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l. INTRODUCTION 

In the development of our understanding of complex phenomena, the most 
powerful tool available to the human intellect :is abstraction. Abstraction 
arises from a recognition of similarities between certain objects, situations, 
or processes in the real world, and the decision to concentrate on these 
similarities, and to ignore for the time being the differences. As soon as we 
have discovered which similarities are relevant to the prediction and control 
of future events, we will tend to regard the similarities as fundamental and 
the differences as trivial. We may then be said to have developed an abstract 
concept to cover the set of objects or situations in question. At this stage, 
we will usually introduce a word or picture to symbolise the abstract concept; 
and any particular spoken or written occurrence of the word or picture may 
be used to represent a particular or general instance of the corresponding 
situation. 

The primary use for representations is to convey information about 
important aspects of the real world to others, and to record this information 
in written form, partly as an aid to memory and partly to pass it on to 
future generations. However, in primitive societies the representations were 
sometimes believed to be useful in their own right, because it was supposed 
that manipulation of representations might in itself cause corresponding 
changes in the real world; and thus we hear of such practices as sticking 
pins into wax models of enemies in order to cause pain to the corresponding 
part of the real person. This type of activity is characteristic of magic and 
witchcraft. The modern scientist on the other hand, believes that the manipu- 
lation of representations could be used to predict events and the results of 
changes in the real world, although not to cause them. For example, by 
manipulation of symbolic representations of certain functions and equations, 

*This monograph is based on a series of lectures delivered at a Nato Summer School, 
Marktoberdorf, 1970. 
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he can predict the speed at which a falling object will hit the ground, although 
he knows that this will not either cause it to fall, or soften the final impact 
when it does. 

The last stage in the process of abstraction is very much more sophisticated; 
it is the attempt to summarise the most general facts about situations and 
objects covered under an abstraction by means of brief but powerful axioms, 
and to prove rigorously (on condition that these axioms correctly describe 
the real world) that the results obtained by manipulation of representations 
can also successfully be applied to the real world. Thus the axioms of 
Euclidean geometry correspond sufficiently closely to the real and measurable 
world to justify the application of geometrical constructions and theorems 
to the practical business of land measurement and surveying the surface of 
the earth. 

The process of abstraction may thus be summarised in four stages: 

(1) Abstraction: the decision to concentrate on properties which are shared 
by many objects-or situations in the real world, and to ignore the differences 
between them. 

(2) Representation: the choice of a set of symbols to stand for the abstrac- 
tion; this may be used as a means of communication. 

(3) Manipulation: the rules for transformation of the symbolic represen- 
tations as a means of predicting the effect of similar manipulation of the real 
world. 

(4) Axiomatisation: the rigorous statement of those properties which have 
been abstracted from the real world, and which are shared by manipulations 
of the real world and of the symbols which represent it. 

1.1. NUMBERS AND NUMERALS 

Let us illustrate this rather abstract description by means of a relatively 
concrete example--the number four. In the real world, it is noticed that 
objects can be grouped together in collections, for example four apples. 
This already requires a certain act of abstraction, that is a decision to ignore 
(for the time being) the differences between the individual apples in the 
collectionqfor example, one of them is bad, two of them unripe, and the 
fourth already partly eaten by birds. 

Now one may consider several different collections, each of them with 
four items; for example, four oranges, four pears, four bananas, etc. If we 
choose to ignore the differences between these collections and concentrate 
on their similarity, then we can form a relatively abstract concept of the 
number four. The same process could lead to the concept of the number 3, 
15, and so on; and a yet further stage of abstraction would lead to the 
development of the concept of a natural number. 
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Now we come to the representation of this concept, for example scratched 
on parchment, or carved in stone. The representation of a number is called a 
numeral. The early Roman numeral was clearly pictorial, just four strokes 
carved in stone: IIII. An alternative more convenient representation was IV. 
The arabic (decimal) representations are less pictorial, but again there is 
some choice: both 4 and 04 (and indeed 004 and so on) are all recognised as 
valid numerals, representing the same number. 

We come next to a representation which is extremely convenient for 
processing, providing that the processor is an electronic digital computer. 
Here the number four is represented by the varying directions of magnetisa- 
tion of a group of ferrite cores. These magnetisations are sometimes repre- 
sented by sequences of zeros and ones on line printer paper; i.e., the binary 
representation of the number in question. 

A simple example of the manipulation of numerals is addition, which 
can be used to predict the result of adjoining of two collections of objects 
in the real world. The addition rules for Roman numerals are very simple 
and obvious, and are simple to apply. The addition rules for arabic numerals 
up to ten are quite unobvious, and must be learnt; but for numbers much 
larger than ten they are more convenient than the Roman techniques. 
Addition of binary representations is not a task fit for human beings; but 
for a computer this is the simplest and best representation. Thus we see that 
choice between many representations can be made in the light of ease of 
manipulation in each particular environment. 

Finally we reach the stage of axiomatisation; the most widely known 
axiom set for natural numbers is that of Peano, which was first formulated 
at the end of the last century, long after natural numbers had been in general 
use. In the present day, the axiomatisation of abstract mathematical ideas 
usually follows far more closely upon their development; and in fact may 
assist in the clarification of the concept by guarding against confusion and 
error, and by explaining the essential features of the concept to others. It is 
possible that a rigorous formulation of presuppositions and axioms on which 
a program is based may reduce the confusion and error so characteristic of 
present day programming practice, and assist in the documentation and 
explanation of programs and programming concepts to others. 

1.2. ABSTRACTION AND COMPUTER PROGRAMMING 

It is my belief that the process of abstraction, which underlies attempts to 
apply mathematics to the real world, is exactly the process which underlies 
the application of computers in the real world. The first requirement in 
designing a program is to concentrate on relevant features of the situation, 
and to ignore factors which are believed irrelevant. For example, in analysing 
the flutter characteristics of a proposed wing design of an aircraft, its elasticity 
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is what is considered relevant; its colour, shape, and production technique 
are considered to be irrelevant except in so far as they have contributed to its 
elasticity. To take a commercial example, the employees working for a 
Company have many characteristics, both physical and mental, which will 
be ignored when devising a payroll program for the Company. 

The next stage in program design is the decision of the manner in which 
the abstracted information is to be represented in the computer. An elasticity 
function may be represented by its values at a suitable number of discrete 
points; and these may be represented in a variety of ways as a two-dimensional 
array. Alternatively, the elasticity might be given by a computed function, 
and the data be held as a vector of polynomial or chebyshev coefficient for 
the function. A payroll file on a computer consists of a number of records, 
one relating to each employee. The choice of representation within the 
record of each relevant attribute must be made as part of the design of the 
program. 

The stage of axiomatisation is not usually regarded as a separate stage in 
programming; and is often left implicit. In the case of aircraft flutter, the 
axiomatisation is the formulation of the differential equations which are 
presumed to describe the reaction of the real wing to certain kinds of stresses, 
and which (it is hoped) also describe the process of approximate solution 
on the computer. In the case of a payroll, the axioms correspond to the des- 
criptions of various aspects of the real world which need to be embodied in 
the programmfor example, the fact that net pay equals gross pay minus 
deductions. 

Finally there comes the task of programming the computer to get it to 
carry out those manipulations on the representation of the data that corre- 
spond to the manipulations in the real world in which we are interested. 
The success of a program is dependent on three basic conditions: 

(1) The axiomatisation is a correct description of those aspects of the real 
world with which it is concerned. 

(2) The axiomatisation is a correct description of the behaviour of the 
program, i.e., that the program contains no errors. 

(3) The choice of representation and the method of manipulation are such 
that the cost of running the program on the computer is acceptable. 

In order to simplify the task of designing and developing a computer 
program, it is very helpful to be able to keep these three stages reasonably 
separate and to carry them out in the appropriate sequence. Thus the first 
stage (axiomatisation) would culminate in a rigorous logical statement of 
presuppositions about the real world, and a formulation of the desired 
objectives which are to be achieved by the program. The second stage would 
culminate in an algorithm, or abstract program, which is demonstrably 
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capable of carrying out the stated task on the given presuppositions. The 
third stage would be the decision on how the various items of data are to be 
represented and manipulated in the store of the computer in order to achieve 
acceptable efficiency. Only when these three stages have been satisfactorily 
concluded will there begin the final phase of coding and testing the program, 
which embodies the chosen algorithm operating upon the chosen data 
representation. 

Of course, this is a somewhat idealised picture of the intellectual task of 
programming as a steady progression from the abstract formulation of the 
problem to the more and more concrete aspects of its solution. In practice, 
even in the formulation of a problem, the programmer must have some. 
intuition about the possibility of a solution; while he is designing his abstract 
program, he must have some feeling that an adequately efficient representa- 
tion is available. Quite frequently these intuitions and feelings will be mistaken, 
and a deeper investigation of representation, or even the final coding, will 
require a return to an earlier stage in the process, and perhaps even a radical 
recasting of the direction of attack. But this exercise of intuitive forethought, 
together with a risk of failure, is characteristic of all inventive and con- 
structive intellectual processes, and does not detract from the merits of at 
least starting out in an orderly fashion, with more or less clearly separated 
stages. 

One of the most important features of the progression is that the actual 
coding of the program has been postponed until after it is (almost) certain 
that all other aspects of the design have been successfully completed. Since 
coding and program testing is generally the most expensive stage in 
program development, it is undesirable to have to make changes after this 
stage has started. Thus it is advantageous to ensure beforehand that nothing 
further can go wrong at this final stage; for example, that the program 
tackles the right problem, that the algorithm is correct, that the various 
parts of the program cooperate harmoniously in the overall task, and that the 
data representations are adequately efficient. It is the purpose of this mono- 
graph to explore methods of achieving this confidence. 

1.3. ABSTRACTION IN HIGH-LEVEL PROGRAMMING LANGUAGES 

The role of abstraction in the design and development of computer programs 
may be reinforced by the use of a suitable high-level programming language. 
Indeed, the benefits of using a high-level language instead of machine code 
may be largely due to their incorporation of successful abstractions, particu- 
larly for data. To the hardware of a computer, and to a machine code 
programmer, every item of data is regarded as a mere collection of bits. 
However, to the programmer in ALGOL 60 or FORTRAN an item of data 
is regarded as an integer, a real number, a vector, or a matrix, which are the 
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same abstractions that underlie the numerical application areas for which 
these languages were primarily designed. Of course, these abstract concepts 
have been mapped by the implementor of the language onto particular bit- 
pattern representations on a particular computer. But in the design of his 
algorithm, the programmer is freed from concern about such details, which 
for his purpose are largely irrelevant; and his task is thereby considerably 
simplified. 

Another major advantage of the use of high-level programming languages, 
namely machine-independence, is also attributable to the success of their 
abstractions. Abstraction can be applied to express the important characteris- 
tics not only of differing real-life situations, but also of different computer 
representations of them. As a result, each implementor can select a repre- 
sentation which ensures maximum efficiency of manipulation on his particular 
computer. 

A third major advantage of the use of a high-level language is that it 
significantly reduces the scope for programming error. In machine code 
programming it is all too easy to make stupid mistakes, such as using fixed 
point addition on floating point numbers, performing arithmetic operations 
on Boolean markers, or allowing modified addresses to go out of range. 
When using a high-level language, such errors may be prevented by three 
means: 

(1) Errors involving the use of the wrong arithmetic instructions are 
logically impossible; no program expressed, for example in ALGOL, could 
ever cause such erroneous code to be generated. 

(2) Errors like performing arithmetic operations on Boolean markers will 
be immediately detected by a compiler, and can never cause trouble in an 
executable program. 

(3) Errors like the use of a subscript out of range can be detected by 
runtime checks on the ranges of array subscripts. 

Runtime checks, although often necessary, are almost unavoidably more 
expensive and less convenient than checks of the previous two kinds; and 
high-level languages should be designed to extend the range of programming 
errors which logically cannot be made, or if made can be detected by a 
compiler. In fact, skilful language design can enable most subscripts to be 
checked without loss of runtime efficiency. 

The automatic prevention and detection of programming errors may 
again be attributed to a successful appeal to abstraction. A high-level pro- 
gramming language permits the programmer to declare his intentions about 
the types of the values of the variables he uses, and thereby specify the 
meanings of the operations valid for values of that type. It is now relatively 
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easy for a compiler to check the consistency of the program, and prevent 
errors from reaching the execution stage. 

1.4. NOTATIONS 

In presenting a theory o fda ta  structuring, it is necessary to introduce some 
convenient notation for expressing the abstractions involved. These notations 
are based to a large extent on those already familiar to mathematicians, 
logicians and programmers. They have also been designed for direct expres- 
sion of computer algorithms, and to minimise the scope for programming 
error in running programs. Finally, the notations are designed to ensure the 
existence of efficient data representations on digital computers. 

Since the notations are intended to be used (among other things) for the 
expression of algorithms, it would be natural to conclude that they constitute 
a form of programming language, and that an automatic translator should be 
written for converting programs expressed in the language into the machine 
code of a computer, thereby eliminating the expensive and error-prone 
coding stage in the development of programs. 

But this conclusion would be a complete misunderstanding of the reason 
for introducing the notations, and could have some very undesirable conse- 
quences. The worst of them is that it could lead to the rejection of the main 
benefits of the programming methodology expounded in this monograph, on 
the grounds that no compiler is available for the language, nor likely to be 
widely accepted if it were. 

But there are sound reasons why these notations must not be regarded as a 
programming language. Some of the operations (e.g., concatenation of 
sequences), although very helpful in the design of abstract programs and the 
description of their properties, are grotesquely inefficient when applied to 
large data objects in a computer; and it is an essential part of the program 
design process to eliminate such operations in the transition between an 
abstract and a concrete program. This elimination will sometimes involve 
quite radical changes to both algorithm and representation, and could not in 
general be made by an automatic translator. If such expensive operators were 
part of a language intended for automatic compilation, it is probable that 
many programmers would fail to realise their obligation to eliminate them 
before approaching the computer; and even if they wanted to, they would 
have little feeling for what alternative representations and operations would 
be more economic. In taking such vital decisions, it is actually helpful if a 
programming language is rather close to the eventual machine, in the sense 
that the efficiency of the machine code is directly predictable from the form 
and length of the corresponding source language code. 

There is a more subtle danger which would be involved in the automatic 
implementation of the notations" that the good programmer would soon 
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learn that some of them are significantly less emcient than others, and he will 
avoid their use even in his abstract programs; and this will result in a form 
of mental block which might have serious consequences on his inventive 
capacity. Equally serious, the implementation of a fixed set of notations 
might well inhibit the user from introducing his own notations and concepts 
as required by his understanding of a particular problem. 

Thus there is a most important distinction to be drawn between an 
algorithmic language intended to assist in the definition, design, development 
and documentation of a program, and the programming language in which 
the program is eventually conveyed to a computer. In this monograph we 
shall be concerned solely with the former kind of language. All example 
algorithms will be expressed in this language, and the actual coding of 
these programs is left as an exercise to the reader, who may choose for this 
purpose any language familiar to him, ALGOL, FORTRAN, COBOL, PL/I, 
assembly language, or any available combination of them. It is essential to a 
realisation of the relative merits of various representations of data to realise 
what their implications on the resulting code will be. 

In spite of this vigorous disclaimer that I am not embarking on the design 
of yet another programming language, I must admit the advantages that 
can follow if the programming language used for coding an algorithm is 
actually a subset of the language in which it has been designed. I must also 
confess that there exists a large subset of the proposed algorithmic language 
which can be implemented with extremely high efficiency, both at compile 
time and at run time, on standard computers of the present day; and the 
challenge of designing computers which can efficiently implement even larger 
subsets may be taken up in the future. But the non-availability of such a 
subset implementation in no way invalidates the benefits of using the full 
set of notations as an abstract programming tool. 

1.5. SUMMARY 

This introduction has given a general description of the motivation and 
general approach taken hereafter. As is quite usual, it may be read again 
with more profit on completion of the rest of the monograph. 

The second section explains the concept of type, which is essential to the 
theory of data structuring; and relates it to the operations and representations 
which are relevant to the practice of computer programming. 

Subsequent sections deal with particular methods of structuring data, 
progressing from the simpler to the more elaborate structures. 

Each structure is explained informally with the aid of examples. Then 
the manipulation of the structure is defined by specifying the set of basic 
operations which may be validly applied to the structure. Finally, a range of 
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possible computer representations is given, together with the criteria which 
should influence the selection of a suitable representation on each occasion. 

Section 11 is devoted to an example, a program for constructing an 
examination timetable. The last section puts the whole exposition on a 
rigorous theoretical basis by formulating the axioms which express the basic 
properties of data structures. This section may be used as a summary of the 
theory, as a reference to refine the understanding, or as a basis for the proof 
of correctness of programs. 

2. T a z  CONCEPT OF TYPE 

The theory of data structuring here propounded is strongly dependent on 
the concept of type. This concept is familiar to mathematicians, logicians, 
and programmers. 

(1) In mathematical reasoning, it is customary to make a rather sharp 
distinction between individuals, sets of individuals, families of sets, and so 
on; to distinguish between real functions, complex functions, functionals, 
sets of functions, etc. In fact for each new variable introduced in his reasoning, 
a mathematician usually states immediately what type of object the vhriable 
can stand for, e.g. 

"Let f be a real function of two real variables" 

"Let S be a family of sets". 

Sometimes in mathematical texts a general rule is given which relates the 
type of a symbol with a particular printer's type font, for example" 

"We use small Roman letters to stand for individuals, capitals to 
stand for sets of individuals, and script capitals to denote families of sets". 

In general, mathematicians do not use type conventions of this sort to 
make distinctions of an arbitrary kind; for example, they would not be 
generally used to distinguish prime numbers from non-primes or Abelian 
groups from general groups. In practice, the type conventions adopted by 
mathematicians are very similar to those which would be of interest to 
logicians and programmers. 

(2) Logicians on the whole prefer to work without typed variables. 
However without types it is possible to formulate within set theory certain 
paradoxes which would lead to inescapable contradiction and collapse of 
logical and mathematical reasoning. The most famous of these is the Russell 
paradox: 

"let s be the set of all sets which are no t  members of themselves. 
Is s a member of itself or not?" 
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It turns out that whether you answer yes or no, you can be immediately 
proved wrong. 

Russell's solution to the paradox is to associate with each logical or 
mathematical variable a type, which defines whether it is an individual, a 
set, a set of sets, etc. Then he states that any proposition of the form "x is a 
member of y" is grammatically meaningful only if x is a variable of type 
individual and y a variable of type set, or if x is of type set and y is of type set 
of sets, and so on. Any proposition that violates this rule is regarded as 
meaningless~the question of its truth or falsity just does not arise, it is just a 
jumble of letters. Thus any proposition involving sets that are or are not 
members of themselves can simply be ruled out. 

Russell's theory of types leads to certain complexities in the foundation 
of mathematics, which are not relevant to describe here. Its interesting 
features for our purposes are that types are used to prevent certain erroneous 
expressions from being used in logical and mathematical formulae; and that a 
check against violation of type constraints can be made merely by scanning 
the text, without any knowledge of the value which a particular symbol 
might happen to stand for. 

(3) In a high-level programming language the concept of a type is of 
central importance. Again, each variable, constant and expression has a 
unique type associated with it. In ALGOL 60 the association of a type with a 
variable is made by its declaration; in F O R T R A N  it is deduced from the 
initial letter of the variable. In the implementation of the language, the type 
information determines the representation of the values of the variable, and 
the amount of computer storage which must be allocated to it. Type informa- 
tion also determines the manner in which arithmetic operators are to be 
interpreted; and enables a compiler to reject as meaningless those programs 
which invoke inappropriate operations. 

Thus there is a high degree of commonality in the use of the concept of 
type by mathematicians, logicians and programmers. The salient characteris- 
tics of the concept of type may be summarised" 

(1) A type determines the class of values which may be assumed by a 
variable or expression. 

(2) Every value belongs to one and only one type. 

(3) The type of a value denoted by any constant, variable, or expression 
may be deduced from its form or context, without any knowledge of its 
value as computed at run time. 

(4) Each operator expects operands of some fixed type, and delivers a 
result of some fixed type (usually the same). Where the same symbol is applied 
to several different types (e.g. + for addition of integers as well as reals), 
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this symbol may be regarded as ambiguous, denoting several different actual 
operators. The resolution of such systematic ambiguity can always be made 
at compile time. 

(5) The properties of the values of a type and of the primitive operations 
defined over them are specified by means of a set of axioms. 

