the programming
language concept of the identifier. Since in theory an identifier may be of
arbitrary length, a sequence is required. The items of the sequence are either
letters or digits. However, the first character is always alphabetic and may be
separated from the rest. Thus an exact definition of a data structure corres-
ponding to the identifier is"

type identifier = (first" letter; rest" sequence (l" letter, d" digit)).

8.1 MANIPULATION

The zero element of a sequence type Tis the sequence that contains no items--
this is known as the null or empty sequence, and is denoted by T () . For
each value v of the domain type, there is a sequence whose only item is v;
this is known as the unit sequence of v and is denoted by T(v). Finally, if
v l, v2 v n are values from the base type (possibly with repetition),
T(vl, v2 , . . . , vn) denotes the sequence consisting of these ~alues in the
stated order. If for convenience the type name T is omitted, we will use
square brackets to surround the sequence:

Iv], [v~,v~ , v~]

However, a sequence of characters is normally denoted by enclosing them in
quotes.

The basic operation on sequences is concatenation, that is, adjoining two
sequences one after the other. Thus if x is the sequence of characters "PARIS

IN THE" and y is the sequence "THE SPRING", their concatenation x- 'y
is the sequence

z = "PARIS IN THETHE SPRING"

Unless the operands are exceptionally small, concatenation is very inefficient
on a computer, since it usually involves making fresh copies of both operands.
The programmer should therefore make every effort to replace concatenation
by selective updating.

The basic operators for breaking down a sequence into its component parts
are those that yield the first and last items of a non-empty sequence

x. first, x. last

and those that remove the last or first items of a non-empty sequence,
yielding the initial or final segments.

initial (x), final (x).

134 c . A . R . HOARE

An important reiationship between sequences is that one sequence x is
equal to some initial or final subsequence of" a sequence y:

x begins y

or x ends y.

In our previous example, "PARIS" begins z and " R I N G " ends z. These
two tests can be rather time-consuming in a running program, and should be
avoided wherever possible.

A significant property of sequences is their length, i.e. the number of items
they contain; this may be found for a sequence x by the function Iength (x).

For some purposes (e.g. the construction of a dictionary) it is useful to
regard a sequence type as ordered in accordance with traditional lexicographic
principles" as in the case of arrays, the order of" two sequences is determined
by the ordering of the first item in which they differ; or if there is no such
item, a shorter sequence precedes the longer sequence which it begins, for
example:

" A L P H A " < "ALPHABET" .

In this ordering every sequence has a successor, but only a small proportion
have predecessors.

A most important selective updating operation on sequences is the
appending of" a new value v to the end of" an existing sequence x. This may be
written:

Z()' X" V

and corresponds to the familiar concept of writing a value v to a sequential
file x. The operation corresponding to reading the beginning of a file x is
one which removes the first item of x and assigns its value to some variable v.
This may be written:

v from x;

In some applications, it is useful to be able to read back the most recently
written item from a sequence; this may be expressed

v back from x;

and it removes the last item from x. This operation can be used to "pop up"
the top item of a stack which has been "pushed down" by an ordinary
writing operation"

x ' T(v).

If desired, it is possible to define the fourth updating operation, that of
attaching a new value to the beginning of a sequence. (putback (x, v)).

NOTES ON DATA STRUCTURING 135

In some cases, it is more efficient to avoid the copying of an item which is
involved in the from operation. These cases may be dealt with by merely
omitting the left hand variable, e.g.

from x

back from x.

In this case, access to the items of the sequence will usually be made by the
selectors x. first and/or x. last.

It is very common to wish to scan all the items of a sequence in succession;
a suitable notation for this is modelled on the for statement:

for v in x do S;

If x is empty, the statement is omitted. Otherwise the variable v (regarded
as local to S) takes in succession the values of all items from the sequence
x, and S is executed once for each value. In this construction neither x nor v
should be updated within S.

A similar construction can be used for defining a sequence as an item-by-
item transformation E(v) of items v in sequence s.

for v in s take E(v).

In deciding a representation for a sequence, it is most important to know
which of the selective updating operations are going to be carried out upon it.

(1) If the only operation is from, the sequence is known as an input
sequence; obviously in order to have any value at all, an input sequence
must be initialised to some value existing in the outer environment in which
it is declared. The association of a sequence local to a program with some
file existing more or less permanently on backing store is often known as
"opening" the file for input, and we assume that this operation is invoked
implicitly on declaration of a local input sequence. The reverse operation of
"closing" the file is invoked implicitly on exit from the block to which
the sequence is local.

(2) If the only operation is writing to the file, the sequence is known as an
output sequence. An output sequence may be initialised from the environment
in the same way as an input sequence; or more commonly, it may take an
empty initial value. In either case, in order to serve any useful purpose, the
final value of the sequence on exit from the block must be assigned to some
variable existing in the outer environment in which the sequence is declared.
The identity of this outer variable should be declared together with the
sequence; if this outer variable is held more or less permanently on backing
store, it is known as an output file; and the rules for implicit invocation of
opening and closing of the file on entry and exit to the block are similar to
those for input files.

136 c . A . R . HOARE

(3) If the only operations are writing and reading back (push down and
pop up), the sequence is known as a stack; the initial value of a stack is
always empty, and the final value is not usually preserved.

(4) If the only operations are writing to the end and reading from the
beginning, the sequence is known as a queue; again, the initial value is always
empty, and the final value is not usually preserved.

(5) If" reading and writing at both ends of a sequence are permitted, the
sequence is sometimes known as a deque (double-ended queue). However,
to make all four operations equally efficient requires some complexity of
representation, so it is fortunate that most programs can get by without
using deques.

8.2. REPRESENTATION

8.2.1. Contiguous representation
The simplest method of representing a sequence is to allocate to it a fixed
contiguous area of storage, adequate to hold all items actually required.
This method is suitable if the value (or at least the length) of the sequence is
constant throughout the execution of the program--for example, a string of
characters intended to be used as an output message or title.

In some cases, the length of the sequence is unknown at the time the
program is written, but is known on entry to the block in which the sequence
is declared, and this length remains constant throughout the existence of the
sequence. In such cases, it is possible to allocate a contiguous area of storage
in the local workspace of the block, using the standard stack method of store
allocation and deallocation.

Even if the length of the sequence is subject to variation, it is sometimes
possible to place an acceptably small upper bound on its length, and allocate
permanently this maximum area. If the limit is exceeded during a run of the
program, the programmer must be willing to accept its immediate termina-
tion. In addition to the fixed area, a pointer or count is required to indicate
the current beginning and end of the sequence. In the case of a stack, the first
item is always at the beginning, and only one pointer to the top of the stack
is required. In the case of a queue, the sequence will at times overlap the
end of the store area, and be continued again at the beginning. Such a
representation is known as a cyclic buffer, and may be used in a parallel
programming situation to communicate information between processes
running in parallel. In this case, when a writing process finds the buffer full,
it has to wait until a reading process reduces the size of the sequence again.
Similarly, the reading process must wait when the buffer is empty.

Another case where the contiguous representation is the best is when the
program requires only a single sequence, which may therefore occupy the

NOTES ON DATA STRUCTURING 137

whole of the remaining store available after allocation to other purposes;
and if overflow occurs, the program could not have been run anyway. If
two stacks are required, they can both be accommodated by arranging that
one of them starts at one end of remaining available store and grows upwards,
and the other starts at the other end and grows downwards. If the stacks
meet, the program cannot continue.

If many sequences are to be represented, it is possible to set up a scheme
in which they are spread through the remaining available store; and if any
of them grows to meet its neighbour, it is possible to reshuffle some or all
of the sequences, so that they all have sufficient room to grow again for a bit.
For each sequence there must be a base location pointing to its beginning,
through which that sequence is always addressed. In addition, the acttial
length of the sequence must be stored. The base location and length of the
neighbouring sequence must always be inspected when the sequence is
extended. When reshuffling takes place, the base locations of all moved
sequences are updated to point to the new position of the sequence. This is
quite a useful ad hoc scheme in cases where the reshuffling is known to be
relatively infrequent; otherwise non-contiguous representations are to be
preferred.

Fixed iengl'h Stack Queue Queue
(cyclic buffer)

, , j t 1
__ [i [S j . S i ~ i -~ I] f irst free ~ first free

Z ' / / , 5, count 4

I

used

• free
i [
[

4

' l f ree

• used

free

(a) (b) (c)

FIG. 5. Sequences (Contiguous representation)

[f
used

free

used

When the individual items of a sequence are of variable length, there is
usually no need to pad the shorter items out to the maximum length, since
the use of the tag field, or other technique, will indicate the length of any
given item, and this can be used to step the pointer by the right amount
when the item is read. But this requires that the direction of reading be known
at the time of writing, as in a stack or a queue. If reading is to be carried out
from both ends, it will be necessary to ensure that the length of an item can
be deduced from its bottom as well as its top, which will involve storing

138 c. A, R, HOARE

redundant information (e.g. length of previous
the sequence.

item) between each item in

f.
Stack

]top of stack

~////.~

"//////A

"//////A

Queue
.

