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2 J. W. KlopIntroductionThe concept of a Term Rewriting System (TRS) is paradigmatic for thestudy of computational procedures. Already half a century ago, the �-calculus, probably the most well-known Term Rewriting System, played acrucial role in mathematical logic with respect to formalizing the notion ofcomputability; much later the same TRS �gured in the fundamental workof Scott, Plotkin and others leading to a break-through in the denotationalsemantics of programming languages. More recently, the related system ofCombinatory Logic was shown to be a very fruitful tool for the implemen-tation of functional languages. Even more recently another related familyof TRS's, that of Categorical Combinatory Logic, has emerged, yielding aremarkable connection between concepts from category theory and elemen-tary steps in machine computations.Term rewriting systems are attractive because of their simple syntaxand semantics|at least those TRS's that do not involve bound variablessuch as �-calculus, but involve the rewriting of terms from a �rst orderlanguage. This simplicity facilitates a satisfactory mathematical analysis.On the other hand they provide a natural medium for implementing com-putations, and in principle even for parallel computations. This featuremakes TRS's interesting for the design of parallel reduction machines.Another �eld where TRS's play a fundamental role concerns the anal-ysis and implementation of abstract data type speci�cations (consistencyproperties, computability theory, decidability of word problems, theoremproving).The aim of the present paper is to give an introduction to several keyconcepts in the theory of term rewriting, providing where possible someof the details. At various places some `exercises' are included. These con-tain additional information for which proofs are relatively easy; they arenot primarily meant to have an educational purpose, if only because thedistribution of the exercises is not very uniform.The present introduction starts at a level of `rewriting' which is asabstract as possible and proceeds by considering term rewriting systemswhich have ever more `structure'. Thus we start with Abstract ReductionSystems, which are no more than sets equipped with some binary (`rewrite')relations. A number of basic properties and facts can already be stated onthis level.Subsequently, the abstract reductions are specialized to reductions (re-writings) of terms. For such general Term Rewriting Systems a key issue isto prove the termination property; we present one of the major and mostpowerful termination proof methods, recursive path orderings, in a new for-mulation designed to facilitate human understanding (rather than practical



Term Rewriting Systems 3implementation). Proving termination is of great importance in the areaof Knuth-Bendix completions. Here one is concerned, given an equationalspeci�cation, to construct a TRS which is both conuent and terminat-ing and which proves the same equations as the original speci�cation. Ifthe construction is successful, it yields a positive solution to the validityproblem of the original equational speci�cation. (Nowadays there are alsoseveral other applications of Knuth-Bendix-like completion methods, suchas `inductionless induction' and `computing with equations'. For a surveyof such applications we refer to Dershowitz & Jouannaud [90].)Also in Chapter 1, we explain the basic ideas of Knuth-Bendix comple-tion together with an interesting recent `abstract' approach of Bachmair,Dershowitz & Hsiang [86] to prove the correctness of Knuth-Bendix com-pletion algorithms. We also present an elegant uni�cation algorithm, andlikewise for `E-uni�cation'.In Chapter 2 we impose more `structure' on TRS's, in the form of an`orthogonality' requirement (non-ambiguity and left-linearity). For suchorthogonal TRS's a sizeable amount of theory has been developed, bothsyntactically and semantically. Here we will almost exclusively be con-cerned with the syntactical aspects; for semantical aspects we refer toBoudol [85], Berry & L�evy [79], Guessarian [81]. Basic theorems (conu-ence, the Parallel Moves Lemma, Church's theorem, O'Donnell's theorem)are presented, where possible with some proof sketch. Also in this sec-tion we survey the most important facts concerning reduction strategiesfor orthogonal TRS's, strategies aiming at �nding normal forms wheneverpossible. Chapter 2 concludes with an explanation of the beautiful theoryof Huet & L�evy [79] of (strongly) sequential TRS's. Such TRS's possess a`good' reduction strategy.In the �nal chapter (3) we consider TRS's with conditional rewrite rules.Some important topics have not found their way into this introduction.Most notable are: rewriting modulo a set of equations, proof-by-consistencyprocedures, and graph rewriting. For information about the �rst two we re-fer to Bachmair [88] and Dershowitz & Jouannaud [90], for graph rewritingone may consult Barendregt e.a. [87].This chapter is an extension of the short survey/tutorial Klop [87]; alsomost of the material in Klop [85] is included here.1 Abstract Reduction SystemsMany of the basic de�nitions for and properties of TRS's (Term RewritingSystems) can be stated more abstractly, viz. for sets equipped with oneor more binary relations. As it is instructive to see which de�nitions andproperties depend on the term structure and which are more basic, we start



4 J. W. Klopwith a section about Abstract Reduction Systems. Moreover, the conceptsand properties of Abstract Reduction Systems also apply to other rewritesystems than TRS's, such as string rewrite systems (Thue systems), treerewrite systems, graph grammars. First we present a sequence of simplede�nitions.De�nition 1.0.1.1. An Abstract Reduction System (ARS) is a structure A = hA; (!�)�2Iiconsisting of a set A and a sequence of binary relations !� on A,also called reduction or rewrite relations. Sometimes we will refer to!� as �. In the case of just one reduction relation, we also use !without more. (An ARS with just one reduction relation is called`replacement system' in Staples [75], and a `transformation system'in Jantzen [88].) If for a; b 2 A we have (a; b) 2!�, we write a!� band call b a one-step (�-)reduct of a.2. The transitive reexive closure of !� is written as ��. (More cus-tomary is the notation!��, but we prefer the double arrow notationas we �nd it more convenient in diagrams.) So a �� b if there is apossibly empty, �nite sequence of `reduction steps' a � a0 !� a1 !�� � � !� an � b. Here � denotes identity of elements of A. Theelement b is called an (�-)reduct of a. The equivalence relation gen-erated by !� is =�, also called the convertibility relation generatedby !�. The reexive closure of !� is !�� . The transitive closure of!� is !+� . The converse relation of !� is  � or !�1� . The union!� [ !� is denoted by !�� : The composition!� � !� is de�nedby: a!� � !� b if a!� c!� b for some c 2 A:3. If �; � are reduction relations on A, we say that � commutes weaklywith � if the diagram of Figure 1.1a holds, i.e. if 8a; b; c 2 A 9d 2A (c  � a !� b ) c �� d �� b), or in a shorter notation:  �� !� � �� � �� : Further, � commutes with � if �� and ��commute weakly. (This terminology di�ers from that of Bachmair &Dershowitz [86], where � commutes with � if ��1 � � � ��1 � �:)4. The reduction relation! is called weakly conuent or weakly Church-Rosser (WCR) if it is weakly self-commuting (see Figure 1.1b), i.e. if8a; b; c 2 A 9d 2 A (c  a ! b ) c � d � b): (The property WCRis also often called `local conuence', e.g. in Jantzen [88].)5. ! is subcommutative (notation WCR�1) if the diagram in Figure 1.1cholds, i.e. if 8a; b; c 2 A 9d 2 A (c a! b) c!� d � b):6. ! is conuent or is Church-Rosser, has the Church-Rosser property(CR) if it is self-commuting (see Figure 1.1d), i.e. 8a; b; c 2 A 9d 2A (c� a� b) c� d� b): Sometimes (6) is called `conuent' andthe situation as in Proposition 1.0.2(6) `Church-Rosser'.