(6) Type information is used in a high-level language both to prevent or 
detect meaningless constructions in a program, and to determine the method 
of representing and manipulating data on a computer. 

(7) The types in which we are interested are those already familiar to 
mathematicians; namely, Cartesian Products, Discriminated Unions, Sets, 
Functions, Sequences, and Recursive Structures. 

2.1. DATA TYPE DEFINITIONS 

Our theory of data structuring specifies a number of standard methods of 
defining types, and of using them in the declaration of variables to specify 
the range of values which that variable may take in the course of execution 
of a program. In most cases, a new type is defined in terms of previously 
defined constituent types; the values of such a new type are data structures, 
which can be built up from component values of the constituent types, and 
from which the component values can subsequently be extracted. These 
component values will belong to the constituent types in terms of which the 
structured type was defined. If there is only one constituent type, it is known 
as the base type. 

The number of different values of a data type is known as its cardinality. 
In many cases the cardinality of a type is finite; and for a structured type 
defined in terms of finite constituent types, the cardinality is also usually 
finite, and can be computed by a simple formula. In other cases, the cardinality 
of a data type is infinite, as in the case of integers; but it can never be more 
than denumerably infinite. The reason for this is that each value of the type 
must be constructible by a finite number of computer operations, and must 
be representable in a finite amount of store. Arbitrary real numbers, functions 
with infinite domains, and other classes of non-denumerable cardinality can 
never be represented as stored data within a computer, though they can be 
represented by procedures, functions, or other program structures. 

Obviously, the ultimate components of a struc, ture must be unstructured, 
and the ultimate constituents of a structured type must be unstructured types. 
One method of defining an unstructured type is by simple enumeration of its 
values, as described in the next section. But in certain cases it is better to 
regard the properties of unstructured types as defined by axioms, and assume 
them to be provided as primitive types by the hardware of a computer or the 
implementation of a high-level programming hmguage. For example, the 
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primitive types of ALGOL 60 are integer, real, and Boolean, and these will 
be assumed available. 

2.2. DATA MANIPULATION 

The most important practical aspect of data is the manner in which that 
data can be manipulated, and the range of basic operators available for this 
purpose. We therefore associate with each type a set of basic operators which 
are intended to be useful in the design of programs, and yet which have at 
least one reasonably efficient implementation on a computer. Of course the 
selection of basic operators is to some extent arbitrary, and could have been 
either larger or smaller. The guiding principle has been to choose a set large 
enough to ensure that any additional operation required by the programmer 
can be defined in terms of the basic set, and be efficiently implemented in 
this way also; so an operator is regarded as basic if its method of efficient 
implementation depends heavily on the chosen method of data represen- 
tation. 

The most important and general operations defined for data of any type 
are assignment and test of equality. Assignment involves conceptually a 
complete copy of a data value from one place to another in the store of the 
computer; and test of equality involves a complete scan of two values 
(usually stored at different places) to test their identity. These rules are those 
that apply to primitive data types and there is no reason to depart from 
them in the case of structured types. If the value of a structured type is very 
large, these operations may take a considerable amount of time; this can 
sometimes be reduced by an appropriate choice of representation; alter- 
natively, such operations can be avoided or removed in the process of 
transforming an abstract program to a concrete one. 

Another general class of operators consists in the transfer functions, which 
map values of one type into another. Of particular importance are the 
constructors, which permit the value of a structured type to be defined in 
terms of the values of the constituent types from which it is built. The 
converse transfer functions are known as selectors; they permit access to 
the component values of a structured type. In many cases, we use the name 
of a defined type as the name of the standard constructor or transfer function 
which ranges over the type. 

Certain data types are conveniently regarded as ordered; and comparison 
operators are available to test the values of such types. But for many types, 
such an ordering would have no meaningful interpretation; and such types 
are best regarded from an abstract point of view as unordered. This will 
sometimes be of advantage in giving greater freedom in the choice of repre- 
sentation and sequencing strategies at a later state in the concrete design. 
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In the case of a large data structure, the standard method of operating 
efficiently on it is not by assigning a wholly new value to it, but rather by 
selectively updating some relatively small part of it. The usual notation for 
this is to write on the left of an assignment an expression (variable) which 
uses selectors to denote the place where the structure is to be changed. 
However, we also introduce special assignment operators, always beginning 
with colon, to denote other more general updating operations such as adding 
a member to a set, or appending an item to a sequence. For both kinds of 
selective updating, it must be remembered that, from a conceptual or abstract 
point of view, the entire value of the variable has been changed by updating 
the least part of it. 

2.3. REPRESENTATIONS 

It is fundamental to the design of a program to decide how far to store 
computed results as data for subsequent use, and how far to compute them 
as required. It is equally fundamental to decide how stored data should be 
represented in the computer. In many simple and relatively small cases there 
is an obvious standard way of representing data, which ensures that not too 
much storage is used, and not too much time expended on carrying out the 
basic operations. But if the volume of data (or the amount of processing) 
is large, it is often profitable (and sometimes necessary) to choose some 
non-standard representation, selected in accordance with the characteristics 
of the storage media used (drums, discs, or tapes), and also taking into 
account the relative frequencies of the various operations which will be 
performed upon it. Decisions on the details of representation must usually 
precede and influence the design of the code to manipulate the data, often 
at a time when the nature of the data and the processing required are relatively 
unknown. Thus it is quite common to make serious errors of judgement in 
the design of data representation, which do not come to light until shortly 
before, or even after, the program has been put into operation. By this time 
the error is extremely difficult to rectify. However, the use of abstraction 
in data structuring may help to postpone some of the decisions on data 
representation until more is known about the behaviour of the program and 
the characteristics of the data, and thus make such errors less frequent and 
easier to rectify. 

An important decision to be taken is on the degree and manner in which 
data should be compressed in storage to save space; and also to save time on 
input/output, on copying operations, and on comparisons, usually at the 
expense of increasing the time and amount of code required to perform all 
other operations. Representations requiring less storage than the standard 
are usually known as packed; there are several degrees of packing, from 
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loose to tight. Of theoretical interest is the minimal representation, which 
uses the least possible space. In this representation the values of the type are 
represented as binary integers in the range 0 to N - 1, where N is the cardi- 
nality of the type. In the case of a type of infinite cardinality, a minimal 
representation is one in which every possible bit pattern represents a value of 
the type. Minimal representations are not often used, owing to the great 
expense of processing them. 

Another method of saving space is to use an indirect representation. In 
the standard direct representation of data, each variable of a type is allocated 
enough space to hold every value of the type. In the indirect representation, 
the variable is just large enough to contain a single machine address, which at 
any given time points to a group of one or more machine locations con- 
taining the current value. This technique is necessary when the type has 
infinite cardinality, since the amount of storage used will vary, and is not 
known when writing the code which accesses the variable. It can also be 
profitable when the actual amount of storage is variable, and during a large 
part of a program run is significantly less than the maximum. Finally, it 
can be used when it is believed that many different variables will tend to have 
the same values; since then only one copy of the value need be held, and the 
variables may just contain pointers to it; copying the value is also very cheap, 
since only the pointer need be copied. However, such shared copies must 
never be selectively updated. 

Unfortunately, indirect representations often involve the additional expense 
and complexity of a dynamic storage allocation and garbage collection 
scheme; and they can cause some serious problems if data has to be copied 
between main and backing stores. 

This chapter describes only a small but useful range of the possible 
representations of data, and the skilful programmer could readily add to the 
selection. In many cases, the representation of an abstract data type can be 
constructed by means of a more elaborate but more efficient data type 
definition; for instance a large set may be represented as a sequence of items 
of some suitable type. Examples of this are given in later sections. 

3. UNSTRUCTURED DATA TYPES 

All structured data must in the last analysis be built up from unstructured 
components, belonging to a primitive or unstructured type. Some of these 
unstructured types (for example, reals and integers) may be taken as given 
by a programming language or the hardware of the computer. Although 
these primitive types are theoretically adequate for all purposes, there are 
strong practical reasons for encouraging a programmer to define his own 
unstructured types, both to clarify his intentions about the potential range of 
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values of a variable, and the interpretation of each such value; and to permit 
subsequent design of an efficient representation. 

In particular, in many computer programs an integer is used to stand not 
for a numeric quantity, but for a particular choice from a relatively small 
number of alternatives. In such cases, the annotation of the program usually 
lists all the possible alternative values, and gives the intended interpretation 
of each of them. It is possible to regard such a quantity as belonging to a 
separate type, quite distinct from the integer type, and quite distinct from 
any other similar set of markers which have a different interpretation. Such 
a type is said to be an enumeration, and we suggest a standard notation for 
declaring the name of the type and associating a name with each of its 
alternative values" 

type suit = (club, diamond, heart, spade); 

ordered type rank = (two, three, four, five, six, seven, eight, nine, ten, Jack, 

Queen, King, Ace); 

type primary colour = (red, yellow, blue); 

ordered type day of week = (Monday, Tuesday, Wednesday, Thursday, 

Friday, Saturday, Sunday); 

type day of month = 1.. 31 ; 

ordered type month = (Jan, Feb, March, April, May, June, July, Aug, Sept, 

Oct, Nov, Dec); 

type year = 1900.. 1969; 

type Boolean = (false, true); 

ordered type floor = (basement, ground, mezzanine, first, second); 

type coordinate = 0 . .  1023; 

Our first two examples are drawn from the realm of playing cards. The first 
declaration states that club, diamond, heart, and spade are suits; in other 
words, that any variable or expression of type suit can only denote one of 
these four values; and that the identifiers "club . . . .  heart" "diamond" and 
"spade" act as constants of this type. Similarly, the definition of the type 
rank displays the thirteen constants denoting the thirteen possible values of 
the type. In this case it is natural to regard the type as ordered. The next 
examples declare the names of the primary colours and of the days of the 
week. In considering the days of the month, it is inconvenient to write out 
the thirty-one possible values in full. We therefore introduce the convention 
that a . . b  stands for the finite range of values between a and b inclusive. 
This is known as a subrange of the type to which a and b belong, in this case 
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integers. This convention is used again in the declaration of year. Other 
examples of enumeration are: 

The Boolean type, with only two values, false and true. 

The Month type, with twelve vaIues listed in the required order. 

The coordinate type, taking values between 0 and 1023, representing 
perhaps a coordinate on a CRT display. 

Having defined a type in a suitable fashion, the programmer will use the 
type name to specify the types of his variables. For this purpose it is useful 
to follow the current practice of mathematicians and to write the type name 
after the variable, separated from it by a colon: 

trumps: suit; today: day of week; 

pc: primary colour; 

If several variables of the same type are to be declared at the same time, 
it is useful to adopt the abbreviation of listing the variable names without 
repeating the type name, thus: 

arrival, departure:day of month; 

x, y, z: coordinate. 

If only a few variables of a given type are to be used, it is convenient to 
write the type definition itself in place of and instead of the type name: 

answer : (yes, no, don't  know); 

The cardinality of a type defined by enumeration is obviously equal to 
the length of the defining list; and for a subrange, it is one more than the 
difference between the end points of the subrange. 

3.1. MANIPULATION 

The operations required for successful manipulation of values of enumeration 
types and subranges are: 

(1) test of equality, for example: 

if  arrival = departure then go to transit desk; 
if  trumps = spade t h e n . . .  

(2) assignment, for example: 

pc: = yellow; 
trumps: = club; 

(3) case discrimination, for example: 

case pc of  (red: . . . .  , 

ye l low: . . . ,  
b l u e : . . . )  
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where pc is a variable or expression of type primary colour, and the limbs 
of the discrimination are indicated by lacunae. A case discrimination may be 
either a statement, in which case the limbs must be statements; or it may be 
an expression, in which case the limbs must be all expressions of the same 
type. 

The effect of a case discrimination is to select for execution (or evaluation) 
that single statement (or expression) which is prefixed by the constant equal 
to the current value of the case expression. In some cases, it may be convenient 
to prefix several constants to the same limb, or even to indicate a subrange of 
values which would select the corresponding limb; but of course each value 
must be mentioned exactly once" 

ease digit of (0. .  2: . . . . .  

3:7: . . . .  , 

4 . . 6 : 8 : 9 : . . . ) .  

In this last case, it would be convenient to replace the labels of the last limb 
by the basic word else, to cover all the remaining cases not mentioned 
explicitly on the preceding limbs. 

When the limbs of a discrimination are statements, we shall sometimes use 
braces instead of brackets to surround them. 

(4) In the case of a type declared as ordered, it is possible to test the 
ordering relationships among the values" 

if May ~< this month & this month ~< September then 
adopt summer timetables. 

In other cases, the ordering of the values is quite irrelevant, and has no 
meaning to the programmer. 

(5) In conjunction with ordering, it is useful to introduce a successor and a 
predecessor function (succ and pred) to map each value of the type onto the 
next higher or lower value, if there is one. Also, if T is any ordered type, the 
notation T.min will denote the lowest value of the type, and T.max the 
highest value. This helps in formulating programs, theorems, and axioms in a 
manner independent of the actual names of the constants. 

(6) In a computer program we will frequently wish to cause a variable to 
range sequentially all through the values of a type. This may be denoted by a 
form of for statement or loop 

for a: alpha d o . . .  ; 

for i : l . .  99 d o . . .  ; 

In this construction, the counting variable (a or i) is taken to belong to the 
type indicated, and to be declared locally to the construction, in the sense 
that its value does not exist before or after the loop, and its name is not 
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accessible outside the loop. In addition, the value of the counting variable 
is not allowed to be changed inside the body of the loop, since this would 
frustrate the whole intention of declaring the variable by means of the for 
construction. 

In the case of" an ordered type, it is natural to assume that the counting 
variable sequences through the values of the type in the defined order, 
T.min, succ(T.min) . . . .  , T.max. But if the type is an unordered one, it is 
assumed that the sequence of the scan does not matter at the current level of 
abstraction, and will be defined at some later stage in the development of a 
concrete program. 

(7) For subrange types, particularly integer subranges, it is sometimes 
required to perform operations which are defined for the original larger type. 
In principle, it is simple to accomplish this by first converting the subrange 
value to the corresponding value of the larger type, and then performing the 
operation, and finally converting back again if necessary. This requires a 
type transfer function; and for this purpose it is convenient to use the name 
of the destination/.ype, for example: 

xdistance: = integer(x) - integer(y); 

z : -  coordinate(integer(z) + xdistance); 

where xdistance is an integer variable. Of course, this is an excessively 
cumbersome notation, and one would certainly wish to adopt the convention 
of omitting the conversions, where the need for their re-insertion can be 
established from the context: 

xdistance: = x - y; 

z: = z + xdistance. 

Exercise 
Given m 'month  and y 'year ,  write a case discrimination expression giving 
the number of days in month m. 

3.2. REPRESENTATION 

The standard representation of an enumeration type T is to map the values 
in the stated order onto the computer integers in the range 0 to n - 1, where 
n is the cardinality of the type. Thus in this case the standard representation 
is also minimal. The standard representation of a subrange is to give each 
value the same representation that it had in the original type; thus transfer 
between the types involves no actual operation; though of course conversion 
from the base type to the subrange type should involve a check to ensure that 
the value is within the specified range. 

The minimal representation of a subrange value is obtained by subtracting 
from the standard form the integer representation of the least value of the 
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subrange. In this case, conversion to a subrange involves subtraction as well 
as a check, and conversion in the opposite direction involves an addition. 

Apart from these conversions, enumerations and subranges in either 
representation can be treated identically. Tests of ordering can be accom- 
plished by normal integer instructions of the computer, and succ and pred 
involve addition or subtraction of unity, followed by a test that the result is 
still within range. 

The case discrimination can be most efficiently carried out by a switch- 
jump. For example, in ALGOL 60 the first example quoted above (3.1.(3)) 
would be coded: 

begin switch ss: = red, yellow, blue; 

go to ss[pc + 1]; 

red:begin . . . .  ; go to end end; 

y e l l o w : b e g i n . . .  ; go to end end; 

blue:begin  . . . .  ; go to end end; 

end: end. 

This can be efficiently represented in machine code, using an indexed 
jump and a switch table, indicating the starting addresses of the portions of 
code corresponding to the limbs of the discrimination. 

The implementation of the for statement corresponds in an obwous way 
to the for statement of ALGOL 60, with a step length of unity. The con- 
ventions proposed above, which regard the counting variable as a local 
constant of the loop, not only contribute to clarity of documentation, but 
also assist in achieving efficiency on a computer, by taking advantage of 
registers, special count and test instructions, etc. 

3.3. EXAMPLE 

The character set of a computer peripheral is defined by enumeration: 

type character = ( . . . .  ); 

The set includes the subranges 

type digit = nought. ,  nine; 

type alphabet = A. .  Z; 

as well as individual symbols, point, equals, subten, colon, newline, space, 
as well as a number of other single-character operators and punctuation 
marks. 

There is a variable 

buffer: character 

which contains the most recently input character from the peripheral. A 

i= 
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new value can be input to buffer from the input tape by the procedure "read 
next character". 

In a certain representation of ALGOL 60, basic words are not singled out 
by underlining, and therefore look like identifiers. Consequently, if they are 
followed or preceded by an identifier or a number, they must be separated 
from it by one or more spaces or newline symbols. 

In the first pass of an ALGOL translator it is desired to read in the 
individual characters, and assemble them into meaningful symbols of the 
language; thus, an identifier, a basic symbol, a number, and the " : = "  
becomes sign, each count as a single symbol, as do all the other punctuation 
marks. Space and newline, having performed their function of separating 
symbols, must be ignored. We assume that each meaningful symbol will be 
scanned by a routine designed for the purpose, and that each such routine 
will leave in the buffer the first input character which is n o t  part of the 
symbol. 

As an example of the analysis of the symbols of a program, input of the 
text 

!: beta1" = beta x 12; 

should be analysed into the following symbols" 
! 

betal 

beta 
× 

12 

The general structure of the program is a case discrimination on the first 
character of the symbol, which determines to which class the symbol belongs. 

read first character; 

repeat case buffer of 

(alphabet'scan identifier, 

digit: point" subten" scan number, 

space" newline" read next character, 

colon" begin read next character; 

if buffer = equals then 

begin deal with "becomes"; read next character end 
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else deal with single character 

end 

else begin deal with single character; 

read next character 

end 

) 

until end of tape 

4. THE CARTESIAN PRODUCT 

Defined enumerations and subranges, like primitive data types, are in principle 
unstructured. Of course, any particular representation of these types will be 
structured, for example, as a collection of consecutive binary digits; but 
from the abstract point of view, this structuring is essentially irrelevant. No 
operators are provided for accessing the individual bits, or for building up a 
value from them. In fact, it is essential to the successful use of an abstraction 
that such a possibility should be ignored; since it is only thus that detailed 
decisions can be postponed, and data representations can be decided in the 
light of the characteristics of the computer, as well as the manner in which 
the data is to be manipulated. 

We now turn to deal with data types for which the structure is meaningful 
to the programmer, at least at some stage in the development of his program. 
The basis of our approach is that, as in the case of enumerations, the pro- 
grammer should be able by declaration to introduce new data types; but for 
structured data, the definition of a new type will refer to other primitive or 
previously defined types, namely the types of the components of the structure. 
Thus the declaration of a new type will be somewhat similar to the declara- 
tion of a new function in a language such as ALGOL and FORTRAN.  A 
function declaration defines the new function in terms of existing or pre- 
viously declared functions and operations. Just as a declared function can be 
invoked on many occasions from within statements of the program or other 
function declarations, so the new type can be "invoked" many times from 
within other declarations of the program; these may be either declarations 
of variables specified to range over the newly declared type, or they may be 
declarations of yet another new type. 

We will deal first with elementary data structures, Cartesian products and 
unions. These elementary structures are almost as simple and familiar to 
mathematicians and logicians as the natural numbers. Furthermore, from 
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the point of view of the computer programmer, the properties of elementary 
data structures are very favourable, provided that the constituent types are 
also elementary. 

(1) Firstly, each data item occupies a fixed finite, and usually modest 
amount of core store, which increases only linearly with the size of the 
definition. 

(2) The store required to hold each value can efficiently be allocated 
either permanently in main storage or on a run-time stack. There is no need 
for more sophisticated dynamic storage allocation systems. 

(3) The most useful manipulations of the data items can be performed 
with high efficiency on present-day computers by simple and compact 
sequences of machine-code instructions. 

(4) The structures do not require pointers (references, addresses) for their 
representation, and thus there is no problem with the transfer of such data 
between main and backing storage. 

(5) For any given structure, the choice of an appropriate representation 
usually presents no difficulty to the programmer. 