I J
N N t ~

first free
read pointer

(a) (b)

I ~ tog or length indication

Fie. 6. Sequences (variable length items)

Deque

z////~2A

z/2"//,/A

2 length

1 length

5 length

(c)

When a sequence is itself a part of an item of some other sequence, the
contiguous representation of the item-sequence may be used. This will
normally be accompanied by a count giving the length of the sequence, so
that the actual size of each item can be computed when the item is read.

8.2.2. Chained Representation

In order to avoid reshuffling problems mentioned in the previous section, it
is usual to introduce indirect or chained methods of storage allocation, using
either fixed length or variable length units of allocation. The available store
is split into areas, some of which will be in use for storing items of some
sequence, and others will be free. The free areas are also linked together as a
chained sequence. Whenever a programmer's sequence requires extension,
an area (or part of an area) is acquired from the free chain; and whenever a
sequence is shortened by reading, an area can be returned to the free chain.
In the case of fixed-length items, the administration of dynamic storage
allocation with explicit deallocation presents no problems. The problems of
variable length allocation will not be treated here; they are best avoided by
the use of blocking (see next section).

The simplest form of chain is the single linked chain. Each item of the
sequence has adjoined to it, in a link location, the address of the next item

NOTES ON DATA STRUCTURING 139

in the chain. The empty sequence is represented by a value which could not
possibly be an address (say zero or minus one); and the link location of the
last item in the sequence contains this value. The first item in the chain is
pointed to by the base location of the sequence.

A single linked chain is useful when the direction in which the sequence
will be read is known; for the links have to point in this direction. In the
case of a stack they will point backwards, and in the case of input and output
sequences and queues they will point forwards. In the case of an input or
output sequence, the base location of the external variable which is to hold
the initial and/or final value of the sequence points permanently at the
beginning of the chain, while the base location of the sequence itself steps
through the sequence. In the case of a queue, two base locations are used,
to point to each end of the sequence.

Stack

1

(a)

end

Queue

[

:L...--."-"-

I

FIG. 7.

Deque

write pointer [., write pointer
read pointer ,[, read pointer

, , ,

!, "I
difference
of two
pointers

- l l
(b) (c)

Sequences (Chained Representation)

One possible advantage of the single-chained representation in the case of
stacks is that several stacks can share the same initial segments, which may
save space and time in some applications. However, when an item is popped
up from such a stack, the storage space which it occupies cannot be immedi-
ately returned to the free chain, since it may be in use as part of another
stack. One solution to this problem is never to return storage explicitly,
but to wait until the free chain is exhausted. Then all currently allocated
sequences are scanned, and all blocks currently in use are marked. Then all
unmarked blocks are collected onto the free chain. This is known as a scan-

140 c . A, R. HOARE

mark-collect garbage collection. Although it appears to relieve the pro-
grammer of the responsibility of explicit control of main store allocation and
deallocation, this can be dangerous in non-trivial computer applications
where the responsibility is one that cannot so lightly be evaded.

In the case of a deque, when reading is required in both directions, a single-
linked chain is no longer adequate; and the usual solution is to adjoin two
pointers to each item in the chain, one pointing to the previous item and one
pointing to the following item. In fact these two pointers can be compressed
into a single word containing only the difference between them. Since in
the first and last items one of the pointers is a standard null value, the value
of the other pointer from these items can always be obtained by subtraction.
On reading or writing, the value of the link location for the new first or last
item can be readily adjusted, since at this stage the address of the previous
first or last item is still known. The detailed working out of this scheme is
left as an exercise.

An alternative method of linking the items of a chain is to collect all links
together in a single contiguous table, preferably of fixed length. This giwes a
form of tree representation for the sequence, and permits ready scanning
in both directions. But it places an upper bound on the number of items in
the sequence; and it means that the locations used for links must be per-
manently allocated, even at times when the sequence is relatively short.
This problem can be mitigated by the use of blocking.

8.2.3 Blocked Representation

One disadvantage of chaining is the amount of extra storage required to hold
the links, and the time taken to administer the free store chain on each
operation. These problems are particularly severe when the size of the
individual items of the sequence are small and the sequence is long. The
method of solving this problem is to use blocking; that is, a combination of
the contiguous and chained techniques.

In this technique, a fixed-length block of storage is allocated, sufficient to
hold perhaps between ten and a hundred items. When this block is filled, a
new block is chained to it, using any of the methods described in the previous
section. On input, a block is not released to free store until all the items it
contains have been scanned. Thus the amount of store used on links can be
reduced to negligible proportions. This can be of particular benefit in the
tree representation of the chain.

As mentioned above, the use of blocking can also avoid the
problems arising from variable-length dynamic storage allocation, since the
size of the block may be held constant for all sequences, independent of the
size of their items. Furthermore, in cases where part or all of the sequence
is to be held on backing store, the use of blocking is almost universally

NOTES ON DATA STRUCTURING 141

indicated, since backing store transfers can be very inefficient if the unit of
transfer is too small. The only (dubious) disadvantage of blocking is that
it inhibits effective sharing of the tails of stacks.

The only remaining problem is to choose a size of block suitable for all
purposes. It must obviously be large enough to accommodate the largest
item of any sequence. In fact, it should be large enough to accommodate at
least ten typical items; otherwise the space left over at the end of a block
which is not large enough to accommodate the next item may reach signifi-
cant proportions. Also, if the sequence is to be held partially or wholly on
backing store, the block should be long enough to ensure that not too much
space is wasted on interblock gaps, and the frequency of transfers is low
enough to ensure that not too much time is spent in start-stop, latency, or
head movement delays.

On the other hand, if the block size is too large, the space wasted at the
beginning of the first block and/or the end of the last block will become
significant; thus the block size should be small enough to ensure that the
typical sequence occupies at least ten blocks.

In the presence of so many conflicting considerations, it is not easy to
select a standard block size for sequences of differing length and item size,
and all forms of backing store, with different methods of access. However,
an acceptable compromise can often be made, and on present-day computer
designs, a block size of between 128 and 1024 words will often be a suitable
choice. Probably in most cases the size chosen is not critical within a factor
of two either way.

8.2.4. Backing Store Representation

In processing a sequence, a program normally requires access to one of its
ends, and all the material in the middle and other end is unused for relatively
long periods of time. If main storage is at all scarce, it is very profitable to
transfer this material to backing store, so that the space it occupies in main
store may be used for other purposes. In the case of input and output
sequences, which have a lifetime greater than the program which reads or
writes them, the use of backing store for long-term storage is almost
obligatory.

When using backing store, efficiency of processing and representation
demands that transfers should occur in blocks of reasonable size. The block
which contains an active end of a sequence is always held in main store; and
to permit overlap of input/output with computing, the previous block (on
writing) or the next block (on reading) also remains allocated during the
transfer operation. 'This is known as double-buffering. It is possible to hold
even more buffers in store to smooth out variations in the speed of processing
and the speed of transfer; but the program designer must not fall into the

142 c . A . R . HOARE

trap of supposing that this will help when there is a basic mismatch in the
speeds of processing and transfer. In general, if double or triple buffering is
inadequate, it is not worth while filling the store with any further extra
buffers.

In a machine which is endowed with an automatic paging scheme, the
problems of representing sequences are very much reduced. As far as the
programmer is concerned, he need only allocate the amount of storage
required for the longest possible sequence, using the contiguous representa-
tion. This should not actually cause any waste of storage, since the paging
system should delay allocation of store until it is first used. As the sequence
expands, new blocks of store will be allocated, but the addressing of these
blocks will appear contiguous to the programmer, so there is no problem
of leaving unused space at the end of blocks which are not large enough to
hold the next item. Shortly after a block has been filled, it will automatically
migrate to backing store; and it will be brought back again automatically
as soon as it is required. On input sequences, a block which has been scanned
will also be removed shortly afterwards from main store; but this will not
involve an unnecessary backing store transfer if the material has not been
changed since the last input took place. The only operation which a paging
system will not perform automatically is to read a block of an input sequence
into store ahead of its actual requirement.

9. RECURSiVE DATA STRUCTURES

There are certain close analogies between the methods used for structuring
data and the methods for structuring a program which processes that data.
Thus, a Cartesian product corresponds to a compound statement, which
assigns values to its components. Similarly, a discriminated union corresponds
to a conditional or case construction, selecting an appropriate processing
method for each alternative. Arrays and powersets correspond to for state-
ments sequencing through their elements, with an essentially bounded
number of iterations.

The sequence structure is the first that permits construction of types of
infinite cardinality, with values of unbounded length; and it corresponds to
the unbounded form of looping, with a while condition to control termination.
The reason why the sequence is unbounded is that one of its components
(i.e. the initial segment) from which it is built up belongs to the same type as
itself, in the same way as the statement which remains to be obeyed after
any iteration of a while loop is the same statement as before.