Term Rewriting Systems 5Proposition 1.0.2. The following are equivalent:1. ! is conuent2. � is weakly conuent3. � is self-commuting4. � is subcommutative5. the diagram in Figure 1.1e holds, i.e.8a; b; c 2 A 9d 2 A (c a� b) c� d� b)6. 8a; b 2 A 9c 2 A (a = b) a � c� b) (Here `=' is the convertibilityrelation generated by !. See diagram in Figure 1.1f.)
Figure 1.1De�nition 1.0.3. Let A = hA;!i be an ARS.1. We say that a 2 A is a normal form if there is no b 2 A such thata ! b. Further, b 2 A has a normal form if b � a for some normalform a 2 A:2. The reduction relation! is weakly normalizing (WN) if every a 2 Ahas a normal form. In this case we also say that A is WN.



6 J. W. Klop3. A (or !) is strongly normalizing (SN) if every reduction sequencea0 ! a1 ! � � � eventually must terminate. (Other terminology: ! isterminating, or noetherian.) If the converse reduction relation  isSN, we say that A (or !) is SN�1.4. A (or!) has the unique normal form property (UN) if 8a; b 2 A(a = b& a; b are normal forms ) a � b).5. A (or !) has the normal form property (NF) if 8a; b 2 A(a is normalform & a = b) b� a):6. A (or !) is inductive (Ind) if for every reduction sequence (possiblyin�nite) a0 ! a1 ! � � � there is an a 2 A such that an � a for all n.7. A (or !) is increasing (Inc) if there is a map j j: A ! N such that8a; b 2 A (a! b ) j a j< j b j). Here N is the set of natural numberswith the usual ordering < :8. A (or !) is �nitely branching (FB) if for all a 2 A the set of onestep reducts of a, fb 2 A j a! bg, is �nite. If the converse reductionrelation  is FB, we say that A (or !) is FB�1. (In Huet [80], FBis called `locally �nite'.)Exercise 1.0.4. De�ne: A (or !) has the unique normal form property withrespect to reduction (UN!) if 8a; b; c 2 A(a� b & a� c & b; c are normal forms) b � c). Show that UN ) UN!, but not conversely.An ARS which is conuent and terminating (CR & SN) is also calledcomplete (other terminology: `canonical' or `uniquely terminating').Before exhibiting several facts about all these notions, let us �rst intro-duce some more concepts.De�nition 1.0.5. Let A = hA;!�i and B = hB;!�i be two ARS's.Then A is a sub-ARS of B, notation A � B, if:1. A � B2. � is the restriction of � to A, i.e. 8a; a0 2 A (a!� a0 , a!� a0)3. A is closed under �, i.e. 8a 2 A (a!� b) b 2 A):The ARS B is also called an extension of A.Note that all properties introduced so far (CR, WCR, WCR�1, WN,SN, UN, NF, Ind, Inc, FB) are preserved downwards: e.g. if A � B and Bis CR, then also A is so.Of particular interest is the sub-ARS determined by an element a in anARS.De�nition 1.0.6. Let A = hA;!i be an ARS, and a 2 A. Then G(a),the reduction graph of a, is the smallest sub-ARS of A containing a. SoG(a) has as elements all reducts of a (including a itself) and is structured



Term Rewriting Systems 7by the relation ! restricted to this set of reducts.We will now collect in one theorem several implications between the var-ious properties of ARS's. The �rst part (1) is actually the main motivationfor the concept of conuence: it guarantees unique normal forms, whichis of course a desirable state of a�airs in (implementations of) algebraicdata type speci�cations. Apart from the fundamental implication CR )UN, the most important fact is (2), also known as Newman's Lemma. Theproperty CP (`co�nality property') is de�ned in Exercise 1.0.8(13) below.Theorem 1.0.7.1. CR ) NF ) UN2. SN & WCR ) CR (Newman's Lemma)3. UN & WN ) CR4. UN & WN ) Ind5. Ind & Inc ) SN6. WCR & WN & Inc ) SN7. CR , CP for countable ARS's.Most of the proofs of (1)-(7) are easy. For Newman's Lemma a shortproof is given in Huet [80]; an alternative proof, illustrating the notion of`proof ordering', is given in Section 1.5 (Exercise 1.5.4). Proposition (5)is from Nederpelt [73]; (6) is proved in Klop [80a]; for (7) see Exercise1.0.8(13) below. The propositions in the statement of the theorem (andsome more|for these see Exercises 1.0.8) are displayed also in Figure 1.2;here it is important whether an implication arrow points to the conjunctionsign &, or to one of the conjuncts. Likewise for the tail of an implicationarrow. (E.g. UN & WN ) Ind, SN & WCR ) UN & WN, Inc ) SN�1,FB�1& SN�1 ) Inc, CR ) UN but not CR ) UN & WN.)It does not seem possible to reverse any of the arrows in this diagramof implications. An instructive counterexample to WCR) CR is the TRSin Figure 1.3 (given by R. Hindley, see also Huet [80]).There are several other facts about ARS's which often are very helpfule.g. in proving properties of algebraic data type speci�cations. We presentthem in the form of the following series of Exercises 1.0.8. For an under-standing of the sequel these additional facts are not necessary. Some proofsrequire the notion of `multiset ordering', explained in Exercise 1.3.15.Exercises 1.0.8.1. (Rosen [73]) If hA;!1;!2i is an ARS such that �1=�2 and !1 is sub-commutative, then !2 is conuent.2. (Hindley [64]) Let hA; (!�)�2Ii be an ARS such that for all �;� 2 I;!�commutes with !� . (In particular, !� commutes with itself.) Then the