The first data structuring method which we shall discuss is the Cartesian 
product. A familiar example of a Cartesian product is the space of complex 
numbers, each of which is constructed as a pair of floating point numbers, 
one considered as its real part and the other as its imaginary part. The 
declaration of the complex type might take the form 

type complex = (realpart" real; imagpart" real); 

or more briefly: 

type complex = (realpart, imagpart: real). 

The names realpart and imagpart are introduced by this definition to provide 
a means of selecting the components of a complex number. For example, 
if n is of type complex defined above, n. realpart will denote its real part and 
n. imagpart its imaginary part. 

A constant denoting a value from a Cartesian product type may be defined 
in terms of a list of constants denoting the values of the components. As 
mentioned before, the name of the type is used as a transfer function to 
indicate the type of the resulting structure, and it takes a list of parameters 
rather than a single one. Thus the complex number 13 + i may be written 

complex (13, + 1). 

Another example of a Cartesian product is the declaration of a type whose 
values represent playing cards. Each card can be specified by giving first its 
suit (for example, heart) and then its rank, say Jack. Both items of information 
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are required uniquely to specify a given card. Thus the type cardface can be 
defined as the Cartesian product of the types suit and rank: 

type cardface = (s:suit; r:rank). 

Typical constants of this type are" 

cardface (club, two), cardface (heart, Jack). 

Another simple example of a Cartesian product, this time with three 
components, is the date. In the normal way, this can be specified by three 
values, the first selected from among the possible values of the type day of 
month, say the seventh; the second from among the possible values of the 
type month, say March; and the third from among the values of the type 
year, say 1908. This date can be written: 

date (7, March, 1908). 

It belongs to the type declared thus: 

type date = (day: day of month; m:month; y:year); 

The defining feature of the Cartesian product type is that it comprises 
every possible combination of values of its component types, even if some of 
them should never be encountered in practice. So date (31, Feb, 1931) is a 
normal value of type date, even though in the real world no such date exists. 
However date (28, Feb, 1899) is no t  a value of type date, since 1899 is not a 
value of type year, as defined above. Thus the definition of the type date does 
not correspond exactly to the real world situation, but the correspondence 
is close enough for most purposes; and it is the responsibility of the pro- 
grammer to ensure that the manipulation of the variables of this type will 
never cause them to take values which he would regard as meaningless. 

This example shows that the means provided for defining new types in 
terms of other types are simpler and less powerful than the general mathe- 
matical techniques for defining new sets in terms of other sets; for it certainly 
is possible to define a set which excludes all unwanted dates. In fact, when 
declaring a type or variable, it is good documentation practice to specify 
rigorously the properties which will be possessed by every meaningful value. 

The last example shows how the set of point positions on a two-dimensional 
raster can be declared as the Cartesian product of one-dimensional co- 
ordinates" 

type raster = (x, y: coordinate) 

This is the standard method by which two-dimensional spaces are con- 
structed out of a single-dimension by the method of Cartesian coordinates; 
for every point in two-dimensional space can be named as an ordered pair 
of simple one-dimensional numbers. This explains the use of the term 
"Cartesian product" to apply to the given method of defining types. If r is a 
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variable of type raster, r . x  and r . y  are commonly known as the projections 
of r onto the x and y axes respectively; however, we shall refer to the functions 
x and y as selectors rather than projections. 

The cardinality of a Cartesian product type is obtained by multiplying 
together the cardinalities of the constituent types. This is fairly obvious 
from the visualisation of a Cartesian product as a rectangle or box with 
sides equal in length to the cardinalities of the types which form the axes. 
thus  the cardinaiity of the card type is thirteen times four, i.e., fifty-two, which 
is, as you might expect, the number of cards in a standard pack. The number 
of dates is 26 040, which slightly overestimates the actual number of days in 
the interval, since as explained above, it includes a small number of invalid 
dates. 

4.1 MANIPULATION 

Apart from assignment and test of equality, which are common to all types, 
the main operations defined for a product type are just those of constructing 
a value in terms of component values, and of selecting the components. 
When constructing a value of a Cartesian product type, it is in principle 
necessary to quote the name of the type as a transfer function. However, 
it is often more convenient to follow the traditional mathematical practice, 
and leave the transfer function implicit in cases where no confusion would 
arise. This is in any case necessary when a type is not even given an explicit 
name. For example, one may write (heart, Jack) instead of cardface (heart, 
Jack). 

For selection of a component, a dot-notation has been used, e.g., 
n. imagpart. This is more convenient than the normal functional notation 
imagpart (n), since it avoids unnecessarily deep nesting of brackets. 

Another most important operation is the selective updating of the com- 
ponents of a variable. This may be denoted by placing the component name 
on the left of an assignment 

u. imagpart: = 0; 

r . x : =  a x r . x  + b x r . y .  

If a Cartesian product is declared as ordered, it is necessary that all the 
constituent types be ordered, and it is natural to define the ordering in a 
lexicographic manner, taking the earlier components as the more significant. 
Thus if suit and rank are ordered, the cardface type could be declared as 
ordered in the traditional ranking whereby all clubs precede all diamonds, 
and these are followed by all hearts and all spades; whereas within each suit, 
the cards are ordered in accordance with their rank. 
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In inspecting or processing a structured value, it is often required to make 
many references to its components within a single small region of code. 
In such a case it is convenient to use a with construction 

with s v  do S; 
where sv names the structured variable (or expression) and S is a program 
statement defining what is to be done with it. Within the statement S, the 
components of sv will be referred to simply by their selector names, s 1,- •., sn, 
instead of by the usual c o n s t r u c t i o n ' s v . s l ,  s v . s 2 , . . . s v . s n .  The reasons for 
using this construction are: 

(1) To clarify the purpose of the section of program. 

(2) To abbreviate its formulation. 

(3) To indicate the possibility of improved efficiency of implementation. 

Example" Given today" date, test whether it is a valid date or not. 

with today do case m of 

{Sept:April :June: Nov: 

if day > 30 then go to invalid, 

Feb:if  day > (if (y + 4) x 4 = y then 29 else 28) 

then go to invalid, 

else do nothing }. 

Exercise 

Write functions to represent the four standard arithmetic operations on 
complex numbers. 

4.2. REPRESENTATION 

The standard method of representing a value of Cartesian product type is 
simply by juxtaposing the values of its components in a consecutive region of 
store, usually in the order indicated. However, there is considerable variation 
in the amount of packing and padding which may be involved in the juxta- 
position. In the standard unpacked representation, each component value is 
made to occupy an integral number of words, where a word is the smallest 
conveniently addressable and efficiently accessible unit of storage on the 
computer. 

If the values can fit into less storage than one word, there is the option of 
packing more than one component into a word. In a tightpacked repre- 
sentation, the bitpatterns of the components are directly juxtaposed. In a 
loosely packed representation, the components may be fitted within certain 
subdivisions of a word, which are "natural" in the sense that special machine 
code instructions are available for selecting or updating particular parts of a 
word--for  example, character boundaries, or instruction fields of a word. 
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The sequence of the components may be rearranged to fit them conveniently 
within such boundaries; but such rearrangement is usually inadvisable if the 
type is ordered. 

If a packed representation stretches over several words, there is a possi- 
bility that a single component value may overlap word boundaries. The 
selection or updating of such a component on many machines would be 
much more time-consuming than normal; and it is therefore a common 
practice to leave some unused space (padding) at the end of words to prevent 
such overlaps. 

In order to construct a minimal representation of a structured value, it is 
necessary to use minimal representation of all the components. Then each 
component is multiplied by the product of the cardinalities of all the types of 
all subsequent components, and these results are summed to give a minimal 
representation in the Cartesian product type. For example, the representation 
of 7th, Mar, 1908 is 6x  12x70 + 2 x 7 0  + 8 = 5188. 

The choice between the various representations depends on the wider 
context within which the values are processed. If selection and selective updat- 
ing are frequent, it pays to use an unpacked representation, so that the normal 
selection mechanism of word-addressed hardware may be used directly in 
these operations. However if copying and comparison of the value as a 
whole is comparatively frequent, then it pays to use a packed representation, 
so that these operations can be carried out with fewer instructions and fewer 
stores accesses. A particular case of copying which should be taken into 
consideration is that which takes place between the main store of the com- 
puter and a backing store. If such transfers are frequent, considerable 
efficiency may be gained if the volume of material transferred is reduced by 
judicious packing. 

day 
m 

Y 

Standard Loose Packed Tight Packed 
(Character Boundaries) 

(a) 

day m y 
day m y 

i , l i 5 4 7 '  
6 6 12 bits 

(b) (c)  

FIG. 1 Representations of  date (7, March,  1908) 

bits 

A second occasion for using packed representations is when data storage 
is scarce, either in main store or on external backing stores. However, care 
must be taken that space saved on data s torage is not outweighed 
by the expansion of the code which results from having to unpack and 
repack the data whenever it is inspected or updated. 
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The minimal representation is not often used for data storage, since the 
small amount of extra space it saves (always less than one bit per component) 
is usually more than outweighed by the extra time taken by multiplying and 
dividing on every access to the components, as compared with the more 
usual shifting and masking. However, the technique can be useful, possibly 
in conjunction with more conventional packing, if there is no other way of 
fitting the value within convenient word boundaries. Also, if the value is to 
be used solely or primarily as an index to a multi-dimensional array, the 
minimal representation is to be preferred; since this will save a significant 
amount of space in the representation of the array (see Section 6.2). 

In representing the with construction in machine code, it is sometimes 
convenient to compute the address of the structure being referenced and 
store it in a register; this may achieve shorter and faster code for accessing 
the components. If the components have been packed, it may pay to unpack 
them into separate words before starting to process them, so that they can 
be easily referenced or updated; and if they have been updated, they must be 
packed up again and stored in the structure when the processing is complete. 
On some machines, it is more economic to pack and unpack a whole structure 
at the same time, rather than to perform these operations one at a time on 
the components. 

Exercise 
Given a variable 

today: date; 

write a program to assign the value of the next following date to the variable 
tomorrow:date. Translate this program into the machine code of your 
choice using a tightly packed representation. Rewrite the program using an 
unpacked and then a minimal representation. Compare the lengths of the 
code involved, and the time taken to execute them. 

5. THE DISCRIMINATED UNION 

In defining sets of objects, it is often useful to define one set as the union 
of two previously known sets. For example, when jokers~ are added to a 
standard pack of cards, the extended set may be described as the union of 
the standard set plus the set consisting of the "wild" cards, joker 1 and 
joker 2. A type whose values range over the members of this set may be 
declared as the union of two alternatives, the card type, and an enumeration 
type with two distinct values: 

type pokercard = (normal: (s: suit; r: rank), 

wild : (joker 1, joker 2)). 
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Each value of type pokercard corresponds either to an ordered pair with 
components indicating suit and rank; or else it corresponds to one of the 
two jokers in the enumeration type. 

In specifying a constant of a discriminated union type, it is necessary to 
indicate to which of the alternative types the value denoted is intended to 
belong. This is done by writing the name of the alternative explicitly, for 
example: 

pokercard (normal (heart, Jack)) 

denotes a value from the first alternative, whereas 

pokercard (wild (joker 2)) 

denotes a value from the second alternative. In general, it is convenient to 
omit the type name, where the type can be inferred from context. 

A second example of a discriminated union might be found in the main- 
tenance of a register of all cars in a country. Cars may be distinguished as 
local cars owned by residents of the country, and visitor cars brought into 
the country temporarily by non-residents. The information required is rather 
different in the two cases. In both cases the number and the make of the car 
is considered relevant. However, for a local car, the name of the owner of 
the car is required, and the date on which the car was first registered in that 
owner's name. For visitor cars, this information is not relevant:all that is 
required is the standard three-letter abbreviation of the name of the country 
of origin. Thus the definition of the two alternative types of car might be: 

type local car = (make: manufacturer; regnumber: carnumber; 

owner: person; first registration: date); 

type visitor car = (make" manufacturer; regnumber" carnumber; 

origin'country); 

Now it is possible to define a type covering both kinds of car: 

t y p e  c a r  = (local:localcar, 

foreign:foreign car). 

But here it is inconvenient to define the structure of tocal and foreign cars 
separately; and we would like to take advantage of the fact that several of 
their components are the same. This may be done by bringing the common 
components in front of both alternatives: 

type car -~ (make: manufacturer; 

regnumber: carnumber; 

(local: (owner:person; 

first registration: date), 

foreign: (origin: country)) 
). 
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Every car has a make and regnumber but only local cars have an owner or 
first registration date; and only foreign cars have an origin. 

A third example is the definition of geometric figures, which in some 
application might be categorised as either rectangles, triangles, or circles 

type figure = (position: point; rect: R, tri: T, circ: C). 

The method of specifying the figure varies in each case. For a rectangle, the 
angle of inclination of one of the sides is given, together with the two lengths 
of the sides" 

type R = (inclination:angle; side 1, side 2:real). 

A triangle is specified by the angle of inclination and length of one of its 
sides together with the angles formed between it and the other two sides" 

type T = (inclination" angle; side" real; anglel, angle2" angle). 

For a circle, all that is necessary is to specify the diameter as a real number. 

type C = (diameter: real). 

When a type is defined as the union of several other types, it is important 
to recognise that its values must be considered wholly distinct from those 
of any of the types in terms of which it is defined. Otherwise there would be 
an immediate violation of the rule that each value belongs to only one type. 
Thus the union of types must be clearly distinguished from the normal 
concept of set union. Furthermore, for each element of the union type, it is 
possible to determine from which of the constituent types it originated, even 
if the same type has been repeated several times. For example, a double pack 
of cards used for playing patience may be defined as the union of two packs, 
i.e., 

type patience card = (red: cardface, blue: cardface). 

Each value of type patience card is clearly marked as having originated either 
from the red pack or from the blue pack, even if perhaps in the real world 
the colours of the backs are the same. This fact explains the use of the term 
"discriminated union" to apply to this form of type definition. It folloWs that 
the cardinality of a discriminated union is always the sum of the cardinalities 
of its constituent types. 

5.1.  MANIPULATION 

Any value of a discriminated union carries with it a tag field indicating 
which of the particular constituent types it originated from; on assignment 
this is copied, and on a test of equality, the tag fields must be the same if the 
values are to be equal. 
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On constructing a value of a discriminated union type, it is necessary to 
name the alternative type from which the value originated: 

patience card (red (spade, Jack)). 

This will automatically cause the value "red" to be assigned to the tag field 
of the result. 

A particular car may be denoted by 

car (Ford, "RUR157D",  

local (me, date (1, Sept, 1968))). 

In order to access and operate on the information encoded as a dis- 
criminated union, it is necessary to convert it back to its original type. 
This may be accomplished by theconvention of using the label of this type 
as if it were a selector, e.g." 

cardl ,  wild 

carl .  foreign 

figl. tri 

is of type (joker 1, joker 2) 

is of type (origin' country) 

is of type T 

If the constituent type is a Cartesian product, its selectors may be validly 
applied to the resulting value, using the convention that the operator 
associates to the left. 

cardl ,  normal, r 

carl .  local, owner 

figl. circ. diameter 

If the programmer attempts to convert a discriminated union value 
back to a type from which it did n o t  originate, this is a serious programming 
error, which could lead to meaningless results. This error can be detected 
only by a runtime check, which tests the tag field whenever such a conversion 
is explicitly or implicitly invoked. Such a check is timeconsuming and when 
it fails, highly inconvenient. We therefore seek a notational technique which 
will guarantee that this error can never occur in a running program; and 
the guarantee is given by merely inspecting the text, without any knowledge 
of the runtime values being processed. Such a guarantee could be given by an 
automatic compiler, if available. 

The proposed notational technique is a mixture between the with con- 
struction for Cartesian products and the case construction for discrimination. 
Suppose that a value sv  of union type is to be processed in one of several 
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ways in accordance with which of the alternative types it came from. Then 
one may write 

with s v  do { a l " s l ,  

a2;$2~ 

a n " a  n } ;  

where S~ is the statement to be selected for execution whenever the value of 
the tag field of sv is a~. Within S~ it is guaranteed safe to assume that the 
value came from the corresponding alternative type, provided that the value 
of sv remains unchanged. Consequently it is safe to use the component 
selectors which are defined for that alternative type by themselves to refer 
to the components of sv, just as in the case of a simple with statement 
described previously for a Cartesian product. 

If it is desired to regard a union type as ordered, the most natural ordering 
is that defined by taking all values corresponding to earlier alternatives in 
the list before any of the values of the later alternatives. 

Exerc i se  
Write a function that will compute the area of a figure as defined above. 

5.2. REPRESENTATION 

In representing a value from a discriminated union it is necessary first to 
represent the tag as an integer between zero and n - 1, where n is the number 
of alternative types. The tag is followed directly by the representation of the 
value of the original type. As with the Cartesian product, there is a choice of 
the degree of packing used in a representation. 

In the unpacked representation the tag occupies a complete word, and the 
space occupied by each value of a union type is one word more than that 
occupied by values from the largest alternative type. In a packed representa- 
tion, this overhead can be reduced to a few bits. In the minimal representa- 
tion, each value is obtained by adding its minimal representation in the 
original type to the sum of the cardinalities of all preceding types in the 
union. Thus a value originating from the first type, for example (diamond, 
four), has exactly the same value as it has in the original type, namely 16. 
But joker 1, with value zero in the original enumeration type, has added to it 
the cardinality of the card type. 

The choice between unpacked, packed and tight packed representations 
is based on the same considerations as for Cartesian products; however the 
runtime speed penalty for the minimal representation is a great deal less, 
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since recovery of the original value requires only subtraction rather than 
division. 

In general the values of the different alternative types occupy different 
amounts of storage, so the shorter values have to be "padded out" to 
equalise the lengths, thus observing the convenient rule that elementary 
data types occupy a fixed amount of storage. In later chapters it will be seen 
that this padding can often be omitted when the value is a component of 
some larger structure. 

A local car A foreign car 

,Ford -~l make 
RUR157D Jregnumber 

of tag 
CARH J owner 
1 SePt 1968 I first registration 

iFiat I make 7 - 27-19 regnumber 
tag, 

I Italy origin 
! 

L . . . . . . . . .  j padding (sometimes omitted) 

FIG. 2. Representation of cars 

In present-day programming practice, it is quite common to omit the tag 
field in the representation of unions. In order to operate correctly on such a 
representation, the programmer needs to "know" from other considerations 
what the interpretation of the value ought to be, since it is not possible to 
find out from the value itself. If his belief is mistaken, this is not detectable 
either by a runtime or compile-time check. Since the effect of such an error 
will depend on details of bitpattern representation, it will give rise to results 
unpredictable in terms of the abstractions with which the programmer is 
working. It would therefore in general seem advisable to use tag fields and 
compile-time checkable case discriminations as standard programming 
practice, to be bypassed only in exceptional circumstances. 

5.3. EXAMPLE 

We return to the context of the example in section 3.3, the analysis of 
language text into meaningful symbols. We wish to give a rigorous abstract 
definition of what these symbols are. 

type symbol = 

(realconst: real, 

integerconst: integer, 

identifier: ident, 

basic'delimiter); 

where we will leave the type ident undefined for the time being, and assume 
that the delimiters are defined by enumeration. 
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6. TIlE ARRAY 

The array is for many programmers the most familiar data structure, and in 
some programming languages it is the only s t ruc tu re  explicitly available. 
From the abstract point of view, an array may be regarded as a mapping 
between a domain of one type (the subscript range) and a range of some 
possibly different type (the type of the array, or more accurately, the type of 
its elements). 

The type of a mapping is normally specified by a mathematician using an 
arrow: 

M: D ~ R; 

where D is the domain type and R is the range type. An alternative notation 
which will be more familiar to programmers is" 

M:array D of R. 

This notation is more expressive of the manner in which the data is repre- 
sented, whereas the mathematical notation emphasises the abstract character 
of the structure, independent of its representation. 

When a particular value M of a mapping type is applied to a value x of the 
domain type, it specifies some unique element of the range type, which is 
known as M of x, and is written using either round or square brackets 

M(x) or Mix]. 
Another name for a mapping is a function" the term "mapping" is used to 
differentiate the data structure from a piece of program which actually 
computes a value in its range from an argument in its domain. The essence of 
the difference is that a mapping M is specified not by giving a computation 
method but by explicitly listing the value of M(x) for each possible value x 
in its domain. Thus an array can be used only for functions defined at a 
finite set of points, whereas the domain of a computed function may be 
infinite. 

An example of a finite mapping is a monthtable, which specifies for each 
month of the year the number of days it has: 

type monthtable = array month of 28 . .  31. 