The question naturally arises whether the analogy can be extended to a
data structure corresponding to recursive procedures. A value of such a
type would be permitted to contain more than one component that belongs

NOTES ON DATA STRUCTURING 143

to the same data type as itself; in the same way that a recursive procedure
can call itself recursively from more than one place in its own body. As in
the case of recursive procedures such a structure can conveniently be defined
by writing the name of the type being defined actually inside its own definition;
or in the case of mutually recursive definition, in the definition of some
preceding type.

The most obvious examples of recursive data structures are to be found
in the description of arithmetic or logical expressions, programming lan-
guages, where the recursion reflects the possibility of nesting one expression
inside another. For example, an arithmetic expression might be defined as
follows:

"An expression is a series of terms, each of which consists of a sign
(+ o r -) followed by a sequence of factors. Each factor except the first
consists of a sign (x or /) followed by a primary. A primary is either a
constant, a variable, or an expression surrounded by brackets. An initial
plus sign in an expression may be omitted."

A structured data type whose values comprise such expressions may be
defined using only techniques already familiar, plus recursion:

type expression = sequence term;

type term = (addop: operator; f : sequence factor);

type factor = (mulop: operator; p: primary);

type primary = (const:(val:real),

var: (id: identifier),

bracketed: (e: expression));

type operator = (plus, minus, times, div);

This definition expresses the abstract structure of an arithmetic expression,
but not the details of its concrete representation as a string of characters.
For example, it does not specify the symbols used for brackets or operators,
nor does it state whether an infix, prefix or postfix notation is used for them.
It does not state how the three kinds of primary are to be distinguished.
It does not even represent the optional omission of plus on the first term of
an expression, and the necessary omission of x on the first factor of a term.
Apart from this degree of abstraction and representation-independence, this
type definition would correspond to a set of BNF syntax equations'

(expression) :: = (t e rm) [(addop) (t e rm)]

(expression) (addop) (term)

(t e rm) : : = (pr imary)] (t e r m) (m u l o p) (p r i m a r y)

(p r imary) :: = (unsigned real number) I (variable) I

((expression))

144 C. A. R. HOARE

Note how we have used sequences to replace the recursion wherever
possible. In fact this can be done whenever a type name occurs recursively
only once at the beginning or at the end of its definition. For example"

type expression = sequence term;

might have been formulated recursively:

type expression =

(empty: () , non-empty: (first: term; final: expression)).

A similar alternative formulation permits while loops to be expressed as
recursive procedures.

The construction of values of a recursively defined type requires no new
operators or transfer functions; all that is needed is recursive use of the
methods defined for the other relevant structuring methods. For example,
the expression

3 / (b - 2)

could be specified by the cumbersome construction"

[term (plus, [factor (times, primary (const (3))),

factor (div, primary (bracketed (

[term (plus, [factor (times, primary (var ("b")))]),

term (minus, [factor (times, primary (const (2)))])])))

])

1.
An effective method of getting the computer itself to translate expressions
into abstract structures will be given as an example in (9.2).

Another familiar example of recursively defined data is the family tree.
A family tree (excluding information about marriage) can be defined by
associating with each person the family trees of all his/her offspring. We
assume that certain additional personal details are required to be held"

type family = (head:person; offspring :sequence family);

A person with no children is an ultimate component of the family tree,
and may be represented:

family (Tom, [])

A family with three children may be represented:

family (Jill, [family (Tom, []),

family (Joanna, []),

family (Matthew, [])]).

NOTES ON DATA STRUCTURING 145

The final example shows how the binary forking tree familiar to LISP
programmers may be defined as a recursive data structure.

type list = (atom:sequence character, cons: (car, cdr:list)).

A list which in LISP dot-notation would be expressed

((A. (B. NIL)). NIL)

can be expressed as a value of type list in almost exactly the same way as it is
in LISP:

cons (cons (atom ("A"),

cons (atom ("B"), atom ("NIL"))),

atom ("NIL")

);
where the type transfer to list type is left implicit.

As an example of the processing of a list, we write a function to reverse a
complete tree, so that every "left fork" in it becomes a "right fork" and
vice-versa.

function reverse (l: list): list;

with l do

(atom:reverse: = 1,

cons:reverse: = cons (reverse (cdr), reverse (car)))

9.1. REPRESENTATION

The standard representation of a recursive type is also very similar to
that of a similarly structured non-recursive type, with the exception that each
component specified as belonging to the recursive type itself is represented
by a location containing a pointer to its value, rather than the value itself.
This use of a pointer is motivated by the fact that the component value may
be of arbitrary size; and it is not possible to allocate any fixed amount
of storage to contain it. This is known as the "tree representation", and is
similar to the tree representation of an array or sequence, except that the
branches may grow to arbitrary and varying heights.

An alternative method of representation is the linear sequence or bitstream.
In this representation it is possible to avoid the use of pointers, and place
the values of recursive substructures contiguous with the rest of the infor-
mation, just as they are in the familiar bracketed character representations
of expressions. However instead of using brackets, we can reestablish the
bracketing structure by context, and if necessary by scanning the tag of
union values. This method is usually associated with packed representations
of the other components, and a very significant reduction in storage may be
achieved, at the expense of enforcing serial access to the components of the

146 c .A.R. HOARE

structure. In many circumstances, a bitstream representation is some ten
times more compact than the tree representation.

Tree

I,I. 1

tag

(a)

, N IL

Bitstream I I IoI A I IoI B IOINILIIIoI B I01 A I

(b)

FIG. 8. Representation of ((A. (B.NIL)). (B. A))

The choice between tree and linear representation is usually obvious. If
the structure is being processed by the program, usually by means of recursive
procedures, the needs of ready access to any component of the structure
dictate a tree representation. In addition, some of the space lost may be
regained by sharing common branches among several trees; such commonality
of branches is a feature of the processing of symbolic expressions. However,
if the structure has to be output and subsequently re-input, the linear structure
is vastly preferable. Not only does the reduction in volume reduce transfer
time, but the linearisation avoids a number of tricky problems of representing
pointers in backing store. In many cases, a structure which passes through
several phases of processing and input-output will be translated between
the two representations at each phase; and this is standard practice in a
multipass translator for a high-level programming language.

It is important to note that the sharing of the recursive sub-structure is
nothing but a means of saving time and storage, and has no effect on the
running of the program. This means that the sharing must be avoided
whenever there is any danger that the shared sub-structure might be selectively
updated as part of one of its owners. In principle, all values are entirely
disjoint from all other values, and there is no way in which the programmer
could either know or care how far his structures are shared. Furthermore,
there is no way whatsoever in which a pointer can be made to point back
to a structure of which it is a component; since this would mean that the
structure was identical to one of its'own components. Only an infinite struc-
ture can have this property; and infinite structures do not satisfy the axiom
of exclusion on which the important principle of induction for recursive
structures is based.

NOTES ON DATA STRUCTURING 1,47

9.2. EXAMPLE

A source text for an expression in a programming language is presented
as a sequence of symbols defined:

type symbol = (constant:(value: real), variable:(identifier:ident),

op" operator, leftbracket, rightbracket);

Write a program operating on an input variable

source:sequence symbol,

which reads from its beginning the longest possible legitimate expression,
delivers the corresponding abstract expression as a result, and exits to the
label error if this is impossible. The structure of the result and the syntax of
the source are as specified earlier in this chapter.

The structure of the program closely follows that of the desired result.

There are three functions:

compile expression

compile term (sign)

compile primary

each of which removes from the source the longest expression in its syntactic
category, and delivers the corresponding abstract structure as a resulf. The
main irregularity of the process is that the first term of an expression may be
unsigned; this is why the sign is provided as a parameter for compile term,
instead of being read from source by compile term itself. Each function has
the side-effect of shortening the source sequence if successful, and jumping
to error if not.

function compile expression: expression;

begin sign" operator;

if source, first = plus v source, first = minus then sign from source

else sign: = plus;

compile expression:= [compile term (sign)];

while source, first = plus v source.first = minus do

begin sign from source;

compile expression : ' ' [compile term (sign)]

end

end;

function compile term (s: operator): term;

begin p" primary; sign" operator; fs" sequence factor;

148 c . A . R . HOARE

p: = compile primary;

fs: = [factor (times, p)];

while source.first = times v source.first - div do

begin sign from source;

p: = compile primary;

fs" [factor (sign, p)]

end;

compile term: = term (s, fs)
end;

function compile primary: primary;

begin s" symbol;

s from source;

with s do (constant:compile p r imary := const (value),

variable" compile p r i m a r y ' = var (identifier),

leftbracket:

begin from source;

compile p r imary '= bracketed (compile expression);

s from source;

if s g: rightbracket then go to error

end,

else go to error }

end;

Exercise
Write programs to convert an expression from tree representation to
bitstream and back again.