8 J. W. Klop

Figure 1.2Figure 1.3union != U�2I !� is conuent. (This proposition is sometimes referredto as the Lemma of Hindley-Rosen; see e.g. Barendregt [81], Proposition3.3.5.)3. (Hindley [64]) Let hA;!1;!2i be an ARS. Suppose: 8a; b; c 2 A 9d 2A (a !1 b & a !2 c ) b �2 d & c !�1 d). (See Figure 1.4a.) Then!1;!2 commute.4. (Staples [75]) Let hA;!1;!2i be an ARS. Suppose: 8a; b; c 2 A 9d 2A (a !1 b & a �2 c ) b �2 d & c �1 d). (See Figure 1.4b.) Then!1;!2 commute.



Term Rewriting Systems 95. (Rosen [73]) Let hA;!1;!2i be an ARS. DEFINITION: !1 requests!2if 8a; b; c 2 A 9d; e 2 A (a�1 b & a�2 c) b�2 d & c�1 e�2 d): (SeeFigure 1.4c.) To prove: if !1;!2 are conuent and if !1 requests !2,then !12 is conuent.6. (Rosen [73]) Let hA;!1;!2i be an ARS such that !2 is conuent and8a; b; c 2 A 9d; e 2 A (a�1 b & a !2 c ) b�2 d & c�1 e�2 d). (SeeFigure 1.4d.) Then !1 requests !2 :7. (Staples [75]) Let hA;!1;!2i be an ARS such that !1 requests !2 and!2 is conuent. Let !3 be the composition of �1 and �2, i.e. a !3 bi� 9c a�1 c�2 b. Suppose moreover that 8a; b; c 2 A 9d 2 A (a�1 b &a�1 c) b!3 d & c!3 d). Then !12 is conuent.8. (Staples [75]) DEFINITION: In the ARS hA;!1;!2i the reduction re-lation !2 is called a re�nement of !1 if !1��2. If moreover 8a; b 2A 9c 2 A (a �2 b ) a �1 c & b �1 c), then !2 is a compatible re�ne-ment of !1 : Let in the ARS hA;!1;!2i the reduction relation !2bea re�nement of !1. Prove that !2 is a compatible re�nement of !1 i�8a; b; c 2 A 9d 2 A (a!2 b & b�1 c) c�1 d & a�1 d):9. (Staples [75]) Let hA;!1;!2i be an ARS where !2 is a compatible re-�nement of !1. Then: !1 is conuent i� !2 is conuent.10. (Huet [80]) DEFINITION: Let hA;!i be an ARS. Then! is called stronglyconuent (see Figure 1.4e) if 8a; b; c 2 A 9d 2 A (a ! b & a! c) b� d& c!� d). Prove that strong conuence implies conuence.11. Let hA; (!�)�2Ii be an ARS such that for all �;� 2 I;!� commutesweakly with !� . DEFINITION: (a) !� is relatively terminating if noreduction a0 ! a1 ! a2 ! : : : (where != U�2I !�) contains in�nitelymany ��steps. (b)!� has splitting e�ect if there are a; b; c;2 A such thatfor every d 2 A and every � 2 I with a !� b; a !� c; c �� d; b �� d,the reduction b �� d consists of more than one step. To prove: if every!� (� 2 I) which has splitting e�ect is relatively terminating, then ! isconuent. (Note that this is equivalent to Newman's Lemma.)12. (Winkler & Buchberger [83]) Let hA;!;>i be an ARS where the `reduc-tion' relation > is a partial order and SN. (So > is well-founded.) Sup-pose a ! b implies a > b. Then the following are equivalent: (a) !is conuent, (b) whenever a ! b and a ! c, there is a !-conversionb � d1 $ d2 $ : : : $ dn � c (for some n � 1) between b; c such thata > di (i = 1; : : : ; n). Here each $ is ! or  . (See Figure 1.4f.) (Notethat this strengthens Newman's Lemma.)13. (Klop [80a]) Let A = hA;!i be an ARS. Let B � A. Then B is co�nal inA if 8a 2 A 9b 2 B a � b. Furthermore, A is said to have the co�nalityproperty (CP) if in every reduction graph G(a); a 2 A, there is a (possiblyin�nite) reduction sequence a � a0 ! a1 ! : : : such that fan j n � 0g isco�nal in G(a). Then, for countable ARS's: A is CR , A has CP.14. Let A = hA;!i be an ARS. De�ne: A is consistent if not every pairof elements in A is convertible. Note that if A is conuent and has twodi�erent normal forms, A is consistent. Further, let A = hA;!�i;B =