The domain is the month type and the range type consists of the integers 
between 28 and 31 inclusive. A typical value of this tyiae may be simply 
specified by listing the values of M(x) as x ranges over its domain. Thus 
if M: monthtable is specified as 

monthtable (Jan: 31, Feb: 28, March: 31, April: 30, 

May: 31, June: 30, July: 31, Aug: 31, 

Sept: 30, Oct: 31, Nov: 30, Dec: 31) 

then M[Jan] = 31, M[Feb] = 28, and so on. 
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The array provides a method of representing a particular arrangement of 
cards in a pack, since each arrangement may be regarded as a mapping which 
indicates for each of the fifty-two possible positions in a pack the value of the 
card which occupies that position. Thus each possible arrangement may be 
regarded as a value of the mapping type: 

type cardpack = array 1.. 52 of cardface. 

Of course, not all values of this type represent actual cardpacks, since there is 
nothing to prevent some value of the type from mapping two different 
positions onto the same card; which in real life is impossible. 

Arrays with elements that are of Cartesian product type are sometimes 
known as tables. 

A third example of an array is that which represents all possible con- 
figurations of character punching on a conventional punched card. This 
may be regarded as a mapping M which maps each column number into a 
character, namely the character punched in that column. 

type punchcard = array 1.. 80 of character. 

Any possible text punched into a card may be regarded as a single value of 
type punchcard. 

A fourth example shows an array which represents a possible value of a 
page on a cathode ray tube display device. There are assumed to be 40 rows 
and 27 character positions in each row. The effect of two dimensions can be 
achieved by specifying the domain of the mapping as a Cartesian product of 
the possible rows and the possible character positions within each row. This 
is written as follows" 

type spot = ( row: l . .  40; column : l . .  27); 

type display page = array spot of character. 

An alternative method of dealing with a multidimensional array is to 
regard it as an array of rows, where each row is an array of characters" 

type display page = array I . . 4 0  of row; 

type row = array 1. .27 of character. 

This is a more suitable abstract structure if the rows are to be processed 
separately and the columns are not. 

The cardinality of an array type is computed by raising the cardinality 
of the range type to the power of the cardinality of the domain type, i.e. 

cardinality (D -~ R) = cardinality (R) cardinality (D) 

This may be proved by considering the number of decisions which have to 
be made to specify completely a value of an array type. For each value of 
the domain we have to choose between cardinality (R) possible values of the 
range type. We have to make such a choice independently for each element 
of the array, that is cardinality (D) times. 
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6.1.  MANIPULATION 

A mapping which maps all values of its domain onto the same value of its 
range is known as a constant mapping. A natural constructor for arrays is 
one which takes as argument an arbitrary range value, and yields as result 
the constant array, aU of whose elements are equal to the given range value. 
It is convenient to use the type name itself to denote this constructor, e.g. 

M = monthtable (31) 

is an array such that M[m] = 31 for all months m. 

cardpack (cardface (heart, King)) 

is obviously a conjuror's pack. 
The basic constructive operation on an array is that which defines a new 

value for one particular element of an array. If x is a value of an array type T, 
d a value from its domain type, and r a value from its range type, then we 
write: 

T(x, d: r) 

to denote a value of type T which is identical to x in all respects, except 
that it maps the value d into r. The T may be omitted if its existence can be 
inferred from context. Similarly, the constant array T(x) may be denoted by 
all (x). 

The basic selection operator on arrays is that of subscripting. This is 
effectively a binary operation on an array and a value from its domain type; 
and it yields the corresponding value of its range type. 

The most common and efficient way of changing the value of an array is 
by selective updating of one of its components, which is accomplished by 
the usual notation of placing a subscripted array variable on the left of an 
assignment: 

a[d]: = r. 

This means the same as 

a: = T(a, d:r). 

Note that from an abstract point of view a new value is assigned to the whole 
array. 

Normally an array type would be regarded as unordered; but in some 
cases, particularly character arrays, it is desirable to define an ordering 
corresponding to the normal lexicographic ordering; this is possibte only 
when domain and range types are ordered. In this case the ordering of two 
arrays is determined by that of the lowest subscripted elements in which the 
two arrays differ. Thus 

"BACK"  < " B A N K "  

because the third letter is the first one in which they differ, and 
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"C" < "N" 

A convenient method of specifying an array value is by means of a for 
expression, which is modelled on the for statement: 

for i:D take E 

where E is an expression yielding a value of the range type, and containing 
the variable i. As i scans through the domain type D, evaluation of the 
expression E yields the value of the corresponding element of the array. 

If certain operations are defined on the range type of an array, it is natural 
to extend these operations to apply to the array type as well. For example, 
if A and B are real arrays with the same domain, it is natural to write 

A + B , A - B ,  

to denote arrays (with the same domain) whose elements are the sum and 
difference of the values of the corresponding elements of A and B. But the 
programmer must retain his awareness that these can be expensive operations 
if the arrays are large, and he should seek ways of eliminating the operations 
in progressing from an abstract to a more concrete program. 

6.2. REPRESENTATION 

The representation of arrays in a computer store is familiar to most pro- 
grammers. The most usual representation is the unpacked representation, 
which allocates one or more whole words to each element of the array. In 
this case, the computer address of each element is simply computed" first, 
the value of the subscript is converted to a minimal representation; then this 
is multiplied by the number of words occupied by each element; and finally 
the result is added to the address of the first element of the array. The normal 
word-selection mechanism of the computer can be used to access and update 
this value independently of the other elements of the array. 

An alternative representation involves packing of elements within word 
boundaries, so that each element occupies only a certain fixed number of 
bits within a word, although the array as a whole may stretch over several 
words. In the example of a monthtable, each element can take only four 
values, 28 to 31; therefore it can be accommodated in only two bits in the 
minimal representation; the whole array can therefore be accommodated in 
twenty-four consecutive bits. 

When an array is packed in this way, the task of selecting the value of a 
subscripted variable is far more complicated. In order to select the right 
word, the subscript (in minimal form) must be divided by the number of 
elements in each word. The quotient is added to the address of the first word 
of the array, which is then accessed. The remainder is multiplied by the 
number of bits in each element, and the result is used as a shift-count, to 
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shift the required value into a standard position within the word. The 
unwanted values of neighbouring elements of the array can then be masked 
off. The method of selectively updating an element of a packed array is 
even more laborious, since the new value must be inserted at the right position 
within the word, without disturbing the values of the neighbouring elements. 
The efficiency of both operations may be slightly increased if the number of 
elements per word is an exact power of two, since then the integer division 
of the subscript may be replaced by a shift to find the quotient, and a mask 
to find the remainder. On some machines, further efficiency may be gained 
if each element is stored in a single character position. 

The minimal representation for an array is similar to that for a Cartesian 
product, except that the multiplier of each element value is equal to the 
cardinality of range type, raised to the power of the subscript value. The 
process of selecting or updating a value of an element of an array stored in 
minimal representation is even more laborious than that described above, 
unless the cardinality of the range type is an exact power of two. It would 
be prohibitive if the array were to stretch over more than one normal com- 
puter word. For this reason, the minimal representation for arrays is of 
mainly academic interest. 

Standard Loose Packed Tight Pecked 

'r ~ I~I~! A [o] A~ !A[o] AB] A[2] ] 
A [ ~ ] i A[2] A[32 
A [ 2 ] . iA[4] A[5] ~I IA[6]IA[711 ) 
A [3] iAE6] A[7] A[~] 

. . . . .  

A E4] ~, 
A [5] padding 

A [6] 
A [7] 

(a) (b) (c) 
FIG. 3. Representation of A" array 0 . .  7 of T 

When the domain of a finite mapping is itself a data structure, for example, 
a Cartesian product, it is usual to represent this domain in the minimal 
representation, so as to avoid allocation of unused storage space. For 
example, the display page has a domain which is the Cartesian product of 
the integer ranges I to 40 and 1 to 27. In the minimal representation, this 
gives a range of integers between 0 and 40x 27 - 1  = 1079. Consequently 
1080 consecutive words are allocated to hold values of elements of the array. 
In order to access any element in a given row and character position, it is 
necessary first to construct a minimal representation for the subscript, in 
the manner described in Section 4.2. 

i 
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An alternative method of representation of multidimensional arrays is 
sometimes known as a codeword or descriptor method, but we shall give it 
the title of "tree representation". The essence of the method is to allocate a 
single-dimensional base array with one element corresponding to each row 
of the array, and to place in it the address of a block of consecutive storage 
locations which holds the values of that row. These rows do not have to be 
contiguous. Now the process of accessing or updating each element does 
not have to be done by computing a minimal representation of the subscript. 
All that is necessary is to add the row-number to the address of the first 
element of the base of the tree, and thus access the address of the first element 
of the required row, to which the value of the next subscript is added to give 
the address of the required element. 

Standard 
A [0,o] 
A [0, I] 
A [0,2] 
A [1,o] 
A[1,1] 
A [1,2] 

row 2 

A [3,O] 
A[3,1] 
A [3,2] 

Tree 

AE3,o] 
A[3,:] 
A [~,Z] 

A[0,O] 
A[0,1] 
A[0,2] 

A[I,0] 
A l l , l ]  
AIZ1,2] 

i t  row2 

(a) (b) 
FIG. 4. Representation of two-dimensional arrays 

The choice between unpacked and packed representations of arrays is 
made on grounds similar to the choice in the case of a Cartesian product. 
The unpacked representation is used when fast access and updating is 
required; it is also the obviously appropriate choice when the range type 
naturally fits within computer word boundaries, for example if the elements 
are floating point numbers. The packed representation is recommended if 
the size of the elements is considerably shorter than a single word, and if 
storage is short, or if copying and comparison of the arrays is frequent 
compared with subscripting and selective updating. A particularly common 
case of packed arrays is the representation of identifiers in a programming 
language, where it is acceptable in the interests of efficiency to truncate 
identifiers which are too long to fit into the standard array, and pad out 
those that are too short with blanks. 
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The choice between representations of multidimensional arrays is made 
on quite different grounds. The standard representation is more economical 
of storage, and gives good efficiency on sequencing through elements of the 
array by rows, columns, or both. Furthermore, it is more convenient when 
the arrays must be transferred as a whole between main and backing store. 
However, on a machine with slow multiplication, it will be faster to use the 
tree representation, and accept the extra storage required to hold the array 
of addresses, which is small provided that the rows are not too short. If 
each row contains only two words, there would be a fifty per cent overhead 
on data storage. 

There are several other possible reasons for choosing the tree represen- 
tation: 

(1) In some computing environments, where dynamic storage allocation 
is standard, it may be difficult to obtain large consecutive areas, in which 
case a large two-dimensional array can be split up into a number of smaller 
rows which can be accommodated without trouble. 

(2) It is possible to set up a scheme whereby some rows of the array are 
held on backing store while other rows are being processed, and then the 
backing store address of a row replaces the main store address in the base 
array when that row is absent from store. Thus it is hoped to be able to process 
arrays which are too large to be wholly accommodated in main store together 
with the program that processes them. However, the economics of this 
operation need to be carefully examined to ensure that the number of 
backing store transfers involved is acceptable. 

(3) In some applications, it is known that several matrices share the same 
rows. In the tree representation it is possible to set up a single copy of such a 
shared row, and merely take copies of its address rather than its full value. 
But in such a case, the shared row must not be selectively updated. 

(4) The tree representation is recommended even in the case of single- 
dimensional arrays if the size of the individual elements is highly variable; 
and on multidimensional arrays, if the length of the rows is highly variable. 

Exercise 
The character set of an input device includes only thirty characters, defined 
by enumeration; they include the characters space, newline, newpage. 
Characters may be read in one at a time from an input device to a buffer, 
using a procedure call 

read next character. 

They should be assembled line by line into an array 

page'display page, 
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and on receipt of a newpage character, this should be output to a display 
device by the instruction 

outpage. 

The display device does not recognise the characters newline or newpage; 
consequently the ends of Iines and pages have to be filled up with spaces. 

Write a program in a suitable language to perform this operation, using a 
selection of representations for the display page, e.g. 

unpacked 

loosely packed 

tightly packed 

indirect. 

Rewrite the program, using different representations. Compare the lengths 
and speeds of the code and data involved in the different representations. 

Write the corresponding programs to read a page from the display, and 
output the individual characters, taking care to eliminate redundant spaces 
at the ends of each line and blank lines at the end of each page wherever 
possible. 

7. THE POWERSET 

The powerset of a given set is defined as the set of all subsets of that set; 
and a powerset type is a type whose values are sets of values selected from 
some other type known as the base of the powerset. For example, the primary 
colours have been defined by enumeration as red, yellow and blue. The 
other main colours are made up as a mixture of two or three of these colours: 
orange is a mixture of red and yellow; brown is a mixture of all three primary 
colours. Thus each main colour (including the primary colours) can be 
specified as that subset of the primary colours out of which it can be mixed. 
For example, orange may be regarded as the set with just two members, 
red and yellow. Using the traditional notation for sets defined by enumeration, 
this may be written: {red, yellow}. The pure colour red may be regarded as 
the set whose only member is the primary colour red, i.e. {red }. In this way it 
is possible to represent the seven main colours, red, orange, yellow, green, 
blue, purple and brown. When no primary colour is present (i.e. the null or 
empty set) this may be regarded as denoting the absence of colour, i.e. 
perhaps white. The type whose values range over the colours may be declared 
as the power set of the type primary colour: 

type colour = powerset primary colour. 

A second example is provided by considering a data structure required to 
represent the status of the request buttons in a lift. A simple variable of type 
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floor (see Section 3) is capable of indicating one particular stop of a lift. 
But if we wish to record the status of the whole panel of buttons inside a 
lift, it would be necessary to represent this as a subset of all possible floors 
in the building, namely, the subset consisting of those floors for which a 
request button has been depressed. Thus the type liftcall may be defined 
as the powerset of the floor type: 

type liftcall = powerset floor. 

A third example is provided by a hand of cards in some card game, for 
example, poker or bridge. A hand is a subset of playing cards, without 
repetitions, and is therefore conveniently represented by a value from the 
powerset type: 

type hand = powerset cardface; 

This type covers all hands of up to fifty-two cards, even though for a 
particular game there may be standard size of a hand, or a limit less than 
fifty-two. 

A final example expresses the status of a computer peripheral device, for 
example, a paper tape reader. There are a number of exception conditions 
which can arise on attempted input of a character: 

(1) Device switched to "manual"  by operator. 

(2) No tape loaded. 

(3) Parity error on last character read. 

(4) Skew detected on last character read. 

These conditions can be defined as an enumeration 

type exception = (manual, unloaded, parity, skew); 

and since several of these conditions can be detected simultaneously, the 
status of the reader can be specified as a value of a powerset type: 

type statusword = powerset exception. 

The cardinality of the powerset type is two raised to the power of the 
cardinality of the base type, i.e. 

cardinality (powerset D) = 2 cardinality (D) 

This may be proved by considering the number of decisions which have 
to be made to specify completely a value of the type. For each value of the 
base type there are two alternatives, either it is in the set or it is not. This 
decision may be made independently cardinality (D) times. 

7.1. MANIPULATION 

The basic construction operation on sets is the one that takes a number of 
values from the domain type, and converts them into a set containing just 

i 
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those values as members. As in the case of the Cartesian Product, the type 
name is used as the transfer function, but for sets, the number of arguments 
is variable from zero upwards. For example" 

primary colour (red, yellow) i.e. orange 

liftcall (ground) i.e. only a single button has been 
pressed 

statusword ( ) i.e. no exception condition. 

The last two examples illustrate the concept of a unit set (which must be 
clearly distinguished from its only member) and the null or empty set, which 
contains no member at all. If the type name is omitted in this construction, 
curly brackets should be used instead of round ones in the normal way. 

The converse of the null set is the universal set, which contains all values 
from the base type. This may be denoted 

T. all. 

However, this universal set exists as a storable data value only when the base 
type is finite. 

The basic operations on sets are very familiar to mathematicians and 
logicians. 

(1) Test of membership: If x is in the set s, the Boolean expression "x  in s" 
yields the value true, otherwise the value false. 

(2) Equality: two sets are equal if and only if they have the same members. 

(3) Intersection" sl ^ s2 contains just those values which are in both sl 
and s2. 

(4) Unions" sl v s2 contain just those values which are either in sl or s2, 
or both. 

(5) Relative complement" s 1 - s2 contains just those members of sl which 
are not in s2. 

(6) Test of inclusion: s l c s2 yields the value true whenever all members 
of s l are also members of s2, and false otherwise. 

(7) The size of a set tells how many members it has. 

If the domain type of a set has certain operators defined upon it, it is often 
useful to construct corresponding operations on sets. In particular, if the 
domain type of a set is ordered, the following operators apply: 

(8) rain (s) the smallest member of s; undefined if s is empty. 

(9) x down n is a set containing just those values whose nth successors are 
in s. 

(10) x up n is a set containing just those values whose nth predecessors 
are in s. 
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(11) Range (a, b) is the set containing a, succ(a) , . . . ,  b if a ~< b, and which 
is empty otherwise. 

The most useful selective updating operations on sets are: 

x ' v  y; join the set y to x 

x : v  T(a) add the member a to x 

x: ^ y; exclude from x all members which are not also members 
o f y  

x : -  y exclude from x all members which are also members 
o f y  

x: down n subtract n from every member ofx  and exclude members 
for which this is not possible 

x:up n add n to every member of x, and exclude members for 
which this is not possible 

It is also sometimes useful to select some member from x and simultaneously 
remove it from x. This operation can be expressed by the notation" 

a from x.  

If the domain type of x is ordered, it is natural that the selected member 
should be the minimum member of x; otherwise the selection should be 
regarded as arbitrary. 

It is often useful to define the value of a set by giving some condition B 
which is satisfied by just those values of the domain type which are intended 
to be members of the set. This may be denoted: 

{i:OrB} 
where i is a variable of type D regarded as local to B, 

and B is a Boolean expression usually containing and depending on i. 

In order for this expression to denote a value of the powerset type it is 
essential that the cardinality of D be finite, and that B is defined over all 
values of the type. 

Finally, it is frequently required to perform some operation on each 
member of some set, that is to execute a loop with a counting variable which 
takes on successively all values in the set. A suitable notation for expressing 
this is: 

for x in s d o . . .  

If the base type of s is an ordered type, it seems reasonable to postulate that 
the elements will be taken in the natural order, starting with the lowest. 
For an unordered base type, the programmer does not care in which order 
the members are taken, and he leaves open the option to choose an order 
that contributes best to efficiency. 
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7.2 REPRESENTATION 

In choosing a computer representation for powersets, it is desirable to 
ensure that all the basic operations can be executed simply by single machine 
code instructions; and further, that the amount of store occupied is 
minimised. For most data structure storage methods, there is a fundamental 
conflict between these two objectives, and consequently a choice between 
representation methods must be made by the programmer; but in the case 
of" powersets the two objectives can be fully reconciled, provided that the 
base type is not too large. 

The recommended method of representation is to allocate as many bits 
in the store as there are potential members in the set. Thus to each value 
of the base type there is a single bit which takes the value one if it is in fact a 
member, or zero if it is not. For example, each value of type colour can be 
represented in three bits; the most significant corresponding to the primary 
colour red, and the least significant corresponding to blue. Thus the orange 
colour is represented as 110 and red as 100. Each set of size n is represented 
as a bitpattern with exactly n ones in the appropriate positions. The null set 
is accordingly represented as an all-zero bitpattern. 

Another example is afforded by the "hand" type, which requires fifty-two 
bits for its representation, one corresponding to each value of type cardface. 
In this case, it is advisable to use the minimal representation of the base 
type, to avoid unused gaps in the bitpattern representation. 

Since the number of values of a powerset type is always an exact power of 
two, for powersets of small base there can be no more economical method 
of utilising storage on a binary computer than that of the bitpattern repre- 
sentation. It remains to show that the operations defined over the powerset 
type can be executed with high efficiency. 

(1) The unitset of x may be obtained by loading a single 1 into the signbit 
position, and shifting it right x places. On computers on which shifting is 
slow, the same effect may be obtained by table lookup. The construction of a 
set out of components may be achieved by taking the logical union of all the 
corresponding unit sets. 

(2) A membership test x in s may be made by shifting s up x places and 
looking at the most significant bit: 1 stands for true and 0 for false. 

(3) Logical intersection, union, and complementation are often available 
as single instructions on binary computers. 