10. SPARSE DATA STRUCTURES

In dealing with representations of arrays and powersets, we have hitherto
assumed that the base type of a powerset and the domain type of an array is
reasonably small, so that it is possible to allocate a bit or larger area of store
to hold the value of every potential element of the structure. The examples
also were confined to such cases. In this chapter we investigate the conse-
quences and problems which arise when the base or domain types are very
large or infinite, and when the standard representations are therefore
impossible.

NOTES ON DATA STRUCTURING 149

The representation and manipulation of powersets and mappings with
infinite domains can be accomplished, provided that consideration is re-
stricted to sets with only a finite number of members, and mappings in which
only a finite number of elements take significant values; where "significant"
is defined as different from some specified null or default value. The powerset
of an infinite set is obviously also infinite; but since each value of the powerset
type contains only a finite number of elements, each value can be specified
simply by listing those elements in a finite period of time, and the list will
occupy only a finite amount of storage. Similarly, each value of a mapping
type with infinite domain can be finitely specified by listing all elements of
the domain which map onto significant values of the range type, together
with the value mapped in each case. A type which is restricted in this way is
known as sparse.

In fact the concept of sparsity is not confined to infinite bases and domains;
it may also be applied to very large but finite powersets, when the pro-
grammer knows that each actual set in which he is interested will contain
only a very small proportion of the potential members. For example, the
base type may contain hundreds of millions of values, but the programmer
may know that he only has to deal with sets of less than a hundred in size,
and perhaps most of them less than ten. It would be impossible to use the
bitpattern representation, since this requires hundreds of millions of bits;
but since each value actually used in a program contains only a few members,
these members can readily be listed in a comparatively small amount of
store. A powerset type of this sort is known as sparse. Similarly, arrays
with a very large domain, nearly all of which map onto the same default
value of the range, are said to belong to a sparse array type.

Sparse sets and arrays are frequently encountered in advanced data
processing applications, and their representation and manipulation present a
number of familiar problems. Our first example is the definition of a type
whose values are sets of car numbers. The cardinality of the carnumber type
is perhaps something like four thousand million; but the programmer
wishes only to deal with sets of cars owned by a single person; most of these
will have only one member, and very few will have more than ten. The
carset type may therefore be declared as sparse powerset:

type carset = sparse powerset carnumber;

As an example of a sparse array, we may take the type of mappings
between car owners and the set of cars they own. Each owner is represented
by name and address; since these are of arbitrary length, the owner type
may be defined:

type owner = sequence character;

150 ¢. A. R. HOARE

and has infinite cardinality, The required type is therefore declared as
sparse:

type carfile = sparse array owner of carset.

In a data processing application, a variable of carfile type would be known
as a random access file, and the owner would be known as the key element of
the file.

The next two examples are drawn from numerical applications. A vector
is a mapping from integers onto floating point numbers. A sparse vector is
one in which most of the elements are zero; consequently its initial value will
be the zero constant function, and all elements will remain zero unless an
explicit assignment is made of a different value:

type sparsevector = sparse array integer of real.

A sparse complex matrix may be defined in a similar way"

type irregular matrix = sparse array (row, column" integer)

of complex.

The next example is taken from the field of the translation of programming
languages to machine code. During the process of translation, the translator
needs to know certain information about each identifier declared in the
program, such as machine address allocated to the variable, its length and
type, etc. This information is assumed to belong to a type decode. The type of
an array which associates a decode with each identifier is given the name
dictionary and is declared:

type dictionary = sparse array ident of decode

Of course, the translator is interested in the decode only of those identifiers
actually declared in the source program. For the vast majority of possible
identifiers, the value given by any dictionary of this type will be that value of
the decode type which indicates that the identifier was undeclared.

The final example is of a type that causes familiar problems in a com-
mercial filing system and in real life--that of multidimensional cross-
classification. The customers of a firm are split up into a number of
geographical areas; they are also classified in a number of classes, in accord-
ance with the kind of product they purchase. On occasions it is required to
access all customers in an area, sequencing through all classes; on other
occasions to access all customers in a class, sequencing through the areas;
and finally, it is sometimes required to process all customers of a given class
in a given area. The abstract structure required to deal with this situation
is a two-dimensional sparse array of sparse sets"

sparse array (c:class; a:area) of sparse powerset customer.

NOTES ON DATA STRUCTURING 151

A similar example may arise in the description of family relationship
among persons:

type children = sparse array (mother, father: person) of

sparse powerset person:

This array caters for multiple marriages better than the more tree-like
representations of a family, which can be defined as a recursive structure.

In the case of sparse arrays, it is sometimes useful to regard them as
partial rather than total mappings. A partial mapping is one which does not
necessarily give a value for each member of its domain type. In other words,
the actual domain over which it is defined is a subset of the domain type.
For such an array type it is necessary to introduce an additional constant
omega, denoting a mapping which is everywhere undefined. It is also useful
to introduce a function

domain (x)

which delivers as result the set of subscripts for elements of x which are
actually defined. Thus the programmer can sequence through all the defined
elements, or test whether a particular element is defined or not. Many of the
examples quoted above might well have been declared as partial instead of
sparse. In the case of a partial mapping, the default value does not have to be
recorded.

10.1 REPRESENTATION

Sparse sets and arrays are usually represented by simply keeping a record
of the default value and those members or elements which are significant;
thus the representation borrows techniques which are used in the case of the
sequence type to deal with structures of changeable size. A sparse set may be
regarded as a special case of a sparse mapping, which maps all its members
onto the Boolean value true, and all its non-members onto the default value
false. Thus their representations are closely similar to those of sparse arrays,
and do not require separate treatment.

A sparse mapping consists of a number of elements. Each element
of the mapping is represented as the Cartesian product of its subscript and
its value; in this case the subscript is known as the key, and the value is
known as the information associated with the element, and the juxtaposition
of the two will be known as an entry. In the case of a set which is sparse,
there is no need to record any information, since the presence of the key
itself is sufficient to indicate that this value is a member of the set. Thus an
entry for a sparse set consists only of a key.

152 c .A.R. HOARE

10.1.1. Sequential Representation

The simplest representation of a sparse array type is as a sequence of entries;
i.e.

sparse array D of R

is represented as if it had been declared

(default: R; s: sequence (key: D; information: R)).

One of the possible sequence representations must now be chosen, in
accordance with the same criteria that are used in the case of a sequence.
But when a sequence is used to represent a sparse array, the order of the
entries is immaterial, and does not have to reflect the relative times at which
the entries were made. Thus the entries are often sorted into order of their
key-value, particularly if this is the order in which they are going to be
scanned.

The chief disadvantage o f the sequential representation is the length of
time taken to access the element corresponding to a random subscript. In
the case of structures of any great size, the program designer usually goes to
considerable trouble to ensure that entries are accessed in the same standard
order that they are stored in the sequence; and that if new entries are to be
inserted, these are also sorted and then merged with the original sequence.
Thus the standard commercial practice of batch processing and updating of
sequential files may be regarded as a practical implementation of the abstract
concept of a sparse array on the rather unsympathetic medium of magnetic
tape.

10.1.2. Tabular Representation

If there is an acceptably low upper limit N to the number of entries in a
sparse mapping, a great increase in speed of lookup can be achieved by the
tabular representation, in which the sparse mapping

sparse array D of R

is represented as a nonsparse array"

(default: R; occupied: powerset 0 . . N;
array 0. . N of (key: D; information: R)).

If all the significant entries are collected before they are used, the table can
be sorted, and ther the entry with a given key can be rapidly located by
logarithmic search.

If access to the elements of the array is interleaved with addition of new
entries, some form of hash-table technique is indicated. For this an arbitrary
"hashing" function is chosen, which maps the domain type D into an
integer in the range 0 . .N. When the entry is inserted, it is placed at this
position in the table; so whenever that entry is accessed, use of the same
hashing function will find it there. If that position is already occupied by an

NOTES ON DATA STRUCTURING 153

entry with a different key, some other vacant position in the table must
be found. It is quite usual to search for such a vacant position in the next
following locations of the table; but when the table is nearly full, this may
cause undesirable bunching around an area of the table which happens to
be popular. A solution to this problem is to choose N + 1 as a prime number,
and to use a second hashing function to compute an arbitrary step length
from any given key. The next position to try when any given position is full
is obtained by adding the step length (modulo N + 1) to the previous
position.

10.1.3. lndexed Representation
The tabular method of storage is suitable only when the whole table can be
accommodated in the main store of the computer. In the common case
when this is not possible, a mixture of the tabular and sequential methods is
often used. In this a sparse array is represented as a table, each of whose
entries is a sequence:

(default: R; table:array 1.. N of

(max:D; seq: sequence (key:D; information:R))).

Every entry is placed on that sequence i such that its key falls between
table [i - 1] . max (or D.min if i = 1) and table [i].max. The table is sorted
so that the appropriate sequence can be quickly located. This technique
may be likened to the organisation of a multivolume encyclopaedia, in
which the keys of the first and last entries of each volume are indicated on
the spine, so that the right volume can be quickly identified, without extracting
the volumes from the shelf.