10 J. W. Klop
Figure 1.4hB;!�i be ARS's such that A � B. Then we de�ne: B is a conservativeextension of A if 8a; a0 2 A (a =� a0 , a =� a0). Note that a conservativeextension of a consistent ARS is again consistent. Further, note that aconuent extension B of A is conservative.15. (Newman [42]) Let WCR1 be the following property of ARS's hA;!i :8a; b; c 2 A 9d 2 A (c  a ! b & b 6� c ) c ! d  b). (See Figure1.5a.) Prove that WCR1 & WN ) SN, and give a counterexample to theimplication WCR�1 & WN ) SN.16. (Bachmair & Dershowitz [86]) Let hA;!�;!�i be an ARS such that8a; b; c 2 A 9d 2 A (a !� b !� c ) a !� d ��� c). (In the termi-nology of Bachmair & Dershowitz [86]: � quasi-commutes over �.) (SeeFigure 1.5b.) Prove that �=� is SN i� � is SN. (For the de�nition of �=�,see Exercise 1.0.8(19) below.)17. (Klop [80a]) Let A = hA;!�i and B = hB;!�i be ARS's. Let � : A! Band � : B ! A be maps such that(a) �(�(a)) = a for all a 2 A;(b) 8a; a0 2 A8b 2 B 9b0 2 B (b !� a !� a0 ) b !� b0 !� a0)(Reductions in A can be `lifted' to B.) See Figure 1.5c.Prove that B is SN implies that A is SN.18. (Geser [90]) Let hA;!�;!�i be an ARS with two reduction relations �;�such that � [ � is transitive. Then: � [ � is SN , � is SN and � is SN.(Hint: use the following in�nite version of Ramsey's Theorem, in whichfor a set S the notation [S]2 is used to denote the set ffa; bg j a; b 2 S &a 6= bg of two-element subsets of S. Furthermore, N is the set of naturalnumbers. THEOREM: Let [N ]2be partitioned into subsets X and Y. Then



Term Rewriting Systems 11Figure 1.5there is an in�nite A � N such that either [A]2 � X or [A]2 � Y .)19. (Geser [90]) This exercise reformulates and slightly generalizes Exercise1.0.8(11). Let hA;!�;!�i be an ARS. DEFINITION: �=� (\� modulo�") is the reduction relation �����. So a!�=� b i� there are c; d such thata �� c !� d �� b: Note that � is relatively terminating (in the senseof Exercise 1.0.8(11)) i� �=� is SN. DEFINITION: � is called nonsplitting(with respect to �[�) if 8a; b; c 2 A9d 2 A(a!� b & a!�[� c) c��[�d & b (!�[�)� d): Prove: If �=� is SN, � is WCR, and � is non-splitting,then � [ � is conuent.1.1 Basic notionsSyntax of Term Rewriting SystemsA Term Rewriting System (TRS) is a pair (�; R) of an alphabet or signature� and a set of reduction rules (rewrite rules) R. The alphabet � consistsof:1. a countably in�nite set of variables x1; x2; x3; : : : also denoted asx; y; z; x0; y0; : : :2. a non-empty set of function symbols or operator symbols F;G; : : : ;each equipped with an `arity' (a natural number), i.e. the number of`arguments' it is supposed to have. We not only (may) have unary,binary, ternary, etc., function symbols, but also 0-ary: these are alsocalled constant symbols.The set of terms (or expressions) `over' � is Ter(�) and is de�ned induc-tively:1. x; y; z; : : : 2 Ter(�);2. if F is an n-ary function symbol and t1; : : : ; tn 2 Ter(�) (n � 0),then F (t1; : : : ; tn) 2 Ter(�). The ti (i = 1; : : : ; n) are the argumentsof the last term.Terms not containing a variable are called ground terms (also: closedterms), and Ter0(�) is the set of ground terms. Terms in which no variableoccurs twice or more, are called linear.



12 J. W. KlopContexts are `terms' containing one occurrence of a special symbol 2,denoting an empty place. A context is generally denoted by C[ ]. If t 2Ter(�) and t is substituted in 2 , the result is C[t] 2 Ter(�); t is said to bea subterm of C[t], notation t � C[t]. Since 2 is itself a context, the trivialcontext, we also have t � t. Often this notion of subterm is not preciseenough, and we have to distinguish occurrences of subterms (or symbols) ina term; it is easy to de�ne the notion of occurrence formally, using sequencenumbers denoting a `position' in the term, but here we will be satis�ed witha more informal treatment.Example 1.1.1. Let � = fA;M; S; 0g where the arities are 2,2,1,0 re-spectively. Then A(M (x; y); y) is a (non-linear) term, A(M (x; y); z) is alinear term, A(M (S(0); 0); S(0)) is a ground term, A(M (2; 0); S(0)) is acontext, S(0) is a subterm of A(M (S(0); 0); S(0)) having two occurrences:A(M (S(0); 0);S(0)).A substitution � is a map from Ter(�) to Ter(�) which satis�es�(F (t1; : : : ; tn)) = F (�(t1); : : : ; �(tn)) for every n-ary function symbol F(here n � 0). So, � is determined by its restriction to the set of variables.We also write t� instead of �(t):A reduction rule (or rewrite rule) is a pair (t; s) of terms 2 Ter(�). Itwill be written as t ! s. Often a reduction rule will get a name, e.g. r,and we write r : t! s. Two conditions will be imposed:1. the LHS (left-hand side) t is not a variable,2. the variables in the right-hand side s are already contained in t.A reduction rule r : t ! s determines a set of rewrites t� !r s� for allsubstitutions �. The LHS t� is called a redex (from `reducible expression'),more precisely an r-redex. A redex t� may be replaced by its `contractum's� inside a context C[ ]; this gives rise to reduction steps (or one-steprewritings) C[t�]!r C[s�]:We call !r the one-step reduction relation generated by r. Concatenatingreduction steps we have (possibly in�nite) reduction sequences t0 ! t1 !t2 ! � � � or reductions for short. If t0 ! � � � ! tn we also write t0 � tn,and tn is a reduct of t0, in accordance with the notations and conceptsintroduced in Section 1.0.Example 1.1.2. Consider � as in Example 1.1.1. Let (�; R) be the TRS(specifying the natural numbers with addition, multiplication, successorand zero) with reduction rules R given in Table 1.1.Now M (S(S(0)); S(S(0))) � S(S(S(S(0)))), since we have the followingreduction:



Term Rewriting Systems 13r1 A(x; 0) ! xr2 A(x; S(y)) ! S(A(x; y))r3 M (x; 0) ! 0r4 M (x; S(y)) ! A(M (x; y); x)Table 1.1M(S(S(0));S(S(0))) ! A(M(S(S(0));S(0));S(S(0)))! S(A(M(S(S(0));S(0));S(0)))! S(S(A(M(S(S(0));S(0));0)))! S(S(M(S(S(0));S(0))))! S(S(A(M(S(S(0));0); S(S(0)))))! S(S(A(0;S(S(0)))))! S(S(S(A(0;S(0)))))! S(S(S(S(A(0;0)))))! S(S(S(S(0)))):Here in each step the bold-face redex is rewritten. Note that this is not theonly reduction from M (S(S(0)); S(S(0))) to S(S(S(S(0)))).Obviously, for each TRS (�; R) there is a corresponding ARS, namely(Ter(�); (!r)r2R). Here we have to be careful: it maymake a big di�erencewhether one discusses the TRS (�; R) consisting of all terms, or the TRSrestricted to the ground terms (see the next example). We will adoptthe convention that (�; R) has as corresponding ARS the one mentionedalready, and we write (�; R)0 if the ARS (Ter0(�); (!r)r2R) is meant. Viathe associated ARS, all notions considered in Section 1.0 (CR, UN, SN,. . . ) carry over to TRS's.Example 1.1.3. Let (�; R) be the TRS of Example 1.1.2 and consider(�; R0) where R0 = R [ fA(x; y) ! A(y; x)g; so the extra rule expressescommutativity of addition. Now (�; R0) is not WN: the term A(x; y) has nonormal form. However, (�; R0)0 (the restriction to ground terms) is WN.Whereas (�; R)0 is SN, (�; R0)0 is no longer so, as witnessed by the in�nitereductions possible in the reduction graph in Figure 1.6. The `bottom'term in that reduction graph is a normal form.Many-sorted Term Rewriting SystemsTRS's (�; R) as we just have de�ned are sometimes called homogeneous(Ganzinger & Giegerich [87]), as they correspond to algebraic data typespeci�cations (by replacing `!' by `=' in R) where the signature � has



14 J. W. Klop
Figure 1.6just one sort (which therefore was not mentioned).It is straightforward to extend our previous de�nitions to the hetero-geneous or many-sorted case. The de�nition of term formation is as usualin many-sorted abstract data type speci�cations, and is left to the reader.We will stick to the homogeneous case, but note that `everything' extendsat once to the heterogeneous case, at least with respect to the theory inthis chapter; of course, the extension to the heterogeneous case presentsa whole area of new features and problems (see e.g. Ehrig & Mahr [85],Drosten [89] for a treatment of many-sorted speci�cations and rewriting).Semi-Thue systemsSemi-Thue Systems (STS's), as de�ned in Jantzen [88], can be `viewed' intwo ways as TRS's. We demonstrate this by the following:1. Let T = f(aba; bab)g be a one-rule STS. Then T corresponds to theTRS R with unary function symbols a; b and a constant o, and thereduction rule a(b(a(x))) ! b(a(b(x))). Now a reduction step inT , e.g.: bbabaaa ! bbbabaa, translates in R to the reduction stepb(b(a(b(a(a(a(o))))))) ! b(b(b(a(b(a(a(o))))))). It is easy to see thatthis translation gives an `isomorphism' between T and R (or moreprecisely (R)0, the restriction to ground terms).2. The second way to let a STS correspond to a TRS is by introducingan associative concatenation operator, and letting the symbols of theSTS correspond to constant symbols in the TRS. In fact, a `natu-ral' correspondence in this way requires that we introduce equationalTRS's, which we will not do here. (See e.g. Bachmair & Plaisted [85]or Plaisted [85].)



Term Rewriting Systems 15Applicative Term Rewriting SystemsIn some important TRS's there is a very special binary operator, calledapplication (Ap). E.g. Combinatory Logic (CL), based on S;K; I, has therewrite rules as in Table 1.2. Here S;K; I are constants. Often one usesAp(Ap(Ap(S; x); y); z) ! Ap(Ap(x; z); Ap(y; z))Ap(Ap(K;x); y) ! xAp(I; x) ! xTable 1.2the in�x notation (t � s) instead of Ap(t; s), in which case the rewrite rulesof CL read as follows:((S � x) � y) � z ! (x � z) � (y � z)(K � x) � y ! xI � x ! xTable 1.3As in ordinary algebra, the dot is mostly suppressed; and a further no-tational simpli�cation is that many pairs of brackets are dropped in theconvention of association to the left. That is, one restores the missingbrackets choosing in each step of the restoration the leftmost possibility.Thus the three rules become:Sxyz ! xz(yz)Kxy ! xIx ! xTable 1.4Note that xz(yz) restores to (xz)(yz), not to x(z(yz)). Likewise Kxyrestores to (Kx)y, not K(xy). Of course not all bracket pairs can bedropped: xzyz is when restored ((xz)y)z, which is quite di�erent fromxz(yz). Note that e.g. SIx does not contain a redex Ix.It is a convenient �ction to view the S;K; I in the last three equationsas \operators with variable arity" or varyadic operators, since they maybe followed by an arbitrary number of arguments t1; : : : ; tn(n � 0). But itneeds, in the case of S, at least three arguments to use the rewrite rule for