(4) The size of a set can sometimes be discovered by a builtin machine 
code instruction for counting the bits in a word. Otherwise the size can be 
determined by repeated standardisation, masking off the next-to-sign bit on 
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each occasion. A third method is to split the bitpattern into small parts, and 
use table lookup on each part, adding together the results. 

(5) The up and down operations can obviously be accomplished by right 
or left shifts. 

(6) The min of a set can be efficiently discovered by a standardise instruc- 
tion, which automatically counts the number of shifts required to move the 
first one-bit into the position next to the sign. 

(7) The for statement may also be emciently constructed using standardi- 
sation, masking off each one-bit as it is reached. 

(8) The range operation can be accomplished by two shifts, the first of 
which regenerates the sign bit. 

Thus when the cardinality of the domain type is not greater than the 
number of bits in the largest computer word to which logical and shift 
operations can be applied, all these operations can be carried out with great 
efficiency. If significantly more than one such word is involved, it will usually 
pay to use selective updating operations rather than the normal result- 
producing operators. Furthermore, operations such as size and min can 
become rather inefficient, and it will often pay to store these values re- 
dundantly together with the set, and keep them up to date whenever the value 
of the set is updated, rather than recomputing them whenever they are 
required. 

When it is known that the cardinality of the base type is very large (perhaps 
even infinite) compared with the size of the typical set, the bitpattern repre- 
sentation altogether loses its attraction, since it no longer pays to store and 
operate upon large areas of zeroes. The treatment of such sparse sets is 
postponed to Section 10. 

7.3. EXAMPLE 

Problem: Write a program to construct a set 

primes:powerset 2. .  N; 

containing all prime numbers in its base type. 
Use the method of Eratosthenes' sieve to avoid all multiplications and 
divisions. 

The method of Eratosthenes is first to put all numbers in the "sieve" and 
repeat the following until the sieve is empty: 
Select and remove the smallest number remaining in the sieve (necessarily a 
prime), and then step through the sieve, removing all multiples of that 
number. 
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The program can be written easily 

begin n, n e x t : 2 . . N ;  sieve:powerset 2 . . N ;  

sieve: = range (2, N); 

primes: = { }; 

while sieve ~ empty do 

begin next: = min (sieve); 

primes: v (next }; 

for n ' =  next step next until N do 

sieve" - {n} 

end 

end primefinder. 

But if N is significantly large, say of the order of 10 000, this program 
cannot be directly executed with any acceptable degree of efficiency. The 
solution is to use this program as an abstract model of the algorithm, and 
rewrite it in a more efficient fashion, using only operations on sets not 
exceeding the word-length of the computer. We therefore need to declare 
an array of words to represent the two sets, assuming that "wordlength" 
is an environment enquiry giving the number of bits in a word" 

primes, sieve:array O.. W of powerset O.. wordlength - 1 

where W = (N + 1) + wordlength + 1. 

This means that the two sets may be slightly larger than N, but for con- 
venience we shall accept that harmless extension. 

In order to access an individual bit of these sets, it is necessary to know 
both the wordnumber and the bitnumber. Since we do not wish to use 
division to find these, we will represent the counting variables n and next as 
Cartesian products 

n, next: (w, b :integer); 

where w indicates the wordnumber and b indicates the bitnumber. 

It is now as well to check the efficiency of this representation by recoding 
the innermost loop first. 

for n: = next step next until N flo s i e v e : -  {n }; 

is recoded as" 

n: = next; 

while n. w ~< W do 

begin sieve [n. w]: - {n. b }; 

n . b :  = n . b  + next.b;  
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n . w :  = n . w  + next .w;  

if n. b >i wordlength then begin n. w: -- n. w + 1 ; 

n. b: = n. b - wordlength 

end 

end 

Since this appears acceptably efficient we will code the other operations of 
the outer loop, starting with the most  dimcult" 

next" = rain (sieve); 

Here we do not wish to start our search for the minimum at the beginning 
of the sieve set each time, since towards the end of the process this would 
involve scanning many empty words. We therefore take advantage of the 
fact that  the new value of next must be larger than the old value. 

The search consists of two parts, first finding a nonempty word, and then 
its first bit. But if the search for a word reaches the end of the array, the 
whole program is completed 

while sieve [next. w] = { } do {next. w: = next. w + 1 ; 

if next. w > W then exit primefinder }; 

next. b: = min (sieve [next. w]); 

The remaining operations are trivial  Since the outer loop is terminated 
by a n  exit, there is no need to test a separate while condition; and the 
statement 

primes" v {next }; 

can be coded as 

primes [next. w]: v {next. b }. 

The whole program including initialisation is as follows" 

primes, sieve:array 0 . .  W of powerset 0 . .  wordlength - 1 ; 

begin primefinder; 

n, next:(w, b:integer);  

for t :O. .  W do begin primes [t]: = ( }; 

sieve [t]: = range (0 . .  wordlength - 1 

end; 

sieve [0]: - (0, 1 }; 

next. w: = O; 

while true do 

begin while sieve [next. w] = ( ) do 
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end 

end primefinder 

begin next. w" -- next. w + 1 ; 

if next. w > W then exit primefinder 

end; 

next. b: = min (sieve [next. w]); 

primes [next. w]: v {next. b ); 
, n" = next, 

while n. w ~< W do 

begin sieve [n. w]: - {n. b ); 

n . b :  = n . b  + next.b; 

n . w :  = n . w  + next.w; 

if n.b >~ wordlength then 

beginn.w'=  n .w + l ;  

n. b: = n. b - wordlength 

end 

end 

One feature of this program is that it uses an environment enquiry word- 
length to achieve the full efficiency of which a machine is capable, and yet 
does so in a completely machine-independent fashion. The program will not 
only work, but work with high efficiency, on machines with widely varying 
word lengths. 

But the most interesting feature about the program is the way in which 
it is related to the previous version. From an abstract point of view it 
expresses an identical algorithm; all that has changed is the manner in which 
the data has been represented on the computer. The original design acted as 
a framework or pattern, on which the more intricate coding of the second 
version was structured. By carrying out the design in two stages, we simplify 
the task of ensuring that each part of the f inalprogram works successfully 
in conjunction with the other parts. 

E x e r c i s e  

Rewrite the program using sets representing only the odd numbers. (Hint: 
rewrite the more abstract program first.) 

8. THE SEQUENCE 

The previous chapters have dealt with the topic of elementary data structures, 
which are of great importance in practical programming, and present very 
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little problem for representation and manipulation on modern digital com- 
puters. Furthermore, they provide the essential basis on which all other more 
advanced structures are built. 

The most important distinction between elementary structured types and 
types of advanced structure is that in the former case the cardinality of the 
type is strictly finite, provided that the cardinality of the constituent types is. 
The distinction between a finite and an infinite set is one of profound mathe- 
matical significance, and it has many consequences relating to methods of 
representation and manipulation. 

(1) Since the number of potential values of the type may be infinite, the 
amount of storage allocated to hold a value of an advanced structure is not 
determinable from the declaration itself. It is normally only determined 
when the program is actually running, and in many cases, varies during the 
execution of the program. In the case of an elementary structure, the number 
of different potential values is finite, and the maximum amount of storage 
required to hold any value is fixed and determinable from the form of the 
declaration. 

(2) When the size of a structured value is fairly large, it is more efficient 
to update individual components of the structure separately, rather than to 
assign a fresh value to the entire structure. Even for elementary types, it 
has been found sometimes more efficient to perform selective updating, 
particularly for unpacked representations of Cartesian products and for 
arrays. The increased efficiency of selective updating is usually even more 
pronounced in the case of advanced data structures. 

(3) Advanced data structures, whose size varies dynamically, require some 
scheme of dynamic storage allocation and relinquishment. The units of 
storage which are required are usually linked together by pointers, sometimes 
known as references or addresses; and their release is accomplished either by 
explicitly programmed operations, or by some form of general garbage 
collection. The use of dynamic storage allocation and pointers leads to a 
significant complexity of processing, and the problems can be particularly 
severe when the data has to be transferred between the main and backing 
store of a computer. No problems of this kind need arise in the case of 
elementary data structures. 

(4) The choice of a suitable representation for an advanced data structure 
is often far more difficult than for an elementary structure; the efficiency of 
the various primitive operations depends critically on the choice of repre- 
sentation, and therefore a sensible choice of representation requires a 
knowledge of the relative frequency with which these operations will be 
invoked. This knowledge is especially important when a part or all of the 
structure is held on a backing store; and in this case, the choice of repre- 

i 
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sentation should take into account the characteristics of the hardware device; 
that is, arrangement of tracks and cylinders on a rotating medium, and times 
of head movement and rotational delay. In the case of elementary structures, 
the primitive operations are of roughly comparable efficiency for most 
representations. 

Thus the differences between advanced and elementary structures are quite 
pronounced, and the problems involved are significantly greater in the 
advanced case. This suggests that the practical programmer would be well 
advised to confine himself to the use of elementary structures wherever 
possible, and to resort to the use of advanced structures only when the 
nature of his application forces him to do so. 

The first and most familiar example of an advanced data structure is the 
sequence. This is regarded as nothing but a sequence of an arbitrary number 
of items of some given type. The use of the term "sequence" is intended to 
cover sequences on magnetic tapes, disc, or drum, or in the main store. 
Sequences in the main store have sometimes been known as streams, lists, 
strings, stacks, deques, queues, or even sets. The term file (or sequential 
file) is often used for sequences held on backing store. The concept of a 
sequence is an abstraction, and all these structures may be regarded as its 
various representations. 

Our first example of a sequence is the string, familiar to programmers in 
ALGOL and SNOBOL. Since a string is constructed as a sequence of 
characters of arbitrary length, it may be defined: 

type string = sequence character. 

The next example is drawn from a data processing application; the 
maintenance of a file of data on cars. Each item of the file (sometimes known 
as a record) represents a single car, and is therefore of type car; an example 
of a possible definition of the car type has been given previously" 

type car file = sequence car. 

The third example gives an alternative method of dealing with a pack of 
cards. This may be regarded as just a sequence of cards, of length which 
perhaps varies as the cards are dealt: 

type deck = sequence card; 

Of course, not all card-sequences represent actual decks of cards in real life; 
for example, sequences which contain the same card twice are invalid, and 
should be avoided by the programmer. Thus the maximum length of a valid 
deck is 52, although this fact is not expressed in the declaration. 

The next example is drawn from the processing of a particular class of 
symbolic expression, namely the polynomial. A polynomial 

anXn q_ an_ 1xn-1 . . . .  a l x  + ao 
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can be represented as the sequence of its coefficients ai. If the degree n of the 
polynomial is unpredictable or variable during the course of a calculation, 
a sequence is the most appropriate method of defining it: 

type polynomial = sequence integer. 

Our final example shows how it is possible to represent the programming 
language concept of the identifier. Since in theory an identifier may be of 
arbitrary length, a sequence is required. The items of the sequence are either 
letters or digits. However, the first character is always alphabetic and may be 
separated from the rest. Thus an exact definition of a data structure corres- 
ponding to the identifier is" 

type identifier = (first" letter; rest" sequence (l" letter, d" digit)). 

8.1 MANIPULATION 

The zero element of a sequence type Tis the sequence that contains no items-- 
this is known as the null or empty sequence, and is denoted by T ( ) .  For 
each value v of the domain type, there is a sequence whose only item is v; 
this is known as the unit sequence of v and is denoted by T(v). Finally, if 
v l, v2 . . . . .  v n are values from the base type (possibly with repetition), 
T(vl, v2 , . . . ,  vn) denotes the sequence consisting of these ~alues in the 
stated order. If for convenience the type name T is omitted, we will use 
square brackets to surround the sequence: 

Iv], [v~,v~ . . . .  , v~] 

However, a sequence of characters is normally denoted by enclosing them in 
quotes. 

The basic operation on sequences is concatenation, that is, adjoining two 
sequences one after the other. Thus if x is the sequence of characters "PARIS 

IN THE" and y is the sequence "THE SPRING", their concatenation x- 'y  
is the sequence 

z = "PARIS IN THETHE SPRING" 

Unless the operands are exceptionally small, concatenation is very inefficient 
on a computer, since it usually involves making fresh copies of both operands. 
The programmer should therefore make every effort to replace concatenation 
by selective updating. 

The basic operators for breaking down a sequence into its component parts 
are those that yield the first and last items of a non-empty sequence 

x. first, x. last 

and those that remove the last or first items of a non-empty sequence, 
yielding the initial or final segments. 

initial (x), final (x). 
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An important reiationship between sequences is that one sequence x is 
equal to some initial or final subsequence of" a sequence y: 

x begins y 

or x ends y. 

In our previous example, "PARIS"  begins z and " R I N G "  ends z. These 
two tests can be rather time-consuming in a running program, and should be 
avoided wherever possible. 

A significant property of sequences is their length, i.e. the number of items 
they contain; this may be found for a sequence x by the function Iength (x). 

For some purposes (e.g. the construction of a dictionary) it is useful to 
regard a sequence type as ordered in accordance with traditional lexicographic 
principles" as in the case of arrays, the order of" two sequences is determined 
by the ordering of the first item in which they differ; or if there is no such 
item, a shorter sequence precedes the longer sequence which it begins, for 
example: 

" A L P H A " <  "ALPHABET" .  

In this ordering every sequence has a successor, but only a small proportion 
have predecessors. 

A most important  selective updating operation on sequences is the 
appending of" a new value v to the end of" an existing sequence x. This may be 
written: 

Z()' X" V 

and corresponds to the familiar concept of writing a value v to a sequential 
file x. The operation corresponding to reading the beginning of a file x is 
one which removes the first item of x and assigns its value to some variable v. 
This may be written: 

v from x;  

In some applications, it is useful to be able to read back the most recently 
written item from a sequence; this may be expressed 

v back from x; 

and it removes the last item from x. This operation can be used to "pop up" 
the top item of a stack which has been "pushed down" by an ordinary 
writing operation" 

x '  T(v). 

If desired, it is possible to define the fourth updating operation, that of 
attaching a new value to the beginning of a sequence. (putback (x, v)). 



NOTES ON DATA STRUCTURING 135 

In some cases, it is more efficient to avoid the copying of an item which is 
involved in the from operation. These cases may be dealt with by merely 
omitting the left hand variable, e.g. 

from x 

back from x. 

In this case, access to the items of the sequence will usually be made by the 
selectors x. first and/or x. last. 

It is very common to wish to scan all the items of a sequence in succession; 
a suitable notation for this is modelled on the for statement: 

for v in x do S; 

If x is empty, the statement is omitted. Otherwise the variable v (regarded 
as local to S) takes in succession the values of all items from the sequence 
x, and S is executed once for each value. In this construction neither x nor v 
should be updated within S. 

A similar construction can be used for defining a sequence as an item-by- 
item transformation E(v) of items v in sequence s. 

for v in s take E(v). 

In deciding a representation for a sequence, it is most important  to know 
which of the selective updating operations are going to be carried out upon it. 

(1) If the only operation is from, the sequence is known as an input 
sequence; obviously in order to have any value at all, an input sequence 
must be initialised to some value existing in the outer environment in which 
it is declared. The association of a sequence local to a program with some 
file existing more or less permanently on backing store is often known as 
"opening" the file for input, and we assume that this operation is invoked 
implicitly on declaration of a local input sequence. The reverse operation of 
"closing" the file is invoked implicitly on exit from the block to which 
the sequence is local. 

(2) If the only operation is writing to the file, the sequence is known as an 
output sequence. An output sequence may be initialised from the environment 
in the same way as an input sequence; or more commonly, it may take an 
empty initial value. In either case, in order to serve any useful purpose, the 
final value of the sequence on exit from the block must be assigned to some 
variable existing in the outer environment in which the sequence is declared. 
The identity of this outer variable should be declared together with the 
sequence; if this outer variable is held more or less permanently on backing 
store, it is known as an output file; and the rules for implicit invocation of 
opening and closing of the file on entry and exit to the block are similar to 
those for input files. 
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(3) If the only operations are writing and reading back (push down and 
pop up), the sequence is known as a stack; the initial value of a stack is 
always empty, and the final value is not usually preserved. 

(4) If the only operations are writing to the end and reading from the 
beginning, the sequence is known as a queue; again, the initial value is always 
empty, and the final value is not usually preserved. 

(5) If" reading and writing at both ends of a sequence are permitted, the 
sequence is sometimes known as a deque (double-ended queue). However, 
to make all four operations equally efficient requires some complexity of 
representation, so it is fortunate that most programs can get by without 
using deques. 

8.2. REPRESENTATION 

8.2.1. Contiguous representation 
The simplest method of representing a sequence is to allocate to it a fixed 
contiguous area of storage, adequate to hold all items actually required. 
This method is suitable if the value (or at least the length) of the sequence is 
constant throughout the execution of the program--for  example, a string of 
characters intended to be used as an output message or title. 

In some cases, the length of the sequence is unknown at the time the 
program is written, but is known on entry to the block in which the sequence 
is declared, and this length remains constant throughout the existence of the 
sequence. In such cases, it is possible to allocate a contiguous area of storage 
in the local workspace of the block, using the standard stack method of store 
allocation and deallocation. 

Even if the length of the sequence is subject to variation, it is sometimes 
possible to place an acceptably small upper bound on its length, and allocate 
permanently this maximum area. If the limit is exceeded during a run of the 
program, the programmer must be willing to accept its immediate termina- 
tion. In addition to the fixed area, a pointer or count is required to indicate 
the current beginning and end of the sequence. In the case of a stack, the first 
item is always at the beginning, and only one pointer to the top of the stack 
is required. In the case of a queue, the sequence will at times overlap the 
end of the store area, and be continued again at the beginning. Such a 
representation is known as a cyclic buffer, and may be used in a parallel 
programming situation to communicate information between processes 
running in parallel. In this case, when a writing process finds the buffer full, 
it has to wait until a reading process reduces the size of the sequence again. 
Similarly, the reading process must wait when the buffer is empty. 

Another case where the contiguous representation is the best is when the 
program requires only a single sequence, which may therefore occupy the 
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whole of the remaining store available after allocation to other purposes; 
and if overflow occurs, the program could not have been run anyway. If 
two stacks are required, they can both be accommodated by arranging that 
one of them starts at one end of remaining available store and grows upwards, 
and the other starts at the other end and grows downwards. If the stacks 
meet, the program cannot continue. 

If many sequences are to be represented, it is possible to set up a scheme 
in which they are spread through the remaining available store; and if any 
of them grows to meet its neighbour, it is possible to reshuffle some or all 
of the sequences, so that they all have sufficient room to grow again for a bit. 
For each sequence there must be a base location pointing to its beginning, 
through which that sequence is always addressed. In addition, the acttial 
length of the sequence must be stored. The base location and length of the 
neighbouring sequence must always be inspected when the sequence is 
extended. When reshuffling takes place, the base locations of all moved 
sequences are updated to point to the new position of the sequence. This is 
quite a useful ad hoc scheme in cases where the reshuffling is known to be 
relatively infrequent; otherwise non-contiguous representations are to be 
preferred. 

Fixed iengl'h Stack Queue Queue 
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FIG. 5. Sequences (Contiguous representation) 
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When the individual items of a sequence are of variable length, there is 
usually no need to pad the shorter items out to the maximum length, since 
the use of the tag field, or other technique, will indicate the length of any 
given item, and this can be used to step the pointer by the right amount 
when the item is read. But this requires that the direction of reading be known 
at the time of writing, as in a stack or a queue. If reading is to be carried out 
from both ends, it will be necessary to ensure that the length of an item can 
be deduced from its bottom as well as its top, which will involve storing 
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When a sequence is itself a part of an item of some other sequence, the 
contiguous representation of the item-sequence may be used. This will 
normally be accompanied by a count giving the length of the sequence, so 
that the actual size of each item can be computed when the item is read. 

8.2.2. Chained Representation 

In order to avoid reshuffling problems mentioned in the previous section, it 
is usual to introduce indirect or chained methods of storage allocation, using 
either fixed length or variable length units of allocation. The available store 
is split into areas, some of which will be in use for storing items of some 
sequence, and others will be free. The free areas are also linked together as a 
chained sequence. Whenever a programmer's sequence requires extension, 
an area (or part of an area) is acquired from the free chain; and whenever a 
sequence is shortened by reading, an area can be returned to the free chain. 
In the case of fixed-length items, the administration of dynamic storage 
allocation with explicit deallocation presents no problems. The problems of 
variable length allocation will not be treated here; they are best avoided by 
the use of blocking (see next section). 