When using this representation, it is desirable to ensure that all sequences
are of roughly the same length. Indeed, if disc backing store is used, it is
very advantageous to ensure that each of them is fitted onto a single cylinder,
so that a random access will not involve more than a single head movement.
Thus, when one sequence gets too long, it must exchange material with the
adjacent sequence. This involves extracting the entries with the largest
and/or smallest keys, and is best done when all the sequences are sorted into
order of key-value. The sorting and reshuffling is often carried out as a
separate operation at regular intervals; and the general method of file
organisation is known as "indexed sequential".

Naturally in this method of representation, it is an advantage to keep
the sequences as short as possible, say less than a single track on disk.
Consequently, the table itself may get so large that it will no longer fit in
main store. In this case the table itself is split up into sections, and a second-
level table may be set up to point to its sections, using the same principle
again. Thus at least two accesses to backing store will in general be required
for each access to an element of the array, and it is strongly recommended

i

154 c .A.R. HOARE

to ensure that the sizes and location of the sequences and sections be chosen
to correspond closely with the access characteristics of the storage medium.

10.1.4. Locally Dense Representation

A special case of a sparse array encountered in numerical computer appli-
cations is the sparse matrix. Quite frequently a sparse matrix can be split
into submatrices, only a few of which contain significant non-zero entries.
In this case, the matrix may be said to be locally dense, and should be
represented and processed in a manner which takes advantage of this fact.

One method of achieving this is to store with each significant submatrix
its position and size, and to represent the whole matrix as a table or sequence
off such submatrices, where each submatrix is stored contiguously in the
usual way, using multiplicative address calculation. However, the sub-
matrices will in general be of different sizes, and if the size varies during the
processing of the matrix, the problems will be quite severe. A possible way of
dealing with sparse matrices is to split them into submatrices of standard
size, say sixteen by sixteen, and set up a table of pointers to each of these
submatrices. A submatrix that is wholly zero is represented by a null pointer
and occupies no additional storage; otherwise, the submatrix is stored in the
usual way, using the following method of address calculation.

Each access to the array involves first "interleaving" the bit values of the
two subscripts, so that the least significant part of the result contains the least
significant part of both subscripts. The more significant part of the result is
then used to consult the table of addresses, to locate the desired submatrix,
and the less significant part to find the position off the required element
within the submatrix. This technique of interleaving subscripts may on
some machines be more efficient than general multiplication. If some of the
submatrices have to be held on backing store, this method of address calcu-
lation is particularly recommended, since it is equally efficient at processing
the matrix by rows as by columns; and the method can then be recommended
for all large arrays, whether sparse or not, particularly on a paged computer.
The inventor of this method is Professor E. W. Dijkstra.

10.1.5. Grid Representation

The phenomenon of cross-classification of files causes as many problems in a
computer as it does in real life. It is usually solved by standardising on one
of the classifications which is most convenient, and accepting the extra cost of
processing in accordance with the other classification, even if this involves
resorting the file. Thus the sparse mapping

sparse array (i:D1 ; j" DE) of R
is represented as:

sparse array D1 of (sparse array D2 of R)

NOTES ON DATA STRUCTURING 155

However, it is also possible to deal with the two dimensions in a more
symmetric fashion, using a method based on the chained representation of
sequences. In this representation, each actually used value of D 1 is placed
in one chain, and each actually used value of D2 is placed in another. These
are called border chains. Each element of either border chain contains a
base location pointing to a chained sequence of all elements with key values
which fall into the class. Now each actual entry of the array has two addresses
attached; one points to the next item of the sequence which has the same
classification according to D1, and the other to the next item which has the
same classification according to D2. Thus each item may be pictured as
residing on an intersection of the lines of a two-dimensional grid, with
pointers leading across and downwards to the next item on the same r6w
or the same column.

" j
] , i

• , r ,

i
I d, ,I

f]
I

[d~,d2] i

1
[< ,dz]]

i D2 border chain

I !
I Novolue of Re~tofthis~o~

I A[d~ ,d~]

I~1 ' . t Rest of this row

D 2 border chain Rest of this column Rest of :this column

FIo. 9. Grid Representation of A : sparse array (dl ;D1 ;d2 :D2) of T

This grid representation is unfortunately suitable only when the entire
structure will fit into main store. If the main part of the sequences have to be
held on backing store, some sort of blocking of adjacent elements would be
desirable in the interests of efficiency.

11. EXAMPLE" EXAMINATION TIMETABLES

In an educational establishment which offers students a wide choice of course
combinations, there arises the problem of designing an examination time-
table in which each examination is conducted in a single session, and yet

156 c . A . R . HOARE

each student can attend the examination for each course that he has taken.
This can always be arranged by allocating a separate session for each examina-
tion; but the interests of examiner and student alike dictate that the total
examination period be as short as possible. This means that each session
should contain as many examinations as possible, subject to some limit k.
An additional constraint is imposed by the size of the examination hall,
which can only accommodate a certain maximum number of students.

Before designing the program, it is desirable to confirm our understanding
of the problem by making a more rigorous formalisation in terms of the
structure of the various items of data, both given and required. The types
"student" and "exam" are obviously unstructured and need no further
definition at this stage. The load of exams to be taken by each student is
given by a mapping"

load: array student of powerset exam.

A timetable is a set of sessions, where each session consists of a set of exams:
type session = powerset exam;

timetable: powerset session.

We next attempt to formalise the properties which the input and output
data are required to possess.

(1) We choose not to formalise the condition that the number of sessions
be minimised, since in fact we do not want an absolute minimum if this
turns out to be too expensive to compute.

(2) Each exam is scheduled for one of the sessions
s = exam.all

s ia timetable

(3) No exam is scheduled for more than one session:

s l, s2 in timetable = s l ^ s2 = { }

Conditions (2) and (3) effectively state that the timetable is a partitioning
of the set of all exams into exhaustive and exclusive subsets.

(4) No session includes more than k exams

s in timetable ~ size (s) ~< k

(5) No session involves more than hallsize students. To formalise this,
we need to count the number of students taking each exam:

examcount (e:exam) = size (st:studentle in load (st)}.
Now the number of students involved in a session is

session count (s:session) -- ~ examcount (e)
e i n s

NOTES ON DATA STRUCTURING 157

The condition may be formalised:

s in timetable ~ sessioncount (s) ~< hallsize.

(6) No student takes more than one exam in a session. To formalise this
we introduce the concept of incompatibility of exams: two exams are in-
compatible if some student is taking both of them. For each exam el there is
a set incompat (el) of exams which are incompatible with it:

incompat (el) = {e2:exam I e2 -¢- el & 3 st :s tudent (el in load (st)
& e2 in load (st))}

Now we can define that every pair of exams in a session must be compatible:

s in timetable & el, e2 in s D -l el in incompat (e2).

These six conditions, defined in terms of load, hallsize, and k, must be
possessed by any successful timetable in the real world, and by any successful
computer representation of the timetable. They serve to define the objectives
and criterion of correctness of our timetabling program.

11.1 THE ABSTRACT PROGRAM

Inspection of the conditions reveals that construction of the timetable does
not require full knowledge of the load of each student. All that is needed is
the examcount of each exam, and for each exam the set of other exams
which are incompatible with it:

examcount: array exam of integer;

incompat: array exam of powerset exam.

These two arrays embody an abstraction from the real life data, which
concentrate attention on exactly those features which are for the present
purpose relevant, and permitting us to ignore for the time being the other
features of the situation. It is plain that these two arrays can be readily
constructed from a single scan of the student load data:

examcount: = all (0);

i n c o m p a t : = all ({ });

for st: student do

for e in load (st) do

begin examcount (e)" + 1;

incompat (e): v (load (st) - {e})

end;

One of the simplifying factors in the search for a solution to the given
problem is that the conditions fall readily into two classes: (1) (2) and (3)
relate to the timetable as a whole, whereas (4) (5) and (6) relate only to

158 c . A . R . HOARE

individual sessions, and do not mention the timetable at all. This suggests
that the program can be structured as an inner part which selects a suitable
session satisfying (4) (5) and (6), and an outer loop which constructs the
timetable out of such suitable sessions.
The objective of the outer loop is to achieve satisfaction of conditions (2)
and (3) on its completion. We therefore choose one of these conditions as a
terminating condition of the loop, and design the body of the loop in such a
way that is preserves the truth of the other condition (that is, the invariant
of the loop); furthermore we ensure that the invariant is true before starting
the loop.

The obvious choice of invariant is exclusiveness (condition (3)), leaving
exhaustiveness as the terminating condition towards which each execution
of the body of the loop will progress. The empty timetable obviously satisfies
the invariant. This leads to an algorithm of the following structure"

timetable: = { };

while timetable does not satisfy (2) do

begin select a session satisfying (4), (5), (6);

add the session to the timetable

end;
print timetable.