16 J. W. KlopS; e.g.: St1t2t3t4t5t6 ! t1t3(t2t3)t4t5t6:Example 1.1.4. We have SII(SII) ! I(SII)(I(SII)) ! SII(I(SII)) !SII(SII). The term SII(SII) has manymore reductions, which constitutean interesting reduction graph (see Figure 1.7).
Figure 1.7The TRS CL has `universal computational power': every (partial) re-cursive function on the natural numbers can be expressed in CL. Thisfeature is used in Turner [79], where CL is used to implement functionalprogramming languages. Actually, an extension of CL is used there, calledSKIM (for S,K,I-Machine); it is also an applicative TRS (see Table 1.5).Note that this TRS has in�nitely many constants: apart from the constantsS;K; : : : ; eq there is a constant n for each n 2 N. There are also in�nitelymany reduction rules, because the last four rules are actually rule schemes;e.g. plus n m ! n+m stands for all reduction rules like plus 0 0 ! 0,plus 0 1 ! 1 ; : : : ; plus 37 63 ! 100 ; : : : . In fact, the extra constantsin SKIM are there for reasons of e�cient implementation; they can all bede�ned using only S and K. E.g. de�ning B as S(KS)K we have:Bxyz � S(KS)Kxyz ! KSx(Kx)yz! S(Kx)yz! Kxz(yz)! x(yz)



Term Rewriting Systems 17Sxyz ! xz(yz)Kxy ! xIx ! xCxyz ! xzyBxyz ! x(yz)Y x ! x(Y x)Uz(Pxy) ! zxycond true xy ! xcond false xy ! yplus n m ! n+mtimes n m ! n �meq n n ! trueeq n m ! false if n 6= mTable 1.5as we should have. Likewise, de�ning C as S(BBS)(KK), we have Cxyz �xzy as the reader may check. For the other de�nitions one may consultBarendregt [81] or Hindley & Seldin [86].It is harmless to mix the applicative notation with the usual one, as inCL with test for syntactical equality in Table 1.6.Sxyz ! xz(yz)Kxy ! xIx ! xD(x; x) ! ETable 1.6However, some care should be taken: consider the TRS in Table 1.7.Sxyz ! xz(yz)Kxy ! xIx ! xDxx ! ETable 1.7where D is now a constant (instead of a binary operator) subject to therewrite rule, in full notation, Ap(Ap(D;x); x)! E. These two TRS's have



18 J. W. Klopvery di�erent properties, as we shall see later (the �rst TRS is conuent,the second is not).Another interesting example of a TRS in such a mixed notation is WeakCategorical Combinatory Logic, which plays an important role in imple-mentations of functional languages (see Curien [86] and Hardin [89]):Id x ! x(x � y)z ! x(yz)Fst (x; y) ! xSnd (x; y) ! yhx; yiz ! (xz; yz)App (x; y) ! xy�(x)yz ! x(y; z)Table 1.8Here Id, Fst, Snd, App are constants, �; h; i and ( , ) are binary functionsymbols and � is a unary function symbol. Note that Fst, Snd are notbinary symbols and that App is not the `underlying' application operatorwhich was called in CL above Ap.1.2 Disjoint sums of Term Rewriting SystemsIn view of the need for modularisation of abstract data type speci�cations,it would be very helpful if some properties of a TRS could be inferred fromtheir validity for `parts' of that TRS. The simplest possible de�nition of`parts' is that obtained by the concept of `disjoint sum' of TRS's:De�nition 1.2.1. Let R1; R2 be TRS's. Then the disjoint sum R1 � R2of R1; R2 is the TRS obtained by taking the disjoint union of R1 and R2.That is, if the alphabets of R1; R2 are disjoint (R1; R2 have no function orconstant symbols in common), then the disjoint sum is the ordinary union;otherwise we take renamed copies R01; R02 of R1; R2 such that these copieshave disjoint alphabets and de�ne R1�R2 to be the union of these copies.We have the following useful fact from Toyama [87b]:Theorem 1.2.2. R1 �R2 is conuent i� R1 and R2 are conuent.So, conuence is a `modular' property. One might think that the same istrue for termination (SN), but Toyama [87a] gives a simple counterexample:take R1 = ff(0; 1; x)! f(x; x; x)gR2 = for(x; y)! x; or(x; y)! yg



Term Rewriting Systems 19then R1; R2 are both SN, but R1 � R2 is not, since there is the in�nitereduction:f(or(0; 1); or(0; 1); or(0; 1)) ! f(0; or(0; 1); or(0; 1))! f(0; 1; or(0; 1))! f(or(0; 1); or(0; 1); or(0; 1))! � � �In this counterexample R2 is not conuent and thus one may conjecturethat `conuent and terminating' (or CR & SN, or complete) is a modularproperty (i.e. R1 � R2 is complete i� R1; R2 are so). Again this is notthe case, as a counterexample given by Barendregt and Klop (adapted byToyama, see Toyama [87a]) shows: R1 has the eleven rulesF (4; 5; 6; x) ! F (x; x; x; x)F (x; y; z; w) ! 7and R2 has the three rules G(x; x; y) ! xG(x; y; x) ! xG(y; x; x) ! x:(Similar counterexamples with the additional property of being `reduced' or`irreducible'|meaning that both sides of every rule are normal forms withrespect to the other rules (see De�nition 1.4.18 below for a more accuratede�nition)|are given in Toyama [87a] and Ganzinger & Giegerich [87].)Now R1 and R2 are both complete, but R1 � R2 is not:F (G(1; 2; 3); G(1; 2; 3); G(1; 2; 3); G(1; 2; 3)) �F (G(4; 4; 3); G(5; 2; 5); G(1; 6; 6); G(1; 2; 3)) �F ( 4; 5; 6; G(1; 2; 3)) !F (G(1; 2; 3); G(1; 2; 3); G(1; 2; 3); G(1; 2; 3)):Exercise 1.2.3. A simpler counterexample is given in Drosten [89]. Slightlyadapted it reads:



20 J. W. KlopR1 F (0; 1; x) ! F (x;x; x)F (x;y; z) ! 20 ! 21 ! 2and R2 D(x;y; y) ! xD(x;x; y) ! y:Now R1;R2 are complete; however, their disjoint sum is not. To see this, considerthe term F (M;M;M) where M � D(0; 1; 1) and show that F (M;M;M) has acyclic reduction.The last counterexamples involve a non-leftlinear TRS. This is essential,as the following theorem indicates. First we de�ne this concept:De�nition 1.2.4.1. A reduction rule t! s is left-linear if t is a linear term.2. A TRS is left-linear if all its reduction rules are left-linear.Theorem 1.2.5. (Toyama, Klop & Barendregt [89]) Let R1; R2 be left-linear TRS's. Then: R1 � R2 is complete i� R1 and R2 are complete.Some useful information concerning the inference of SN for R1�R2 fromthe SN property for R1 and R2 separately is given in Rusinowitch [87a] andMiddeldorp [89b], in terms of `collapsing' and `duplicating' rewrite rules.De�nition 1.2.6.1. A rewrite rule t! s is a collapsing rule (c-rule) if s is a variable.2. A rewrite rule t! s is a duplicating rule (d-rule) if some variable hasmore occurrences in s than it has in t.Example 1.2.7. F (x; x)! G(x; x) is not a d-rule, but F (x; x)! H(x; x; x)is. Also P (x)! G(x; x) is a d-rule.Theorem 1.2.8. Let R1 and R2 be TRS's both with the property SN.1. If neither R1 nor R2 contain c-rules, R1 � R2 is SN.2. If neither R1 nor R2 contain d-rules, R1 � R2 is SN.3. If one of the TRS's R1; R2 contains neither c- nor d-rules, R1�R2 isSN.Statements (1) and (2) are proved in Rusinowitch [87a]; statement (3)is proved in Middeldorp [89b].Exercise 1.2.9. Prove that WN is a modular property.Another useful fact, proved in Middeldorp [89a], is that UN is a modular



Term Rewriting Systems 21property.Theorem 1.2.10. R1 �R2 is UN i� R1 and R2 are so.The proof of this theorem employs a lemma of independent interest; seethe proof sketch in the following exercises.Exercises 1.2.11. (Middeldorp [90])1. Let R be a TRS. For t 2 Ter(R), [t] denotes the equivalence class of t withrespect to convertibility in R: [t] = ft0 j t =R t0g. Further, V (t) is theset of variables occurring in t. EV (t) is the set of essential variables of t,de�ned as: \t02[t]V (t0):2. Now let t(~x; ~y ) be a term with essential variables ~x = x1; : : : ; xn andnon-essential variables ~y = y1; : : : ; ym. Prove that for arbitrary terms~s = s1; : : : ; sm we have t(~x;~s ) =R t(~x; ~y ).3. Let R have the property UN (unique normal forms). Show that a normalform has only essential variables.4. Let R contain a ground term (i.e., R contains a constant symbol). Showthat every convertibility class [t] contains a term s having only essentialvariables.5. Let R have the property UN and contain a ground term. Show that thereis a choice function ' from f[t] j t 2 Ter(R)g to Ter(R), selecting from eachequivalence class [t] a term such that(a) '([t]) 2 [t];(b) if [t] contains a normal form t0, then �([t]) � t0;(c) '([t]) contains only essential variables.6. LEMMA. Let R be a TRS with property UN and containing a ground term.Then R can be extended to a conuent TRS R0 with the same alphabet, thesame convertibility and the same normal forms.Prove the lemma by considering R0, originating from R by adding the setof reduction rules ft ! '([t]) j t 2 Ter(R) & t 6� '([t])g. (Note that thet! '([t]) are added as reduction rules, not merely as reduction steps.)7. LEMMA. Let R be a TRS with property UN. Then R can be extended to aconuent TRS R0 with the same convertibility and the same normal forms.Prove the lemma as follows: in case R contains a constant, (6) applies; ifnot, we add a constant C and a rule C ! C to yield R00. Now apply (6)on R00.Exercise 1.2.12. (Middeldorp [90]) Let R1;R2 be disjoint TRS's, bothhaving the property UN. Show that R1 � R2 has property UN. (Proof sketch:Use the previous exercise to extend Ri to R0i such that R0i is conuent and hasthe same convertibility and the same normal forms as Ri (i = 1; 2). Moreover,R01 and R02 can be taken disjoint from each other. By Toyama's theorem (1.2.2)R01 �R02 is conuent, and hence also UN. Now consider t; t0 2 Ter(R1 �R2) suchthat t; t0 are normal forms and convertible in R1 � R2. Obviously t; t0 are alsoconvertible in R01 � R02. The proof is concluded by showing that t; t0 are also



22 J. W. Klopnormal forms in R01 � R02. Hence t � t0, and R1 �R2 is UN.)Examples 1.2.13.1. Consider CL � fD(x; x)! Eg, Combinatory Logic with binary testfor syntactic equality as in Table 1.6. Note that this is indeed adisjoint sum. As we shall see in Section 2.1, CL is conuent. Trivially,the one rule TRS fD(x; x) ! Eg is conuent. Hence, by Toyama'stheorem (1.2.2) the disjoint sum is conuent.2. By contrast, the union CL [ fDxx ! Eg, Combinatory Logic with`varyadic' test for syntactic equality as in Table 1.7, is not conuent.(See Klop [80a].) Note that this combined TRS is merely a unionand not a disjoint sum, since CL and fDxx ! Eg have the func-tion symbol Ap in common, even though hidden by the applicativenotation.3. Another application of Toyama's theorem (1.2.2): let R consist of therules if true then x else y ! xif false then x else y ! yif z then x else x ! x(Here true; false are constants and if � then � else is a ternaryfunction symbol.) Then CL � R is conuent. Analogous to thesituation in (2), it is essential here that the if � then�else constructis a ternary operator. For the corresponding varyadic operator, theresulting TRS would not be conuent.Remark 1.2.14. A di�erent approach to modularity is taken by Kurihara& Kaji [88]. If R1 and R2 are disjoint TRS's, it is not allowed in thatapproach to perform arbitrary interleaving of R1-steps and R2-steps; thereis the obligation to use as long as possible the rules of the same TRS.Thus, if a rule of say R1 is applied to term t, we must �rst normalize t withrespect to R1, before applying rules of R2, and vice versa. Formally: de�nerelations Ii (i = 1; 2) for terms s; t 2 Ter(R1�R2) by s Ii t if s!+i t andt is a normal form of Ri: Furthermore, I is the union of I1 and I2. NowKurihara & Kaji [88] prove the following theorem:1. Let R1; R2 be disjoint TRS's. Then the relation I is terminating(SN).2. Let R1; R2 be disjoint complete TRS's. Then the relation I is com-plete.Note that in (1) R1; R2 need not be SN. We will sketch a proof of (2).Assuming (1), part (2) of the theorem follows in some easy steps: Firstobserve that for I we have UN , CR, using UN & SN ) CR, a generalfact for ARS's. So to prove UN for I. Consider reductions s I � � � I t1