The simplest form of chain is the single linked chain. Each item of the 
sequence has adjoined to it, in a link location, the address of the next item 
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in the chain. The empty sequence is represented by a value which could not 
possibly be an address (say zero or minus one); and the link location of the 
last item in the sequence contains this value. The first item in the chain is 
pointed to by the base location of the sequence. 

A single linked chain is useful when the direction in which the sequence 
will be read is known; for the links have to point in this direction. In the 
case of a stack they will point backwards, and in the case of input and output 
sequences and queues they will point forwards. In the case of an input or 
output sequence, the base location of the external variable which is to hold 
the initial and/or final value of the sequence points permanently at the 
beginning of the chain, while the base location of the sequence itself steps 
through the sequence. In the case of a queue, two base locations are used, 
to point to each end of the sequence. 
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Sequences (Chained Representation) 

One possible advantage of the single-chained representation in the case of 
stacks is that several stacks can share the same initial segments, which may 
save space and time in some applications. However, when an item is popped 
up from such a stack, the storage space which it occupies cannot be immedi- 
ately returned to the free chain, since it may be in use as part of another 
stack. One solution to this problem is never to return storage explicitly, 
but to wait until the free chain is exhausted. Then all currently allocated 
sequences are scanned, and all blocks currently in use are marked. Then all 
unmarked blocks are collected onto the free chain. This is known as a scan- 
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mark-collect garbage collection. Although it appears to relieve the pro- 
grammer of the responsibility of explicit control of main store allocation and 
deallocation, this can be dangerous in non-trivial computer applications 
where the responsibility is one that cannot so lightly be evaded. 

In the case of a deque, when reading is required in both directions, a single- 
linked chain is no longer adequate; and the usual solution is to adjoin two 
pointers to each item in the chain, one pointing to the previous item and one 
pointing to the following item. In fact these two pointers can be compressed 
into a single word containing only the difference between them. Since in 
the first and last items one of the pointers is a standard null value, the value 
of the other pointer from these items can always be obtained by subtraction. 
On reading or writing, the value of the link location for the new first or last 
item can be readily adjusted, since at this stage the address of the previous 
first or last item is still known. The detailed working out of this scheme is 
left as an exercise. 

An alternative method of linking the items of a chain is to collect all links 
together in a single contiguous table, preferably of fixed length. This giwes a 
form of tree representation for the sequence, and permits ready scanning 
in both directions. But it places an upper bound on the number of items in 
the sequence; and it means that the locations used for links must be per- 
manently allocated, even at times when the sequence is relatively short. 
This problem can be mitigated by the use of blocking. 

8.2.3 Blocked Representation 

One disadvantage of chaining is the amount of extra storage required to hold 
the links, and the time taken to administer the free store chain on each 
operation. These problems are particularly severe when the size of the 
individual items of the sequence are small and the sequence is long. The 
method of solving this problem is to use blocking; that is, a combination of 
the contiguous and chained techniques. 

In this technique, a fixed-length block of storage is allocated, sufficient to 
hold perhaps between ten and a hundred items. When this block is filled, a 
new block is chained to it, using any of the methods described in the previous 
section. On input, a block is not released to free store until all the items it 
contains have been scanned. Thus the amount of store used on links can be 
reduced to negligible proportions. This can be of particular benefit in the 
tree representation of the chain. 

As mentioned above, the use of blocking can also avoid the 
problems arising from variable-length dynamic storage allocation, since the 
size of the block may be held constant for all sequences, independent of the 
size of their items. Furthermore, in cases where part or  all of the sequence 
is to be held on backing store, the use of blocking is almost universally 
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indicated, since backing store transfers can be very inefficient if the unit of 
transfer is too small. The only (dubious) disadvantage of blocking is that 
it inhibits effective sharing of the tails of stacks. 

The only remaining problem is to choose a size of block suitable for all 
purposes. It must obviously be large enough to accommodate the largest 
item of any sequence. In fact, it should be large enough to accommodate at 
least ten typical items; otherwise the space left over at the end of a block 
which is not large enough to accommodate the next item may reach signifi- 
cant proportions. Also, if the sequence is to be held partially or wholly on 
backing store, the block should be long enough to ensure that not too much 
space is wasted on interblock gaps, and the frequency of transfers is low 
enough to ensure that not too much time is spent in start-stop, latency, or 
head movement delays. 

On the other hand, if the block size is too large, the space wasted at the 
beginning of the first block and/or the end of the last block will become 
significant; thus the block size should be small enough to ensure that the 
typical sequence occupies at least ten blocks. 

In the presence of so many conflicting considerations, it is not easy to 
select a standard block size for sequences of differing length and item size, 
and all forms of backing store, with different methods of access. However, 
an acceptable compromise can often be made, and on present-day computer 
designs, a block size of between 128 and 1024 words will often be a suitable 
choice. Probably in most cases the size chosen is not critical within a factor 
of two either way. 

8.2.4. Backing Store Representation 

In processing a sequence, a program normally requires access to one of its 
ends, and all the material in the middle and other end is unused for relatively 
long periods of time. If main storage is at all scarce, it is very profitable to 
transfer this material to backing store, so that the space it occupies in main 
store may be used for other purposes. In the case of input and output 
sequences, which have a lifetime greater than the program which reads or 
writes them, the use of backing store for long-term storage is almost 
obligatory. 

When using backing store, efficiency of processing and representation 
demands that transfers should occur in blocks of reasonable size. The block 
which contains an active end of a sequence is always held in main store; and 
to permit overlap of input/output with computing, the previous block (on 
writing) or the next block (on reading) also remains allocated during the 
transfer operation. 'This is known as double-buffering. It is possible to hold 
even more buffers in store to smooth out variations in the speed of processing 
and the speed of transfer; but the program designer must not fall into the 
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trap of supposing that this will help when there is a basic mismatch in the 
speeds of processing and transfer. In general, if double or triple buffering is 
inadequate, it is not worth while filling the store with any further extra 
buffers. 

In a machine which is endowed with an automatic paging scheme, the 
problems of representing sequences are very much reduced. As far as the 
programmer is concerned, he need only allocate the amount of storage 
required for the longest possible sequence, using the contiguous representa- 
tion. This should not actually cause any waste of storage, since the paging 
system should delay allocation of store until it is first used. As the sequence 
expands, new blocks of store will be allocated, but the addressing of these 
blocks will appear contiguous to the programmer, so there is no problem 
of leaving unused space at the end of blocks which are not large enough to 
hold the next item. Shortly after a block has been filled, it will automatically 
migrate to backing store; and it will be brought back again automatically 
as soon as it is required. On input sequences, a block which has been scanned 
will also be removed shortly afterwards from main store; but this will not 
involve an unnecessary backing store transfer if the material has not been 
changed since the last input took place. The only operation which a paging 
system will not perform automatically is to read a block of an input sequence 
into store ahead of its actual requirement. 

9. RECURSiVE DATA STRUCTURES 

There are certain close analogies between the methods used for structuring 
data and the methods for structuring a program which processes that data. 
Thus, a Cartesian product corresponds to a compound statement, which 
assigns values to its components. Similarly, a discriminated union corresponds 
to a conditional or case construction, selecting an appropriate processing 
method for each alternative. Arrays and powersets correspond to for state- 
ments sequencing through their elements, with an essentially bounded 
number of iterations. 

The sequence structure is the first that permits construction of types of 
infinite cardinality, with values of unbounded length; and it corresponds to 
the unbounded form of looping, with a while condition to control termination. 
The reason why the sequence is unbounded is that one of its components 
(i.e. the initial segment) from which it is built up belongs to the same type as 
itself, in the same way as the statement which remains to be obeyed after 
any iteration of a while loop is the same statement as before. 

The question naturally arises whether the analogy can be extended to a 
data structure corresponding to recursive procedures. A value of such a 
type would be permitted to contain more than one component that belongs 
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to the same data type as itself; in the same way that a recursive procedure 
can call itself recursively from more than one place in its own body. As in 
the case of recursive procedures such a structure can conveniently be defined 
by writing the name of the type being defined actually inside its own definition; 
or in the case of mutually recursive definition, in the definition of some 
preceding type. 

The most obvious examples of recursive data structures are to be found 
in the description of arithmetic or logical expressions, programming lan- 
guages, where the recursion reflects the possibility of nesting one expression 
inside another. For example, an arithmetic expression might be defined as 
follows: 

"An expression is a series of terms, each of which consists of a sign 
(+  o r - )  followed by a sequence of factors. Each factor except the first 
consists of a sign (x  or / )  followed by a primary. A primary is either a 
constant, a variable, or an expression surrounded by brackets. An initial 
plus sign in an expression may be omitted." 

A structured data type whose values comprise such expressions may be 
defined using only techniques already familiar, plus recursion: 

type expression = sequence term; 

type term = (addop: operator; f :  sequence factor); 

type factor = (mulop: operator; p: primary); 

type primary = (const:(val:real), 

var: (id: identifier), 

bracketed: (e: expression)); 

type operator = (plus, minus, times, div); 

This definition expresses the abstract structure of an arithmetic expression, 
but not the details of its concrete representation as a string of characters. 
For example, it does not specify the symbols used for brackets or operators, 
nor does it state whether an infix, prefix or postfix notation is used for them. 
It does not state how the three kinds of primary are to be distinguished. 
It does not even represent the optional omission of plus on the first term of 
an expression, and the necessary omission of x on the first factor of a term. 
Apart from this degree of abstraction and representation-independence, this 
type definition would correspond to a set of BNF syntax equations' 

(expression) :: = ( t e rm)  [ ( addop)  ( t e rm)  ] 

(expression) ( addop ) ( term ) 

( t e rm) : :  = (pr imary)  ] ( t e r m ) ( m u l o p ) ( p r i m a r y )  

(p r imary)  :: = (unsigned real number)  I (variable) I 

((expression)) 
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Note how we have used sequences to replace the recursion wherever 
possible. In fact this can be done whenever a type name occurs recursively 
only once at the beginning or at the end of its definition. For example" 

type expression = sequence term; 

might have been formulated recursively: 

type expression = 

(empty: ( ) ,  non-empty: (first: term; final: expression)). 

A similar alternative formulation permits while loops to be expressed as 
recursive procedures. 

The construction of values of a recursively defined type requires no new 
operators or transfer functions; all that is needed is recursive use of the 
methods defined for the other relevant structuring methods. For example, 
the expression 

3 / ( b  - 2) 

could be specified by the cumbersome construction" 

[term (plus, [factor (times, primary (const (3))), 

factor (div, primary (bracketed ( 

[term (plus, [factor (times, primary (var ("b")))]), 

term (minus, [factor (times, primary (const (2)))])]))) 

]) 

1. 
An effective method of getting the computer itself to translate expressions 
into abstract structures will be given as an example in (9.2). 

Another familiar example of recursively defined data is the family tree. 
A family tree (excluding information about marriage) can be defined by 
associating with each person the family trees of all his/her offspring. We 
assume that certain additional personal details are required to be held" 

type family = (head:person; offspring :sequence family); 

A person with no children is an ultimate component of the family tree, 
and may be represented: 

family (Tom, []) 

A family with three children may be represented: 

family (Jill, [family (Tom, []), 

family (Joanna, []), 

family (Matthew, [])]). 
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The final example shows how the binary forking tree familiar to LISP 
programmers may be defined as a recursive data structure. 

type list = (atom:sequence character, cons: (car, cdr:list)). 

A list which in LISP dot-notation would be expressed 

((A. (B. NIL)). NIL) 

can be expressed as a value of type list in almost exactly the same way as it is 
in LISP: 

cons (cons (atom ("A"), 

cons (atom ("B"), atom ("NIL"))),  

atom ("NIL")  

); 
where the type transfer to list type is left implicit. 

As an example of the processing of a list, we write a function to reverse a 
complete tree, so that every "left fork" in it becomes a "right fork" and 
vice-versa. 

function reverse (l: list): list; 

with l do 

(atom:reverse: = 1, 

cons:reverse: = cons (reverse (cdr), reverse (car))) 

9.1. REPRESENTATION 

The standard representation of a recursive type is also very similar to 
that of a similarly structured non-recursive type, with the exception that each 
component specified as belonging to the recursive type itself is represented 
by a location containing a pointer to its value, rather than the value itself. 
This use of a pointer is motivated by the fact that the component value may 
be of arbitrary size; and it is not possible to allocate any fixed amount 
of storage to contain it. This is known as the "tree representation", and is 
similar to the tree representation of an array or sequence, except that the 
branches may grow to arbitrary and varying heights. 

An alternative method of representation is the linear sequence or bitstream. 
In this representation it is possible to avoid the use of pointers, and place 
the values of recursive substructures contiguous with the rest of the infor- 
mation, just as they are in the familiar bracketed character representations 
of expressions. However instead of using brackets, we can reestablish the 
bracketing structure by context, and if necessary by scanning the tag of 
union values. This method is usually associated with packed representations 
of the other components, and a very significant reduction in storage may be 
achieved, at the expense of enforcing serial access to the components of the 
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structure. In many circumstances, a bitstream representation is some ten 
times more compact than the tree representation. 

Tree 

I,I. 1 

tag 

(a) 

, N IL  

Bitstream I I IoI A I IoI B IOINILIIIoI B I01 A I 

(b) 

FIG. 8. Representation of ((A. (B.NIL)). (B. A)) 

The choice between tree and linear representation is usually obvious. If 
the structure is being processed by the program, usually by means of recursive 
procedures, the needs of ready access to any component of the structure 
dictate a tree representation. In addition, some of the space lost may be 
regained by sharing common branches among several trees; such commonality 
of branches is a feature of the processing of symbolic expressions. However, 
if the structure has to be output and subsequently re-input, the linear structure 
is vastly preferable. Not only does the reduction in volume reduce transfer 
time, but the linearisation avoids a number of tricky problems of representing 
pointers in backing store. In many cases, a structure which passes through 
several phases of processing and input-output will be translated between 
the two representations at each phase; and this is standard practice in a 
multipass translator for a high-level programming language. 

It is important to note that the sharing of the recursive sub-structure is 
nothing but a means of saving time and storage, and has no effect on the 
running of the program. This means that the sharing must be avoided 
whenever there is any danger that the shared sub-structure might be selectively 
updated as part of one of its owners. In principle, all values are entirely 
disjoint from all other values, and there is no way in which the programmer 
could either know or care how far his structures are shared. Furthermore, 
there is no way whatsoever in which a pointer can be made to point back 
to a structure of which it is a component; since this would mean that the 
structure was identical to one of its'own components. Only an infinite struc- 
ture can have this property; and infinite structures do not satisfy the axiom 
of exclusion on which the important principle of induction for recursive 
structures is based. 
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9.2. EXAMPLE 

A source text for an expression in a programming language is presented 
as a sequence of symbols defined: 

type symbol = (constant:(value: real), variable:(identifier:ident), 

op" operator, leftbracket, rightbracket); 

Write a program operating on an input variable 

source:sequence symbol, 

which reads from its beginning the longest possible legitimate expression, 
delivers the corresponding abstract expression as a result, and exits to the 
label error if this is impossible. The structure of the result and the syntax of 
the source are as specified earlier in this chapter. 

The structure of the program closely follows that of the desired result. 

There are three functions: 

compile expression 

compile term (sign) 

compile primary 

each of which removes from the source the longest expression in its syntactic 
category, and delivers the corresponding abstract structure as a resulf. The 
main irregularity of the process is that the first term of an expression may be 
unsigned; this is why the sign is provided as a parameter for compile term, 
instead of being read from source by compile term itself. Each function has 
the side-effect of shortening the source sequence if successful, and jumping 
to error if not. 

function compile expression: expression; 

begin sign" operator; 

if source, first = plus v source, first = minus then sign from source 

else sign: = plus; 

compile expression:= [compile term (sign)]; 

while source, first = plus v source.first = minus do 

begin sign from source; 

compile expression : ' ' [compile term (sign)] 

end 

end; 

function compile term (s: operator): term; 

begin p" primary; sign" operator; fs" sequence factor; 
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p: = compile primary; 

fs: = [factor (times, p)]; 

while source.first = times v source.first - div do 

begin sign from source; 

p: = compile primary; 

fs" [factor (sign, p)] 

end; 

compile term: = term (s, fs) 
end; 

function compile primary: primary; 

begin s" symbol; 

s from source; 

with s do (constant:compile p r imary :=  const (value), 

variable" compile p r i m a r y ' =  var (identifier), 

leftbracket: 

begin from source; 

compile p r imary '=  bracketed (compile expression); 

s from source; 

if s g: rightbracket then go to error 

end, 

else go to error } 

end; 

Exercise 
Write programs to convert an expression from tree representation to 
bitstream and back again. 

10. SPARSE DATA STRUCTURES 

In dealing with representations of arrays and powersets, we have hitherto 
assumed that the base type of a powerset and the domain type of an array is 
reasonably small, so that it is possible to allocate a bit or larger area of store 
to hold the value of every potential element of the structure. The examples 
also were confined to such cases. In this chapter we investigate the conse- 
quences and problems which arise when the base or domain types are very 
large or infinite, and when the standard representations are therefore 
impossible. 
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The representation and manipulation of powersets and mappings with 
infinite domains can be accomplished, provided that consideration is re- 
stricted to sets with only a finite number of members, and mappings in which 
only a finite number of elements take significant values; where "significant" 
is defined as different from some specified null or default value. The powerset 
of an infinite set is obviously also infinite; but since each value of the powerset 
type contains only a finite number of elements, each value can be specified 
simply by listing those elements in a finite period of time, and the list will 
occupy only a finite amount of storage. Similarly, each value of a mapping 
type with infinite domain can be finitely specified by listing all elements of 
the domain which map onto significant values of the range type, together 
with the value mapped in each case. A type which is restricted in this way is 
known as sparse. 

In fact the concept of sparsity is not confined to infinite bases and domains; 
it may also be applied to very large but finite powersets, when the pro- 
grammer knows that each actual set in which he is interested will contain 
only a very small proportion of the potential members. For example, the 
base type may contain hundreds of millions of values, but the programmer 
may know that he only has to deal with sets of less than a hundred in size, 
and perhaps most of them less than ten. It would be impossible to use the 
bitpattern representation, since this requires hundreds of millions of bits; 
but since each value actually used in a program contains only a few members, 
these members can readily be listed in a comparatively small amount of 
store. A powerset type of this sort is known as sparse. Similarly, arrays 
with a very large domain, nearly all of which map onto the same default 
value of the range, are said to belong to a sparse array type. 

Sparse sets and arrays are frequently encountered in advanced data 
processing applications, and their representation and manipulation present a 
number of familiar problems. Our first example is the definition of a type 
whose values are sets of car numbers. The cardinality of the carnumber type 
is perhaps something like four thousand million; but the programmer 
wishes only to deal with sets of cars owned by a single person; most of these 
will have only one member, and very few will have more than ten. The 
carset type may therefore be declared as sparse powerset: 

type carset = sparse powerset carnumber; 

As an example of a sparse array, we may take the type of mappings 
between car owners and the set of cars they own. Each owner is represented 
by name and address; since these are of arbitrary length, the owner type 
may be defined: 

type owner = sequence character; 
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and has infinite cardinality, The required type is therefore declared as 
sparse: 

type carfile = sparse array owner of carset. 

In a data processing application, a variable of carfile type would be known 
as a random access file, and the owner would be known as the key element of 
the file. 

The next two examples are drawn from numerical applications. A vector 
is a mapping from integers onto floating point numbers. A sparse vector is 
one in which most of the elements are zero; consequently its initial value will 
be the zero constant function, and all elements will remain zero unless an 
explicit assignment is made of a different value: 

type sparsevector = sparse array integer of real. 

A sparse complex matrix may be defined in a similar way" 

type irregular matrix = sparse array (row, column" integer) 

of complex. 

The next example is taken from the field of the translation of programming 
languages to machine code. During the process of translation, the translator 
needs to know certain information about each identifier declared in the 
program, such as machine address allocated to the variable, its length and 
type, etc. This information is assumed to belong to a type decode. The type of 
an array which associates a decode with each identifier is given the name 
dictionary and is declared: 

type dictionary = sparse array ident of decode 

Of course, the translator is interested in the decode only of those identifiers 
actually declared in the source program. For the vast majority of possible 
identifiers, the value given by any dictionary of this type will be that value of 
the decode type which indicates that the identifier was undeclared. 