In order for the addition of a new session to preserve the truth of the
invariant, it is necessary that the exams of the session shall be selected from
exams which do not yet appear in the timetable. We therefore introduce a
new variable to hold these remaining exams:

remaining: powerset exam;

which is defined by the invariant relation"

remaining = exam. a l l - ~ s.
s in t i m e t a b l e

The structure of the program as a whole now takes the form:

timetable: = { };

remaining" = exam. all;

while remaining 4: { } do

begin s ' = suitable;

timetable: v {s };
i

r e m a i n i n g ' - s

end;

print timetable.

NOTES ON DATA STRUCTURING 159

The problem now remains of selecting a suitable session at each stage.
In principle, there is no reason to suppose that the "best" choice at each
stage will lead to a "best" or even a "good" timetable in the end. However,
it would seem that in general it will pay to select a combination of remaining
exams that most nearly fills the hall, or most nearly approaches the limit k.
This will probably mean that the majority of students and exams will be
catered for in a reasonably compact set of sessions, even though there may
in the end be a fairly long "tail" of small sessions, involving a minority of
students. Although this will not minimise the number of sessions, it may be
reasonably satisfactory to most students and most examiners.

The alternative to accepting an apparent best choice on each occasion is
to attempt some more global optimisation, which will either involve astrono-
mical numbers of trials, or some sophisticated considerations which are
unlikely to become apparent until after practical experience of a simpler
algorithm. So there is nothing else that can be done at this stage except hope
for the best.

It remains to program the function:

function suitable:session,

which selects a suitable session from the remaining set of exams. A possible
method of doing this is to generate a number of trial session satisfying (4)
(5) and (6), and to select the best one found. The best one will probably be
the one with the largest sessioncount, but since we may wish to adjust the
criterion of selection, it is advisable to define it as a separate subroutine,
updating a variable

bestsofar: session;

in accordance with the current value of a variable:

trial: session;

procedure record

if sessioncount (bestsofar) < sessioncount (trial) then

bestsofar: = trial.

The result of suitable is going to be the final value of bestsofar:

suitable: = bestsofar.

It still remains to write a procedure that will generate and record a sequence
of trial sessions which satisfy (4) (5) and (6). Inspection of these conditions
shows that if a trial fails to satisfy one of them, no larger trial will satisfy it.
In other words, having found an impossible trial, there is no need to generate
any further trials which contain it. This suggests that we organise the
generation process to generate all supersets of each trial that has been found

160 c . A . R . HOARE

already to be possible, but excluding any exams which have already been
tried. We therefore introduce a variable:

untried: powerset exam,
and a procedure

procedure gensupersets,

which generates and records all possible supersets of trial by adding one or
more exams from untried to it. This procedure will be called from within
"suitable".

function suitable" session;

begin trial, bestsofar" session; e ' exam; untried'powerset exam ;

e from remainder;

trial: = bestsofar: = {e};

u n t r i e d ' = r e m a i n i n g - t r i a l - incompat (e);

gensupersets;

suitable: = bestsofar

end;

Note that the first value of the trial is the unitset of some exam chosen from
the remainder according to some as yet undefined criterion. The justification
for this is that the chosen exam must eventually feature in some session of
the timetable, and it might as well be this one. If this prior choice were not
made, gensupersets would keep on generating the same supersets on every
cycle of the major loop of the timetabling program.

As another significant optimisation, we have removed from untried any
exams which are incompatible with the exams in the trial, since there is no
need to even consider the addition of any of these exams to the trial.

The generation of supersets of a given trial may proceed by selecting
each exam from untried, and adding it to trial. If the result is still valid, it
should be recorded, and the new value of trial is then a suitable session to
act as a basis for further superset generation. This suggests a recursive
program structure. Of course, the exam added to trials should also be sub-
tracted from untried, to avoid unnecessary repetitions; and it is very advan-
tageous to remove from untried any exams which are incompatible with the
exam just added to the trial, so that these do not have to be considered again
in future. Also, the values of trial and untried must be left unchanged
by each call, so any change made to them must be recorded and restored in
variables save 1 and save 2.

NOTES ON DATA STRUCTURING

procedure gensupersets;

begin e: exam; save 1, save 2: powerset exam;

record; save 1 : = untried;

if size (trial) < k then

while untried ~ {) do

begin e from untried;

save 2: = untried /x incompat (e);

untried: - save 2;

trial: v {e);

if sessioncount (trial) < hallsize then

gensupersets;

untried: v save 2;

trial: - {e)

end;

untried: -- save 1

end gensupersets.

161

The validity of this program depends on the fact that trial invariantly
satisfies all conditions (4) (5) and (6) for sessions of the timetable, as well as
always being a subset of remaining.

The reasoning is as follows"

for (4): gensupersets never generates a superset except when the size of the
trial is strictly less than k.

for (5): gensupersets is never entered when the sessioncount of trial is
greater than the hall size (we assume that no examcount is greater than
hallsize).

for (6): removal of incompatible sets from untried ensures that at all
times all exams remaining in untried are compatible with all exams of trial.
Therefore, transfer of an arbitrary exam from untried to trial can never
cause (6) to be violated.

Finally, at the initial call of gensupersets, untried ~ remaining. Untried is
an essentially non-increasing quantity: every addition of members to it has
always been preceded by removal of those very same members. Untried is
therefore always a subset of remaining; and trial, which is constructed only
from members of untried, must also always be a subset of remaining.

This completes our first version of an abstract program to construct
examination timetables. Collecting all the material together, it looks like this"

162 C. A. R. HOARE

hallsize, k ' in teger , initially given;

load :a r ray student of powerset exam, initially given;

type session = powerset exam;

t imetable:powerset session, initially { };

examcount : array exam of integer, initially all (0);

i ncompa t : a r r ay exam of powerset exam, initially constant ({ });

function sessioncount (s: session): integer;

begin sum: integer, initially 0;

for e in s do sum: + examcount (e);

sessioncount: -- sum

end;
remainin/~: powerset exam, initially exam. all;

function suitable: session;

begin bestsofar, trial: session; untried: powerset exam;

e: exam; e from remainder; bestsofar: = {e };

trial: = {e}; untried: = remainder - trial - incompat (e);

gensupersets;

suitable: = bestsofar

end;

The following two procedures are local to suitable:

procedure record;

if sessioncount (bestsofar) < sessioncount (trial) then
bestsofar: = trial;

procedure gensupersets;

begin e" exam; save 1, save 2"powerset exam;

record; save 1 : = untried;

if size (trial) < k then

while untried ~ { } do

begin e from untried;

save 2: = untried A incompat (e);

untried" - save;

trial: v {e};

if sessioncount (trial) < hallsize then

gensupersets;

N O T E S O N D A T A S T R U C T U R I N G 163

untried: v save 2;

trial: - (e)

end;

untried: = save 1

end gensupersets;

The main program is as follows:

for st: student do

for e in load (st) do

begin examcount (e): + 1; incompat (e): v (load (st) - (e)) end;

while remaining -¢ () do

begin s" session;

s: = suitable;

timetable: v {s);

remaining: __ s

end;

print timetable

Before spending any more efforl~ on developing this program, it would be
advisable to subject it to a critical examination, to ensure that it will be
successful. Now the most obvious reasons why the program might fail are:

(1) The size of the timetable turns out to be unacceptably large; we have
agreed that nothing can be done about this, until we know more about the
data.

(2) The amount of time taken to generate all trials at each step is excessive.
This will be particularly serious when the remainder is still large at the
beginning of the program, and if the untried set remains large on every
recursion of gensupersets. The main way in which the untried set is reduced
is by removing all exams incompatible with the trial. This suggests that we
should always prefer to add first to the trial those exams which have the
largest incompatible sets, so that untried is reduced as quickly as possible.
Among sets equal according to this criterion, the exam with the largest
examcount would be selected first. The exact weighting between these criteria

.
may have to be adjusted later in the light of experience; meanwhile, the
simplest implementation of this policy is to presort the exams in accordance
with the criterion, and implement e from untried by selecting the first
member.

If it turns out that this elementary strategy is insufficient we may have to
artificially curtail the number of iterations of the loop in gensupersets. But
we would probably need some practical experience in order to select a suitable
strategy; and for the time being, let us hope it will not be necessary.

i

164 c .A.R. HOARE

11.2. DATA REPRESENTATION

In order to design a successful data representation, it is necessary to know
something of the likely size of the problem. In this example, we will make the
following assumptions:

(1) There are not more than 500 exams, each taken by less than 1000
students (typically 50).

(2) There are about 5000 students.

(3) Each student takes less than ten exams, and typically five.

(4) The examination hall will take about 1000 students.

(5) An acceptable limit on the number of concurrent exams is 30, and the
typical number is 10.

(6) Manual timetabling methods have succeeded in constructing timetables
with not more than 50 sessions.

We will consider the individual items of data.

(1) type exam

The obvious representation is as an integer subrange:0.. 500.

(2) type session

There is obviously a choice between a bitpattern representation (500 bits),
and an array of 30 nine-bit elements (+ pointer) (270 bits + one word). The
number of sessions to be stored is not great, so considerations of storage
economy are not significant. The main operations on the session are the
insertion of an exam which is known not to be in it already, and the removal
of an exam, which is the most recently inserted. Thus the array method
would be the best, since the insertion and removal of members can be
accomplished by stack methods.

Since we frequently wish to know the session-count, it would pay to record
this together with the session, and keep it up to date as members are inserted
and removed.

This representation is used for trial and bestsofar.

(3) t#netable

The only operation on the timetable is the insertion of new sessions. Since
sessions are of variable length, the timetable could be organised as a sequence
of variable-length sequences. Since each exam occurs exactly once in the
timetable, the maximum size of the timetable is 500 x nine bits, plus perhaps
sixty words to indicate the separation of the sessions (if there are more than
sixty sessions, the program will have failed anyway).

NOTES ON DATA STRUCTURING 165

An alternative and much simpler representation is simply to record for
each exam which session it occurs in. This requires only

array exam of 1.. 60

This representation is made possible only by the fact that the sessions of the
timetable are mutually exclusive.

(4) examcount : array exam of integer

A standard representation is the obvious choice.

(5) remaining, untried, save 1, save 2

These variables start rather full, and get emptier as the program progresses.
Their average density is therefore about fifty percent, and there is no point
in adopting a sparse representation. Furthermore, the frequency of standard
set operations applied to them indicate a standard bitpattern representation.

(6) incompat

The most frequent use of elements of incompat is to subtract them from
untried. They should therefore also use the bitpattern representation. This
will require 500 x 500 bits, of the order of 10000 words. This is by far the
largest data structure required, but its total size is probably fully justified
by the extra speed which it imparts to the program, and since it is acceptable
on most computers on which this program will run, it does not seem worth
while to seek a more compact representation.

(7) load

The load of each student is the primary input data for the problem; it may
also be extremely voluminous. It is therefore doubly fortunate that the
program only needs to make a single scan of the data; for not only will this
enable the data to be presented as an external sequence; it also means that
the representation can be designed to be suitable for human reading, writing,
and punching.

We therefore allocate one card for each student, and use ten columns of
six characters each to hold the examination numbers. To save unnecessary
punching, the first blank column will signify the end of the examination set.
For identification purposes, each card should also contain the student
number; fortunately this can be wholly ignored by the program, though it
should probably be checked to avoid duplications or omissions.

Exercise
Code the abstract program described above using the recommended data
representations.

166 c .A.R. HOARE

12. AXIOMATISATION

The preceding sections have introduced a number of methods of constructing
data spaces (types), and have explained some useful operations defined over
these spaces. But the description has been essentially intuitive and informal,
and the question arises whether all the relevant information about the data
spaces has been communicated, or whether there remains some possibility of
misunderstanding of the details.

In order to remove such misunderstanding, or check that it has not
occurred, it is desirable to give a rigorous mathematical specification of
each data space, and the operators defined over it; and we follow what is
now a customary mathematical practice of defining rigorously the subject
matter of our reasoning, not by traditional definitions, but by sets of axioms.

In view of the role which axioms play in the theory of data structuring,
it may be helpful to summarise their intended properties.

(1) Axioms are a formal statement of those properties which are shared
by the real world and by its representation inside a computer, in virtue of
which manipulation of the representation by a computer program will yield
results which can be successfully applied back to the real world.

(2) They establish a conceptual framework covering those aspects of the
real world which are believed to be relevant to the programmer's task, and
thereby assist in his constructive and inventive thinking.

(3) They state rigorously those assumptions about the real world on which
the computer program will be based.

(4) They state the necessary properties which must be possessed by any
computer representation of the data, in a manner free from detail which is in
initial stages irrelevant.

(5) They offer a carefully circumscribed freedom to the programmer or
high-level language implementor to choose a representation most suitable
for his application and hardware available.

(6) They form the basis of any proof of correctness of a program.

The axioms given here are not intended to be used directly in the proof
of non-trivial programs, since such proofs would be excessively long-winded.
Rather they may be used to establish the familiar properties of the data
spaces they describe, and these properties can then be used informally in
proofs. Eventually it may be possible to get computers to check such proofs;
but this will require the development of much more powerful formal languages
for expressing proofs than are at present provided by logicians, and the
use of powerful decision procedures for large subclasses of theorem, to assist
in verification of the individual steps of a proof.

NOTES ON DATA STRUCTURING 167

The axioms applicable to a given type depend on how that type has been
defined. Thus it is not possible to give in each case a fixed set of axioms
like those for integers; instead we give a pattern or schema which shows how
a particular axiom set may be derived from the general form of the corres-
ponding type definition.

12.1. ENUMERATIONS AND SUBRANGES

The following axioms are common to both enumerat ions and subranges.
They are modelled on the familiar axioms for natural numbers. The type
name is assumed to be T, and all variables are assumed to be of this type.

(1) T .min is a T

(2) If x is a T, and x 4: T. max

then succ (x) is a T

(3) The only elements of T are as specified in (1) and (2)

(4) succ (x) = succ (y) ~ x = y

(5) succ (x) -¢ T. min

(6) pred (succ (x)) = x

The following three axioms apply only to ordered types

(7) T .min <~ x

(8) x ~. T .min ~ x = T .min

(9) succ (x) ~< succ (y) -= x <~ y

Note: succ (T .max) and pred (T .min) are not defined.

The general form of definition of a type by enumerat ion is

type T = (k 1, k2, - . . , k ,) ;

where T is the type name

and k 1, k2, . . . , k , are names of all values of the type.

The addit ional axiom for this type is:

(10) k l = T .min

& k2 = succ (k 1)
& k3 = succ(k2)

° ° ° °

& k. = succ (k . _ 1) = T. max.

The general form of a definition of a type as a subrange is

type T = k . . l ;

where k and l are of the base type To.

168 c .A.R. HOARE

The addit ional axioms for this type are:

(10) T . m i n = k

& T. max = I.

(11) T (T o (x)) = x.

(12) k <~ Xo & Xo <~ l = T o (T (x o)) = Xo.

(13) x <~ y - To (X) <~ to(y).

Using axioms (1) to (9) it is possible to prove the following propert ies of
ordering:

(TI) x ~<x.

(T2) x .~. succ (y) = x = s u c c (y) v x < y.

(T3) z < y & y < x = z < x .

(T4) x < y & y ~ . x ~ x = y .

Hint" Use induct ion on x. P roof of T3 requires T2.

Abbrevia t ions:

If Q is a monadic opera tor and @ is a dyadic operator , both taking operands
f rom the base type To, then the following abbreviat ions permit omission of
the transfer function, if a is of type To and x, y are of type T:

(14) O x stands for O To(x) .

(15) x @ y ,, ,, To (x) O) To(y) .

(16) x @ a ,, ,, To(x) O) a.

(17) a @ x ,, ,, a G T o (x) .

(18) a: = x a: = To(x) .

12.2. CARTESIAN PRODUCTS

The general form of the definition of a type as a Cartesian product is

type T = (s l :T1;s2:Ta; - . . ; s . : T .) ;

where sl , s2, . . . , s, are the selectors of the components , and T1, Tz , T,
are the types of the corresponding components .

(1) If x l is a T1 and Xa is a T2 and . . . and x, is a T,

then T (x l , x z, . . . , x ,) is a T.

(2) The only elements of T are as specified in (1).

(3) If x = T (x l , x2 , x ,) then

x . s l = x l & x . s 2 = x2 & . . . & x . s , = x , .

NOTES ON DATA STRUCTURING 169

Abbreviations'

(4) x . s l " = x l stands for x ' = T (x l , x . s 2 x . s ,)

x . s ~ " = x ~ ,, ,, x " = r (x . s , , x ~ , . . . , x . s ,)

. . . ° .

X . S n" = x n X" = T (x . s l , x . s 2 , x n) .

(5) If x is a T then

with x do S or with x take S stands for

S S 1 , $ 2 , . . . , S n
X . S 1 , X . S 2 , . . . , X . Sn

which means that each of the subscripts of S replaces all free occurrences
of the corresponding superscript in S.

(6) (xl, x z, . . . , x ,) stands for T (x l , x2 x,) in those contexts where
an expression of type T is expected.

The following axiom applies if the Cartesian product type is to be regarded
as ordered"

(7) x <~ y - - - x . s 1 < y . s 1

v x . s l = y . s l & (x . s 2 < y .s2

v x . s 2 = Y . S z & (x . s 3 < Y . S 3

v . . . & (x . s , _ 1 < Y . s , - 1

v x . s , _ 1 = y . s , _ ~ & x . s , ~ y . s ,) . . .)) .