The final example is of a type that causes familiar problems in a com- 
mercial filing system and in real life--that of multidimensional cross- 
classification. The customers of a firm are split up into a number of 
geographical areas; they are also classified in a number of classes, in accord- 
ance with the kind of product they purchase. On occasions it is required to 
access all customers in an area, sequencing through all classes; on other 
occasions to access all customers in a class, sequencing through the areas; 
and finally, it is sometimes required to process all customers of a given class 
in a given area. The abstract structure required to deal with this situation 
is a two-dimensional sparse array of sparse sets" 

sparse array (c:class; a:area) of sparse powerset customer. 
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A similar example may arise in the description of family relationship 
among persons: 

type children = sparse array (mother, father: person) of 

sparse powerset person: 

This array caters for multiple marriages better than the more tree-like 
representations of a family, which can be defined as a recursive structure. 

In the case of sparse arrays, it is sometimes useful to regard them as 
partial rather than total mappings. A partial mapping is one which does not 
necessarily give a value for each member of its domain type. In other words, 
the actual domain over which it is defined is a subset of the domain type. 
For such an array type it is necessary to introduce an additional constant 
omega, denoting a mapping which is everywhere undefined. It is also useful 
to introduce a function 

domain (x) 

which delivers as result the set of subscripts for elements of x which are 
actually defined. Thus the programmer can sequence through all the defined 
elements, or test whether a particular element is defined or not. Many of the 
examples quoted above might well have been declared as partial instead of 
sparse. In the case of a partial mapping, the default value does not have to be 
recorded. 

10.1 REPRESENTATION 

Sparse sets and arrays are usually represented by simply keeping a record 
of the default value and those members or elements which are significant; 
thus the representation borrows techniques which are used in the case of the 
sequence type to deal with structures of changeable size. A sparse set may be 
regarded as a special case of a sparse mapping, which maps all its members 
onto the Boolean value true, and all its non-members onto the default value 
false. Thus their representations are closely similar to those of sparse arrays, 
and do not require separate treatment. 

A sparse mapping consists of a number of elements. Each element 
of the mapping is represented as the Cartesian product of its subscript and 
its value; in this case the subscript is known as the key, and the value is 
known as the information associated with the element, and the juxtaposition 
of the two will be known as an entry. In the case of a set which is sparse, 
there is no need to record any information, since the presence of the key 
itself is sufficient to indicate that this value is  a member of the set. Thus an 
entry for a sparse set consists only of a key. 
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10.1.1. Sequential Representation 

The simplest representation of a sparse array type is as a sequence of entries; 
i.e. 

sparse array D of R 

is represented as if it had been declared 

(default: R; s: sequence (key: D; information: R)). 

One of the possible sequence representations must now be chosen, in 
accordance with the same criteria that are used in the case of a sequence. 
But when a sequence is used to represent a sparse array, the order of the 
entries is immaterial, and does not have to reflect the relative times at which 
the entries were made. Thus the entries are often sorted into order of their 
key-value, particularly if this is the order in which they are going to be 
scanned. 

The chief disadvantage o f  the sequential representation is the length of 
time taken to access the element corresponding to a random subscript. In 
the case of structures of any great size, the program designer usually goes to 
considerable trouble to ensure that entries are accessed in the same standard 
order that they are stored in the sequence; and that if new entries are to be 
inserted, these are also sorted and then merged with the original sequence. 
Thus the standard commercial practice of batch processing and updating of 
sequential files may be regarded as a practical implementation of the abstract 
concept of a sparse array on the rather unsympathetic medium of magnetic 
tape. 

10.1.2. Tabular Representation 

If there is an acceptably low upper limit N to the number of entries in a 
sparse mapping, a great increase in speed of lookup can be achieved by the 
tabular representation, in which the sparse mapping 

sparse array D of R 

is represented as a nonsparse array" 

(default: R; occupied: powerset 0 . .  N; 
array 0. .  N of (key: D; information: R)). 

If all the significant entries are collected before they are used, the table can 
be sorted, and ther the entry with a given key can be rapidly located by 
logarithmic search. 

If access to the elements of the array is interleaved with addition of new 
entries, some form of hash-table technique is indicated. For this an arbitrary 
"hashing" function is chosen, which maps the domain type D into an 
integer in the range 0 . .N.  When the entry is inserted, it is placed at this 
position in the table; so whenever that entry is accessed, use of the same 
hashing function will find it there. If that position is already occupied by an 
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entry with a different key, some other vacant position in the table must 
be found. It is quite usual to search for such a vacant position in the next 
following locations of the table; but when the table is nearly full, this may 
cause undesirable bunching around an area of the table which happens to 
be popular. A solution to this problem is to choose N + 1 as a prime number, 
and to use a second hashing function to compute an arbitrary step length 
from any given key. The next position to try when any given position is full 
is obtained by adding the step length (modulo N + 1) to the previous 
position. 

10.1.3. lndexed Representation 
The tabular method of storage is suitable only when the whole table can be 
accommodated in the main store of the computer. In the common case 
when this is not possible, a mixture of the tabular and sequential methods is 
often used. In this a sparse array is represented as a table, each of whose 
entries is a sequence: 

(default: R; table:array 1.. N of 

(max:D; seq: sequence (key:D; information:R))). 

Every entry is placed on that sequence i such that its key falls between 
table [i - 1 ] .  max (or D.min if i = 1) and table [i].max. The table is sorted 
so that the appropriate sequence can be quickly located. This technique 
may be likened to the organisation of a multivolume encyclopaedia, in 
which the keys of the first and last entries of each volume are indicated on 
the spine, so that the right volume can be quickly identified, without extracting 
the volumes from the shelf. 

When using this representation, it is desirable to ensure that all sequences 
are of roughly the same length. Indeed, if disc backing store is used, it is 
very advantageous to ensure that each of them is fitted onto a single cylinder, 
so that a random access will not involve more than a single head movement. 
Thus, when one sequence gets too long, it must exchange material with the 
adjacent sequence. This involves extracting the entries with the largest 
and/or smallest keys, and is best done when all the sequences are sorted into 
order of key-value. The sorting and reshuffling is often carried out as a 
separate operation at regular intervals; and the general method of file 
organisation is known as "indexed sequential". 

Naturally in this method of representation, it is an advantage to keep 
the sequences as short as possible, say less than a single track on disk. 
Consequently, the table itself may get so large that it will no longer fit in 
main store. In this case the table itself is split up into sections, and a second- 
level table may be set up to point to its sections, using the same principle 
again. Thus at least two accesses to backing store will in general be required 
for each access to an element of the array, and it is strongly recommended 

i 
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to ensure that the sizes and location of the sequences and sections be chosen 
to correspond closely with the access characteristics of the storage medium. 

10.1.4. Locally Dense Representation 

A special case of a sparse array encountered in numerical computer appli- 
cations is the sparse matrix. Quite frequently a sparse matrix can be split 
into submatrices, only a few of which contain significant non-zero entries. 
In this case, the matrix may be said to be locally dense, and should be 
represented and processed in a manner which takes advantage of this fact. 

One method of achieving this is to store with each significant submatrix 
its position and size, and to represent the whole matrix as a table or sequence 
off such submatrices, where each submatrix is stored contiguously in the 
usual way, using multiplicative address calculation. However, the sub- 
matrices will in general be of different sizes, and if the size varies during the 
processing of the matrix, the problems will be quite severe. A possible way of 
dealing with sparse matrices is to split them into submatrices of standard 
size, say sixteen by sixteen, and set up a table of pointers to each of these 
submatrices. A submatrix that is wholly zero is represented by a null pointer 
and occupies no additional storage; otherwise, the submatrix is stored in the 
usual way, using the following method of address calculation. 

Each access to the array involves first "interleaving" the bit values of the 
two subscripts, so that the least significant part of the result contains the least 
significant part of both subscripts. The more significant part of the result is 
then used to consult the table of addresses, to locate the desired submatrix, 
and the less significant part to find the position off the required element 
within the submatrix. This technique of interleaving subscripts may on 
some machines be more efficient than general multiplication. If some of the 
submatrices have to be held on backing store, this method of address calcu- 
lation is particularly recommended, since it is equally efficient at processing 
the matrix by rows as by columns; and the method can then be recommended 
for all large arrays, whether sparse or not, particularly on a paged computer. 
The inventor of this method is Professor E. W. Dijkstra. 

10.1.5. Grid Representation 

The phenomenon of cross-classification of files causes as many problems in a 
computer as it does in real life. It is usually solved by standardising on one 
of the classifications which is most convenient, and accepting the extra cost of 
processing in accordance with the other classification, even if this involves 
resorting the file. Thus the sparse mapping 

sparse array (i:D1 ; j" DE) of R 
is represented as: 

sparse array D1 of (sparse array D2 of R) 
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However, it is also possible to deal with the two dimensions in a more 
symmetric fashion, using a method based on the chained representation of 
sequences. In this representation, each actually used value of D 1 is placed 
in one chain, and each actually used value of D2 is placed in another. These 
are called border chains. Each element of either border chain contains a 
base location pointing to a chained sequence of all elements with key values 
which fall into the class. Now each actual entry of the array has two addresses 
attached; one points to the next item of the sequence which has the same 
classification according to D1, and the other to the next item which has the 
same classification according to D2. Thus each item may be pictured as 
residing on an intersection of the lines of a two-dimensional grid, with 
pointers leading across and downwards to the next item on the same r6w 
or the same column. 
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This grid representation is unfortunately suitable only when the entire 
structure will fit into main store. If the main part of the sequences have to be 
held on backing store, some sort of blocking of adjacent elements would be 
desirable in the interests of efficiency. 

11. EXAMPLE" EXAMINATION TIMETABLES 

In an educational establishment which offers students a wide choice of course 
combinations, there arises the problem of designing an examination time- 
table in which each examination is conducted in a single session, and yet 
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each student can attend the examination for each course that he has taken. 
This can always be arranged by allocating a separate session for each examina- 
tion; but the interests of examiner and student alike dictate that the total 
examination period be as short as possible. This means that each session 
should contain as many examinations as possible, subject to some limit k. 
An additional constraint is imposed by the size of the examination hall, 
which can only accommodate a certain maximum number of students. 

Before designing the program, it is desirable to confirm our understanding 
of the problem by making a more rigorous formalisation in terms of the 
structure of the various items of data, both given and required. The types 
"student" and "exam" are obviously unstructured and need no further 
definition at this stage. The load of exams to be taken by each student is 
given by a mapping" 

load: array student of powerset exam. 

A timetable is a set of sessions, where each session consists of a set of exams: 
type session = powerset exam; 

timetable: powerset session. 

We next attempt to formalise the properties which the input and output 
data are required to possess. 

(1) We choose not to formalise the condition that the number of sessions 
be minimised, since in fact we do not want an absolute minimum if this 
turns out to be too expensive to compute. 

(2) Each exam is scheduled for one of the sessions 
s = exam.all  

s ia timetable 

(3) No exam is scheduled for more than one session: 

s l, s2 in timetable = s l ^ s2 = { } 

Conditions (2) and (3) effectively state that the timetable is a partitioning 
of the set of all exams into exhaustive and exclusive subsets. 

(4) No session includes more than k exams 

s in timetable ~ size (s) ~< k 

(5) No session involves more than hallsize students. To formalise this, 
we need to count the number of students taking each exam: 

examcount (e:exam) = size (st:studentle in load (st)}. 
Now the number of students involved in a session is 

session count (s:session) -- ~ examcount (e) 
e i n s  
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The condition may be formalised: 

s in timetable ~ sessioncount (s) ~< hallsize. 

(6) No student takes more than one exam in a session. To formalise this 
we introduce the concept of incompatibility of exams: two exams are in- 
compatible if some student is taking both of them. For each exam el there is 
a set incompat (el) of exams which are incompatible with it: 

incompat (el) = {e2:exam I e2 -¢- el & 3 st :s tudent  (el in load (st) 
& e2 in load (st))} 

Now we can define that every pair of exams in a session must be compatible: 

s in timetable & el,  e2 in s D -l el in incompat (e2). 

These six conditions, defined in terms of load, hallsize, and k, must be 
possessed by any successful timetable in the real world, and by any successful 
computer representation of the timetable. They serve to define the objectives 
and criterion of correctness of our timetabling program. 

11.1 THE ABSTRACT PROGRAM 

Inspection of the conditions reveals that construction of the timetable does 
not require full knowledge of the load of each student. All that is needed is 
the examcount of each exam, and for each exam the set of other exams 
which are incompatible with it: 

examcount:  array exam of integer; 

incompat: array exam of powerset exam. 

These two arrays embody an abstraction from the real life data, which 
concentrate attention on exactly those features which are for the present 
purpose relevant, and permitting us to ignore for the time being the other 
features of the situation. It is plain that these two arrays can be readily 
constructed from a single scan of the student load data: 

examcount: = all (0); 

i n c o m p a t : =  all ( { } ); 

for st: student do 

for e in load (st) do 

begin examcount (e)" + 1; 

incompat (e): v (load (st) - {e}) 

end; 

One of the simplifying factors in the search for a solution to the given 
problem is that the conditions fall readily into two classes: (1) (2) and (3) 
relate to the timetable as a whole, whereas (4) (5) and (6) relate only to 
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individual sessions, and do not mention the timetable at all. This suggests 
that the program can be structured as an inner part which selects a suitable 
session satisfying (4) (5) and (6), and an outer loop which constructs the 
timetable out of such suitable sessions. 
The objective of the outer loop is to achieve satisfaction of conditions (2) 
and (3) on its completion. We therefore choose one of these conditions as a 
terminating condition of the loop, and design the body of the loop in such a 
way that is preserves the truth of the other condition (that is, the invariant 
of the loop); furthermore we ensure that the invariant is true before starting 
the loop. 

The obvious choice of invariant is exclusiveness (condition (3)), leaving 
exhaustiveness as the terminating condition towards which each execution 
of the body of the loop will progress. The empty timetable obviously satisfies 
the invariant. This leads to an algorithm of the following structure" 

timetable: = { }; 

while timetable does not satisfy (2) do 

begin select a session satisfying (4), (5), (6); 

add the session to the timetable 

end; 
print timetable. 

In order for the addition of a new session to preserve the truth of the 
invariant, it is necessary that the exams of the session shall be selected from 
exams which do not yet appear in the timetable. We therefore introduce a 
new variable to hold these remaining exams: 

remaining: powerset exam; 

which is defined by the invariant relation" 

remaining = exam. a l l -  ~ s. 
s in t i m e t a b l e  

The structure of the program as a whole now takes the form: 

timetable: = { }; 

remaining" = exam. all; 

while remaining 4: { } do 

begin s ' =  suitable; 

timetable: v {s }; 
i 

r e m a i n i n g ' -  s 

end; 

print timetable. 
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The problem now remains of selecting a suitable session at each stage. 
In principle, there is no reason to suppose that the "best" choice at each 
stage will lead to a "best" or even a "good" timetable in the end. However, 
it would seem that in general it will pay to select a combination of remaining 
exams that most nearly fills the hall, or most nearly approaches the limit k. 
This will probably mean that the majority of students and exams will be 
catered for in a reasonably compact set of sessions, even though there may 
in the end be a fairly long "tail" of small sessions, involving a minority of 
students. Although this will not minimise the number of sessions, it may be 
reasonably satisfactory to most students and most examiners. 

The alternative to accepting an apparent best choice on each occasion is 
to attempt some more global optimisation, which will either involve astrono- 
mical numbers of trials, or some sophisticated considerations which are 
unlikely to become apparent until after practical experience of a simpler 
algorithm. So there is nothing else that can be done at this stage except hope 
for the best. 

It remains to program the function: 

function suitable:session, 

which selects a suitable session from the remaining set of exams. A possible 
method of doing this is to generate a number of trial session satisfying (4) 
(5) and (6), and to select the best one found. The best one will probably be 
the one with the largest sessioncount, but since we may wish to adjust the 
criterion of selection, it is advisable to define it as a separate subroutine, 
updating a variable 

bestsofar: session; 

in accordance with the current value of a variable: 

trial: session; 

procedure record 

if sessioncount (bestsofar) < sessioncount (trial) then 

bestsofar: = trial. 

The result of suitable is going to be the final value of bestsofar: 

suitable: = bestsofar. 

It still remains to write a procedure that will generate and record a sequence 
of trial sessions which satisfy (4) (5) and (6). Inspection of these conditions 
shows that if a trial fails to satisfy one of them, no larger trial will satisfy it. 
In other words, having found an impossible trial, there is no need to generate 
any further trials which contain it. This suggests that we organise the 
generation process to generate all supersets of each trial that has been found 
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already to be possible, but excluding any exams which have already been 
tried. We therefore introduce a variable: 

untried: powerset exam, 
and a procedure 

procedure gensupersets, 

which generates and records all possible supersets of trial by adding one or 
more exams from untried to it. This procedure will be called from within 
"suitable". 

function suitable" session; 

begin trial, bestsofar" session; e ' exam;  untried'powerset exam ; 

e from remainder; 

trial: = bestsofar: = {e}; 

u n t r i e d ' =  r e m a i n i n g -  t r i a l -  incompat (e); 

gensupersets; 

suitable: = bestsofar 

end; 

Note that the first value of the trial is the unitset of some exam chosen from 
the remainder according to some as yet undefined criterion. The justification 
for this is that the chosen exam must eventually feature in some session of 
the timetable, and it might as well be this one. If this prior choice were not 
made, gensupersets would keep on generating the same supersets on every 
cycle of the major loop of the timetabling program. 

As another significant optimisation, we have removed from untried any 
exams which are incompatible with the exams in the trial, since there is no 
need to even consider the addition of any of these exams to the trial. 

The generation of supersets of a given trial may proceed by selecting 
each exam from untried, and adding it to trial. If the result is still valid, it 
should be recorded, and the new value of trial is then a suitable session to 
act as a basis for further superset generation. This suggests a recursive 
program structure. Of course, the exam added to trials should also be sub- 
tracted from untried, to avoid unnecessary repetitions; and it is very advan- 
tageous to remove from untried any exams which are incompatible with the 
exam just added to the trial, so that these do not have to be considered again 
in future. Also, the values of trial and untried must be left unchanged 
by each call, so any change made to them must be recorded and restored in 
variables save 1 and save 2. 
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procedure gensupersets; 

begin e: exam; save 1, save 2: powerset exam; 

record; save 1 : = untried; 

if size (trial) < k then 

while untried ~ { ) do 

begin e from untried; 

save 2: = untried /x incompat (e); 

untried: - save 2; 

trial: v {e); 

if sessioncount (trial) < hallsize then 

gensupersets; 

untried: v save 2; 

trial: - {e) 

end; 

untried: -- save 1 

end gensupersets. 

161 

The validity of this program depends on the fact that trial invariantly 
satisfies all conditions (4) (5) and (6) for sessions of the timetable, as well as 
always being a subset of remaining. 

The reasoning is as follows" 

for (4): gensupersets never generates a superset except when the size of the 
trial is strictly less than k. 

for (5): gensupersets is never entered when the sessioncount of trial is 
greater than the hall size (we assume that no examcount is greater than 
hallsize). 

for (6): removal of incompatible sets from untried ensures that at all 
times all exams remaining in untried are compatible with all exams of trial. 
Therefore, transfer of an arbitrary exam from untried to trial can never 
cause (6) to be violated. 

Finally, at the initial call of gensupersets, untried ~ remaining. Untried is 
an essentially non-increasing quantity: every addition of members to it has 
always been preceded by removal of those very same members. Untried is 
therefore always a subset of remaining; and trial, which is constructed only 
from members of untried, must also always be a subset of remaining. 

This completes our first version of an abstract program to construct 
examination timetables. Collecting all the material together, it looks like this" 
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hallsize, k ' in teger ,  initially given; 

load :a r ray  student of powerset exam, initially given; 

type session = powerset exam; 

t imetable:powerset  session, initially { }; 

examcount :  array exam of integer, initially all (0); 

i ncompa t : a r r ay  exam of powerset exam, initially constant  ( { } ); 

function sessioncount (s: session): integer; 

begin sum: integer, initially 0; 

for e in s do sum: + examcount  (e); 

sessioncount: -- sum 

end; 
remainin/~: powerset exam, initially exam. all; 

function suitable: session; 

begin bestsofar, trial: session; untried: powerset exam; 

e: exam; e from remainder;  bestsofar: = {e }; 

trial: = {e}; untried: = remainder  - trial - incompat  (e); 

gensupersets; 

suitable: = bestsofar 

end; 

The following two procedures are local to suitable: 

procedure record; 

if sessioncount (bestsofar) < sessioncount (trial) then 
bestsofar: = trial; 

procedure gensupersets; 

begin e" exam; save 1, save 2"powerset exam; 

record; save 1 : = untried; 

if size (trial) < k then 

while untried ~ { } do 

begin e from untried; 

save 2: = untried A incompat  (e); 

untried" - save; 

trial: v {e}; 

if sessioncount (trial) < hallsize then 

gensupersets; 
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untried: v save 2; 

trial: - (e) 

end; 

untried: = save 1 

end gensupersets; 

The main program is as follows: 

for st: student do 

for e in load (st) do 

begin examcount (e): + 1; incompat (e): v (load (st) - (e)) end; 

while remaining -¢ ( ) do 

begin s" session; 

s: = suitable; 

timetable: v {s); 

remaining: __ s 

end; 

print timetable 

Before spending any more efforl~ on developing this program, it would be 
advisable to subject it to a critical examination, to ensure that it will be 
successful. Now the most obvious reasons why the program might fail are: 

(1) The size of the timetable turns out to be unacceptably large; we have 
agreed that nothing can be done about this, until we know more about the 
data. 