12.3. DISCRIMINATED UNIONS

The general form of the definition is"

. ; • ; • T ' k 2 k m" T ' . ,) typeT=(s l Tl,s2 Tz,. s . T . kl 1, "T'2

(1) i f x l i s a T 1 , x 2 i s a T 2 , . . . , x , i sa T,

and x' i is a T' 1, x2 is a T'2, • . . , x'm is a T',,

then the following are distinct elements of T

r (x , , x ~ x , , k , (x ' ,))

r (x , , x ~ , x , , ~ : ~ (x ' ~))

. . . m , e

r (x , , x~ , x, , k , (~ ' ,))

(2) The only elements of T are as specified in (1).

170 c . A . R . HOARE

(3) If X = T(xx, x 2 , . . . , x , , ki(x'i)) for each i between 1 and m

X . S 1 ~ . X 1 • X . S 2 • X 2 t ~ . . . & X . S n = X n

& x.k~ = x'i

Note: x . k z is undef ined for l 4: i.

Abbrev ia t ions :

(4) U n d e r the same condi t ion as (3)

with x do {kl :$1, k2:$2 , kn:Sn} means

, a o (S) , , , ~ ~ . . withx i i x~,x2 x, ,

and similarly with take instead of do.

(5) If n = O, k,(x' ,) stands for T(k,(x'i)).

12.4. ARRAYS

The general fo rm of an array definit ion is:

type T = ar ray D of R

(1) I f r is an R then T(r) is a T

(2) I f x i s a T , d i s a D , a n d r i s a n R

then T(x, d: r) is a T

(3) The only elements of T are as specified in (1) and (2).

(4) T(T(x , d:r), d ' : r ') =

if d = d' then T(x, d':r')
else T(T(x, d' : r'), d : r).

(5) T(r)[d] = r.

(6) T(x, d: r)[d'] = if d' = d then r else x [d'].

(7) (for i :D take E(i))[j] = E(j) .

Abbrev ia t ions :

(8) x[d]: = r means x: = T(x, d: r).

(9) T(x, dx :rl, d2:r2 , . . . , d,:v,,) stands for

T(T(. . . T(T(x) , d, :v,), d2 : v2). . .), d,, : r,,).

(10) in (9), the x may be omit ted, if dl , d 2 , . . . , d, exhaust the domain
type. Similarly, the T may be omit ted in suitable contexts.

If the array type is ordered, the fol lowing axiom applies:

(11) x ~. y _= V d:D(y[d] < x[d] ~ ~ d ' :D(d ' < d & x[d'] < y[d']))

T h e o r e m :

x = y ~ V d:D(x[d] = y[d])

NOTES ON DATA STRUCTURING 171

12.5 POWERSETS

The axioms given below for sets apply only to finite sets of hierarchically
ordered type. It is therefore possible to avoid the paradoxes which endanger
axiomatigations of more powerful versions of set theory.

The general form of a powerset definition is:

type T = powerset To,

where To is the base type.

let a, b, be values of type To.

(1) T() i s a T

(2) If x is a T and a is a To then
x v T(a) i s a T

(3) The only members of T are as specified in (1) and (2).

(4) --lain T()

(5) a in (y v T(a))

(6) a ~ b = (a in (x v T(b)) ~ a in x)

(7) T() = x

(8) (y v T(a)) = x=- (y = x & a i n x)

(9) x = y ~ - (x = y) & (y = x)

(10) x v T () = x
(1 l) x v (y v T(a)) = (x v T(a)) v y

(12) x ^ r () = T ()
(13) x ^ T(a) = if a in x then T(a) else T()

(14) x ^ (y v T(a))= (x A y) V (x A T(a))

(15) T() - x = T()

(16) T(a) - x = if a in x then T() else T(a)

(17) (x v T (a)) - y = (x - y) v (T (a) - y)

(18) s i z e (T ()) = 0

(19) size (x v T(a)) = i f a in x then size (x) else succ (size (x))

The following apply if the domain type To is ordered:

(20) min (T (a))= T(a)

(21) x ~ T() = min (x v T(a)) = if a < min (x) then a else min (x)

Note: min (T ()) is not defined

(22) x d o w n 0 = x u p 0 = x

: E

172 c . A . R . HOARE

(23) x down succ (n) = (x down n) down 1

(24) T() d o w n l = T()

(25) (x v T(a))down 1 = (x down 1 v
if a -~ To. min then T(pred (a)) else T()

(26)-(28) up is similarly defined, with succ for pred and max for min.

(29) b < a D range (a, b) = T()

(30) a ~< b D range (a, b) = T(a)

(31) a < b = range (a, b) = range (a, pred (b)) v T(b)

(32) j in {i:D l B(i)} ~ B(j)

Abbreviat ions:

(33) T(al, a 2 , . . . , an)stands for T(al) v T(a2) v . . . v T(a,,)

(34) {al, a 2 , . . . , an} stands for T(al, a2 an)

(35) x: ^ y stands for x: = x ^ y

(36) x : v y x : = x v y

(37) a from x stands for a : = one of (x); x : - (a}

(38) if x = (a l , a2, . . . , an} then

for a in x do S stands for

S a • S a • . S a a i r a 2 ~ " " • ~ a n

where the ai are in natural order if the base type is ordered, and are in
arbitrary order otherwise; and they do not contain repetitions.

Theorems:

x = y ~ V a : T o (a i n x ~ a i n y)

a i n (x v y) ~ (a i n x v a i n y)

a i n (x ^ y) ~ (a in x & a in y)

a in (x - y) ~. (a in x & -3 a in y)

12.6 SEQUENCES

The general form of a sequence definition is:

type T = sequence D;

(1) T() i s a T

(2) I f x i s a T a n d d i s a D

t h e n x T(d) is a T

(3) The only elements of T are as specified in (1) and (2)

(4) (x- 'T(d)) . last = d

NOTES ON DATA STRUCTURING

(5) initial (x ~ T (d)) = x

(6) x (y z) = (x y) z

(7) T(d) . first = d

(8) x -~ T() = (f f - 'T(d)) . f i rs t = x.f i rs t

(9) final (T(d)) = T()

(10) x ¢ T() = final (f f - ' T (d)) = final (x) - ' T (d)

Note:

(11)
(12)

(13)
(14)

(~5)
(I6)

last, initial, first, and final are not defined for T()

T() ends y

x T(d) ends y ~_ y -¢ T() & y. last = d & x ends initial (y)

x b e g i n s T () ~ x = T()

x begins y T(d) ~_ x = f - - ' T (d) v x begins y

length (T ()) = 0

length (x - ' T (d)) = succ(length (x))

For an ordered sequence type we have '

(17) T() ~< y

(18) x < 7"() = x = r()
(19) x, y -~ T() = (x ~< y _= x. first < y. first v (x. first = y. first

& final (x) ~< final (y)))

Abbreviat ions:

(20) x" T(d) means x" = x T(d)

(21) d from x means d: = x.f i rs t ; x: = final (x)

(22) d back from x means d: = x . las t ; x: = initial (x)

(23) from x means x: = final (x)

(24) back from x means x : = initial (x)

(25) T(dl , dE , d,) stands for

(r(,r(d.))
(26) [dl, dE, . . . , dn] stands for T(dl , d2, . . . , dn)

(27) If x = [d~, d2 , d~] then

for d in x do S stands for

s~ ; s L ; . . ; s ~ .

for d in x take E stands for

[E~, E ~ , . . . , e~,]

173

174 c . A . R . HOARE

Theorems

x = y ~ (x = y = T() v x.f i rs t = y . f i rs t & x.f inal = y.f inal)

(x = y = T() v x . l as t = y . l a s t & x. initial = y. ini t ial)

REFERENCES

The following works have acted as an inspiration and guide for this chapter, and
they are recommended for further reading.

I am also deeply indebted to Professor N. Wirth for many fruitful discussions
and suggestions, and for his willingness to test several of the ideas of the paper
in his design and implementation of PASCAL; and to Professor E. W. Dijkstra for
his perpetual inspiration.

Dijkstra, E. W. (1972). Notes on Structured Programming. "Structured
Programming". pp. 1-82. Academic Press, London.

Knuth, D. E. (1968). "The Art of Computer Programming" Vol. 1, chapter 2.
Addison-Wesley, Reading, Mass.

McCarthy, J. (1963). "A Basis for a Mathemetical Theory of Computation in
Computer Programming and Formal Systems" (eds. Braffort, P. & Hirschberg D.).
North-Holland Publishing Company, Amsterdam.

Mealy, G. H. (1967). Another Look at Data. A.F.I.P.S. Fall Joint Computer
Conference Proceedings. 31, pp. 525-534.

Wirth, N. (1970). Programming and Programming Languages. Contribution to
Conference of European Chapter of A.C.M, Bonn.

Wirth, N. (1971). Program Development by Stepwise Refinement. Comm. A.C.M.
14, 4, pp. 221--227.

Wirth, N. (1971). The Programming Language PASCAL. Acta hlformatica, 1, 1,
pp. 35-63.