(2) The amount of time taken to generate all trials at each step is excessive. 
This will be particularly serious when the remainder is still large at the 
beginning of the program, and if the untried set remains large on every 
recursion of gensupersets. The main way in which the untried set is reduced 
is by removing all exams incompatible with the trial. This suggests that we 
should always prefer to add first to the trial those exams which have the 
largest incompatible sets, so that untried is reduced as quickly as possible. 
Among sets equal according to this criterion, the exam with the largest 
examcount would be selected first. The exact weighting between these criteria 

. 
may have to be adjusted later in the light of experience; meanwhile, the 
simplest implementation of this policy is to presort the exams in accordance 
with the criterion, and implement e from untried by selecting the first 
member. 

If it turns out that this elementary strategy is insufficient we may have to 
artificially curtail the number of iterations of the loop in gensupersets. But 
we would probably need some practical experience in order to select a suitable 
strategy; and for the time being, let us hope it will not be necessary. 

i 



164 c .A.R.  HOARE 

11.2. DATA REPRESENTATION 

In order to design a successful data representation, it is necessary to know 
something of the likely size of the problem. In this example, we will make the 
following assumptions: 

(1) There are not more than 500 exams, each taken by less than 1000 
students (typically 50). 

(2) There are about 5000 students. 

(3) Each student takes less than ten exams, and typically five. 

(4) The examination hall will take about 1000 students. 

(5) An acceptable limit on the number of concurrent exams is 30, and the 
typical number is 10. 

(6) Manual timetabling methods have succeeded in constructing timetables 
with not more than 50 sessions. 

We will consider the individual items of data. 

(1) type exam 

The obvious representation is as an integer subrange:0..  500. 

(2) type session 

There is obviously a choice between a bitpattern representation (500 bits), 
and an array of 30 nine-bit elements (+  pointer) (270 bits + one word). The 
number of sessions to be stored is not great, so considerations of storage 
economy are not significant. The main operations on the session are the 
insertion of an exam which is known not to be in it already, and the removal 
of an exam, which is the most recently inserted. Thus the array method 
would be the best, since the insertion and removal of members can be 
accomplished by stack methods. 

Since we frequently wish to know the session-count, it would pay to record 
this together with the session, and keep it up to date as members are inserted 
and removed. 

This representation is used for trial and bestsofar. 

(3) t#netable 

The only operation on the timetable is the insertion of new sessions. Since 
sessions are of variable length, the timetable could be organised as a sequence 
of variable-length sequences. Since each exam occurs exactly once in the 
timetable, the maximum size of the timetable is 500 x nine bits, plus perhaps 
sixty words to indicate the separation of the sessions (if there are more than 
sixty sessions, the program will have failed anyway). 



NOTES ON DATA STRUCTURING 165 

An alternative and much simpler representation is simply to record for 
each exam which session it occurs in. This requires only 

array exam of 1.. 60 

This representation is made possible only by the fact that the sessions of the 
timetable are mutually exclusive. 

(4) examcount  : array exam of integer 

A standard representation is the obvious choice. 

(5) remaining, untried, save 1, save 2 

These variables start rather full, and get emptier as the program progresses. 
Their average density is therefore about fifty percent, and there is no point 
in adopting a sparse representation. Furthermore, the frequency of standard 
set operations applied to them indicate a standard bitpattern representation. 

(6) incompat 

The most frequent use of elements of incompat is to subtract them from 
untried. They should therefore also use the bitpattern representation. This 
will require 500 x 500 bits, of the order of 10000 words. This is by far the 
largest data structure required, but its total size is probably fully justified 
by the extra speed which it imparts to the program, and since it is acceptable 
on most computers on which this program will run, it does not seem worth 
while to seek a more compact representation. 

(7) load 

The load of each student is the primary input data for the problem; it may 
also be extremely voluminous. It is therefore doubly fortunate that the 
program only needs to make a single scan of the data; for not only will this 
enable the data to be presented as an external sequence; it also means that 
the representation can be designed to be suitable for human reading, writing, 
and punching. 

We therefore allocate one card for each student, and use ten columns of 
six characters each to hold the examination numbers. To save unnecessary 
punching, the first blank column will signify the end of the examination set. 
For identification purposes, each card should also contain the student 
number; fortunately this can be wholly ignored by the program, though it 
should probably be checked to avoid duplications or omissions. 

Exercise 
Code the abstract program described above using the recommended data 
representations. 



166 c .A.R.  HOARE 

12. AXIOMATISATION 

The preceding sections have introduced a number of methods of constructing 
data spaces (types), and have explained some useful operations defined over 
these spaces. But the description has been essentially intuitive and informal, 
and the question arises whether all the relevant information about the data 
spaces has been communicated, or whether there remains some possibility of 
misunderstanding of the details. 

In order to remove such misunderstanding, or check that it has not 
occurred, it is desirable to give a rigorous mathematical specification of 
each data space, and the operators defined over it; and we follow what is 
now a customary mathematical practice of defining rigorously the subject 
matter of our reasoning, not by traditional definitions, but by sets of axioms. 

In view of the role which axioms play in the theory of data structuring, 
it may be helpful to summarise their intended properties. 

(1) Axioms are a formal statement of those properties which are shared 
by the real world and by its representation inside a computer, in virtue of 
which manipulation of the representation by a computer program will yield 
results which can be successfully applied back to the real world. 

(2) They establish a conceptual framework covering those aspects of the 
real world which are believed to be relevant to the programmer's task, and 
thereby assist in his constructive and inventive thinking. 

(3) They state rigorously those assumptions about the real world on which 
the computer program will be based. 

(4) They state the necessary properties which must be possessed by any 
computer representation of the data, in a manner free from detail which is in 
initial stages irrelevant. 

(5) They offer a carefully circumscribed freedom to the programmer or 
high-level language implementor to choose a representation most suitable 
for his application and hardware available. 

(6) They form the basis of any proof of correctness of a program. 

The axioms given here are not intended to be used directly in the proof 
of non-trivial programs, since such proofs would be excessively long-winded. 
Rather they may be used to establish the familiar properties of the data 
spaces they describe, and these properties can then be used informally in 
proofs. Eventually it may be possible to get computers to check such proofs; 
but this will require the development of much more powerful formal languages 
for expressing proofs than are at present provided by logicians, and the 
use of powerful decision procedures for large subclasses of theorem, to assist 
in verification of the individual steps of a proof. 
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The axioms applicable to a given type depend on how that type has been 
defined. Thus it is not possible to give in each case a fixed set of  axioms 
like those for integers; instead we give a pattern or schema which shows how 
a particular axiom set may be derived from the general form of the corres- 
ponding type definition. 

12.1. ENUMERATIONS AND SUBRANGES 

The following axioms are common  to both enumerat ions and subranges. 
They are modelled on the familiar axioms for natural  numbers.  The type 
name is assumed to be T, and all variables are assumed to be of this type. 

(1) T .min  is a T 

(2) If  x is a T, and x 4: T. max 

then succ (x) is a T 

(3) The only elements of T are as specified in (1) and (2) 

(4) succ (x) = succ (y) ~ x = y 

(5) succ (x) -¢ T. min 

(6) pred (succ (x)) = x 

The following three axioms apply only to ordered types 

(7) T .min  <~ x 

(8) x ~. T .min  ~ x = T .min  

(9) succ (x) ~< succ (y) -= x <~ y 

Note:  succ (T .max)  and pred (T .min)  are not defined. 

The general form of definition of a type by enumerat ion is 

type T = (k 1, k2, - . . ,  k , ) ;  

where T is the type name 

and k 1, k2, . . . ,  k ,  are names of  all values of the type. 

The addit ional  axiom for this type is: 

(10) k l  = T .min  

& k2 = succ (k 1) 
& k3 = succ(k2)  

° ° ° ° 

& k.  = succ ( k . _  1) = T.  max. 

The general form of a definition of a type as a subrange is 

type T = k . . l ;  

where k and l are of  the base type To. 
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The addit ional  axioms for this type are: 

(10) T . m i n  = k 

& T. max = I. 

(11) T ( T o ( x ) )  = x.  

(12) k <~ Xo & Xo <~ l =  T o ( T ( x o )  ) = Xo. 

(13) x <~ y - To (X)  <~ to(y). 

Using axioms (1) to (9) it is possible to prove the following propert ies of  
ordering:  

(TI)  x ~<x. 

(T2) x .~. succ (y) = x = s u c c  (y) v x < y. 

(T3) z < y & y < x = z < x .  

(T4) x < y & y ~ . x ~ x = y .  

Hint"  Use induct ion on x. P roof  of  T3 requires T2. 

Abbrevia t ions:  

If  Q is a monadic  opera tor  and @ is a dyadic operator ,  both  taking operands  
f rom the base type To, then the following abbreviat ions permit  omission of  
the transfer function, if a is of  type To and x, y are of  type T: 

(14) O x stands for O To(x) .  

(15) x @ y ,, ,, To (x )  O) To(y ) .  

(16) x @ a ,, ,, To(x )  O) a. 

(17) a @ x  ,, ,, a G T o ( x ) .  

(18) a: = x . . . .  a: = To(x) .  

12.2. CARTESIAN PRODUCTS 

The general form of  the definition of  a type as a Cartesian product  is 

type T =  (s l :T1;s2:Ta;  - . . ; s . : T . ) ;  

where sl ,  s2, . . . ,  s,  are the selectors of  the components ,  and T1, Tz . . . .  , T, 
are the types of  the corresponding components .  

(1) If  x l  is a T1 and Xa is a T2 and . . .  and x,  is a T, 

then T ( x  l , x z, . . . ,  x , )  is a T. 

(2) The only elements of  T are as specified in (1). 

(3) If  x = T ( x l ,  x2 . . . .  , x , )  then 

x . s l  = x l  & x . s 2  = x2 & . . .  & x . s ,  = x , .  
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Abbreviations' 

(4) x . s l "  = x l  stands for x ' =  T ( x l ,  x . s 2  . . . . .  x . s , )  

x . s ~ "  = x ~  ,, ,, x "  = r ( x . s , ,  x ~ ,  . . . ,  x . s , )  

. . . ° . 

X . S  n" = x n . . . .  X" = T ( x . s l ,  x . s 2  . . . .  , x n ) .  

(5) If x is a T then 

with x do S or with x take S stands for 

S S 1 , $ 2 ,  . . . , S n  
X .  S 1 , X .  S 2 , . . . , X .  Sn 

which means that each of the subscripts of S replaces all free occurrences 
of the corresponding superscript in S. 

(6) (xl,  x z, . . . ,  x , )  stands for T ( x l ,  x2  . . . . .  x,) in those contexts where 
an expression of type T is expected. 

The following axiom applies if the Cartesian product type is to be regarded 
as ordered" 

(7) x <~ y - - -  x . s  1 < y . s  1 

v x . s l  = y . s l  & ( x . s 2  < y .s2  

v x . s 2  = Y . S z  & ( x . s 3  < Y . S 3  

v . . .  & ( x . s , _  1 < Y . s , -  1 

v x . s , _  1 = y . s , _  ~ & x . s ,  ~ y . s , )  . . . ) ) .  

12.3. DISCRIMINATED UNIONS 

The general form of the definition is" 

. . . .  . .  ; • ; • T '  k 2 k m" T ' . , )  typeT=(s l  Tl,s2 Tz,. s . T .  kl 1, "T'2 . . . . .  

(1) i f x l i s a T  1 , x 2 i s a  T 2 , . . . , x ,  i sa  T, 

and x' i is a T' 1, x2 is a T'2, • . . ,  x'm is a T',, 

then the following are distinct elements of T 

r ( x , ,  x ~  . . . . .  x , ,  k , ( x ' , ) )  

r ( x , ,  x ~  . . . .  , x , ,  ~ : ~ ( x ' ~ ) )  

. . . m , e 

r ( x , ,  x~ . . . .  , x, ,  k , (~ ' , ) )  

(2) The only elements of T are as specified in (1). 
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(3) If  X = T(xx,  x 2 , . . . ,  x , ,  ki(x'i) ) for each i between 1 and m 

X . S  1 ~ .  X 1 • X . S  2 • X 2 t ~ . . .  & X . S  n = X n 

& x.k~ = x'i 

Note:  x . k z  is undef ined for  l 4: i. 

Abbrev ia t ions :  

(4) U n d e r  the same condi t ion  as (3) 

with x do {kl :$1, k2:$2 . . . .  , kn:Sn} means  

, a o ( S ) , , , ~  . . . . .  ~ .  . withx  i i x~,x2 ..... x, , 

and  similarly with take  instead of  do. 

(5) If n = O, k,(x' ,)  stands for  T(k,(x'i)).  

12.4. ARRAYS 

The general  fo rm of  an array definit ion is: 

type T = ar ray  D of R 

(1) I f  r is an R then T(r) is a T 

(2) I f x i s a T ,  d i s a D ,  a n d r i s a n R  

then T(x, d: r) is a T 

(3) The only elements  of  T are as specified in (1) and (2). 

(4) T(T(x ,  d:r),  d ' : r ' )  = 

if d = d' then T(x, d':r') 
else T( T(x, d' : r'), d : r ). 

(5) T(r)[d] = r. 

(6) T(x, d: r)[d'] = if  d' = d then r else x [d']. 

(7) (for i :D take  E(i))[j] = E(j) .  

Abbrev ia t ions :  

(8) x[d]: = r means  x: = T(x, d: r). 

(9) T(x, dx :rl, d2:r2 ,  . . . ,  d,:v,,) stands for 

T(T( .  . . T(T(x) ,  d,  :v,), d2 : v2). . . ), d,, : r,,). 

(10) in (9), the x may be omit ted,  if dl ,  d 2 , . . . ,  d,  exhaust  the domain  
type. Similarly, the T may be omit ted  in suitable contexts.  

If  the array type is ordered,  the fol lowing axiom applies:  

(11) x ~. y _= V d:D(y[d] < x[d] ~ ~ d ' :D(d '  < d &  x[d'] < y[d'])) 

T h e o r e m :  

x = y ~ V d:D(x[d] = y[d]) 
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12.5 POWERSETS 

The axioms given below for sets apply only to finite sets of hierarchically 
ordered type. It is therefore possible to avoid the paradoxes which endanger 
axiomatigations of more powerful versions of set theory. 

The general form of a powerset definition is: 

type T = powerset To, 

where To is the base type. 

let a, b, be values of type To. 

(1) T( ) i s a T  

(2) If x is a T and a is a To then 
x v T(a) i s a T  

(3) The only members of T are as specified in (1) and (2). 

(4) --lain T( ) 

(5) a in (y  v T(a)) 

(6) a ~ b = (a in (x v T(b)) ~ a in x) 

(7) T( ) = x  

(8) (y  v T(a)) = x=- (y = x & a i n x )  

(9) x = y ~ - ( x = y ) & ( y = x )  

(10) x v  T ( ) = x  
(1 l) x v (y v T(a)) = (x v T(a)) v y 

(12) x ^ r ( ) = T ( )  
(13) x ^ T(a) = if a in x then T(a) else T( ) 

(14) x ^ (y v T(a ) )=  (x A y) V (x A T(a)) 

(15) T( ) - x =  T( ) 

(16) T(a) - x = if a in x then T( ) else T(a) 

(17) (x v T ( a ) ) -  y = ( x -  y) v ( T ( a ) -  y) 

(18) s i z e ( T ( ) )  = 0 

(19) size (x v T(a)) = i f  a in x then size (x) else succ (size (x)) 

The following apply if the domain type To is ordered: 

(20) min (T (a ) )=  T(a) 

(21) x ~ T( ) = min (x v T(a)) = if a < min (x) then a else min (x) 

Note: min ( T ( ) )  is not defined 

(22) x d o w n 0 = x u p 0 = x  

: E 
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(23) x down succ (n) = (x down n) down 1 

(24) T( ) d o w n l  = T( ) 

(25) (x v T(a))down 1 = (x down 1 v 
if a -~ To. min then T(pred (a)) else T( ) 

(26)-(28) up is similarly defined, with succ for pred and max for min. 

(29) b < a D range (a, b) = T( ) 

(30) a ~< b D range (a, b) = T(a) 

(31) a < b = range (a, b) = range (a, pred (b)) v T(b) 

(32) j in {i:D l B(i)} ~ B(j)  

Abbreviat ions:  

(33) T(al, a 2 , . . . ,  an)stands for T(al) v T(a2) v . . .  v T(a,,) 

(34) {al, a 2 , . . . ,  an} stands for T(al, a2 . . . . .  an) 

(35) x: ^ y stands for x: = x ^ y 

(36) x : v y  . . . .  x : =  x v y 

(37) a from x stands for a : =  one of (x); x : -  (a} 

(38) if x = (a l ,  a2, . . . ,  an} then 

for a in x do S stands for 

S a • S a • . S  a a i r  a 2  ~ " " • ~ a n  

where the ai are in natural  order if the base type is ordered, and are in 
arbitrary order otherwise; and they do not contain repetitions. 

Theorems:  

x = y  ~ V a : T o ( a i n x ~ a i n y )  

a i n ( x  v y) ~ ( a i n x  v a i n y )  

a i n ( x  ^ y )  ~ (a in x & a in y) 

a in (x - y) ~. (a in x & -3 a in y) 

12.6 SEQUENCES 

The general form of a sequence definition is: 

type T = sequence D; 

(1) T( ) i s a  T 

(2) I f x i s a T a n d d i s a D  

t h e n x  T(d) is a T 

(3) The only elements of  T are as specified in (1) and (2) 

(4) (x- 'T(d) ) .  last = d 
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(5) initial ( x ~ T ( d ) )  = x 

(6) x (y z) = ( x  y) z 

(7) T(d) .  first = d 

(8) x -~ T( ) = ( f f - 'T(d)) . f i rs t  = x.f i rs t  

(9) final (T(d))  = T( ) 

(10) x ¢ T( ) = final ( f f - ' T ( d ) ) =  final ( x ) - ' T ( d )  

Note:  

(11) 
(12) 

(13) 
(14) 

(~5) 
(I6) 

last, initial, first, and final are not defined for T( ) 

T( ) ends y 

x T(d)  ends y ~_ y -¢ T( ) & y.  last = d & x ends initial (y) 

x b e g i n s T (  ) ~ x =  T( ) 

x begins y T(d)  ~_ x = f - - ' T ( d )  v x begins y 

length ( T ( ) )  = 0 

length ( x - ' T ( d ) )  = succ(length (x)) 

For  an ordered sequence type we have '  

(17) T( ) ~< y 

(18) x <  7"( ) = x =  r( ) 
(19) x, y -~ T( ) = (x ~< y _= x. first < y.  first v (x. first = y.  first 

& final (x) ~< final (y))) 

Abbreviat ions:  

(20) x" T(d) means x" = x T(d) 

(21) d from x means d: = x.f i rs t ;  x: = final (x) 

(22) d back from x means d: = x . las t ;  x: = initial (x) 

(23) from x means x: = final (x) 

(24) back from x means x : =  initial (x) 

(25) T(dl ,  dE . . . .  , d,) stands for 

(r( ,r(d.)) 
(26) [dl, dE, . . . ,  dn] stands for T(dl ,  d2, . . . ,  dn) 

(27) If x = [d~, d2 . . . .  , d~] then 

for d in x do S stands for 

s~ ;  s L  ; . . ; s ~ .  

for d in x take E stands for 

[E~, E ~ , . . . ,  e~,] 

173 
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Theorems  

x = y ~ (x = y = T( ) v x.f i rs t  = y . f i rs t  & x.f inal  = y.f inal)  

(x = y = T( ) v x . l as t  = y . l a s t  & x. initial = y. ini t ial)  
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