Term Rewriting Systems 23and s I � � � I t2, where t1; t2 are I-normal forms. Because the originalreductions !i (i = 1; 2) in Ri are SN, the terms t1; t2 are normal formswith respect to!, the union of!i (i = 1; 2). Hence by Toyama's theorem1.2.2: t1 � t2.Exercises 1.2.15. (Middeldorp)1. Show that the modularity of WN (Exercise 1.2.9) is a corollary of thetheorem in Remark 1.2.14.2. Give an example of disjoint conuent TRS's such that I is not conuent.(Solution by A. Middeldorp of this question in Kurihara & Kaji [88]: R1 =fF (x; x) ! F (x; x);A ! Bg; R2 = fe(x) ! xg. Now F (e(A);A) I1F (e(B);B) I2 F (B;B) and F (e(A);A) I2 F (A;A): The terms F (A;A)and F (B;B) are di�erent I-normal forms.)In this introduction to TRS's we will not consider termination proper-ties of combined TRS's R1 [ R2 which are not disjoint sums. For resultsin that area see Dershowitz [81, 87], Bachmair & Dershowitz [86], Toyama[88] and, for heterogeneous TRS's, Ganzinger & Giegerich [87]. As to con-uence properties of combined TRS's R1[R2 which are not disjoint sums,we include two facts in the following exercises, which require some conceptsfrom the sequel (namely, the notion of overlapping reduction rules, criticalpairs, and �-calculus).Exercise 1.2.16. (Raoult & Vuillemin [80], Toyama [88]) Let R1;R2 beTRS's. De�ne: R1?R2 (R1 and R2 are orthogonal to each other) if there is nooverlap between a rule of R1 and one of R2. (There may be critical pairs due tooverlap between R1-rules, or between R2-rules.) Prove:Theorem. Let R1;R2 be left-linear and conuent TRS's such that R1?R2. ThenR1 [R2 is conuent.(Proof sketch. Prove that in R1 [ R2 we have: (1) R1-reductions commute;(2) R2-reductions commute; (3) R1-reductions commute with R2-reductions. Inorder to prove (3), it is su�cient to prove (4) as in Figure 1.8. To prove (4),we need the left-linearity and the orthogonality requirements. The result nowfollows by an application of the Hindley-Rosen lemma in Exercise 1.0.17(3). Theorthogonality is obviously necessary. Note that also the left-linearity cannot bedropped|see Example 1.2.13(2).) Figure 1.8



24 J. W. KlopExercises 1.2.17. Prove:Theorem. Let R be a left-linear, conuent TRS. Let the signature of R be dis-joint from that of �-calculus, i.e. R does not contain the application operator.Then �� R, the disjoint sum of �-calculus and R, is conuent.Proof sketch: by the same strategy as used for Exercise 1.2.16.Semantics of Term Rewriting SystemsAlthough we do not enter the subject of semantics of TRS's (see e.g. Boudol[85], Guessarian [81]), there is one simple remark that should be made. Itconcerns a semantical consideration that can be of great help in a proof ofUN or CR:Theorem 1.2.18. Let A be an algebra `for' the TRS R such that for allnormal forms t; t0 of R: A � t = t0 ) t � t0:Then R has the property UN (uniqueness of normal forms).Here the phrase `A is an algebra for the TRS R' means that A has thesame signature as R, and that reduction in R is sound with respect to A,i.e. t�R s implies A � t = s. The terms t; s need not be ground terms.More `semantic conuence tests' can be found in Plaisted [85], in thesetting of equational TRS's (not treated here).Decidability of properties in Term Rewriting SystemsWe adopt the restriction in this subsection to TRS's R with �nite alphabetand �nitely many reduction rules. It is undecidable whether for such TRS'sthe property conuence (CR) holds. (This is so both for R, the TRS of allterms, and (R)0, the TRS restricted to ground terms.)For ground TRS's, i.e. TRS's where in every rule t ! s the termst; s are ground terms (not to be confused with (R)0 above), conuence isdecidable (Dauchet & Tison [84], Dauchet et al. [87], Oyamaguchi [87]).For the termination property (SN) the situation is the same. It isundecidable for general TRS's, even for TRS's with only one rule (see fora proof Dauchet [89]). For ground TRS's termination is decidable (Huet &Lankford [78]).For particular TRS's it may also be undecidable whether two termsare convertible, whether a term has a normal form, whether a term hasan in�nite reduction. A TRS where all these properties are undecidable isCombinatory Logic (CL), in Table 1.4.Exercise 1.2.19. If t 2 Ter(R), we say \t is SN" if t admits no in�nitereduction t ! t0 ! t00 ! � � � . Prove: If R is not SN, then there is a redex of R



Term Rewriting Systems 25which is not SN. In fact, then there is a redex whose contractum is not SN.Exercises 1.2.20. (Huet & Lankford [78])1. Let R be a ground TRS with �nitely many rules, R = fti ! si j i =1; : : : ; ng. Prove: If R is not SN, then for some i 2 f1; : : : ; ng and somecontext C[ ] we have ti !+ C[ti]: (Hint: Use the previous exercise and useinduction on n.)2. Conclude: SN is decidable for �nite ground TRS's.Exercise 1.2.21. (Undecidability of SN) In this exercise we will outline aproof that SN is an undecidable property for (�nite) TRS's, via a translation ofthe problem to the (uniform) halting problem for Turing machines. The proof isa slight simpli�cation of the one in Huet & Lankford [78]. (However, that proofemploys only constants and unary function symbols; below we use also binaryfunction symbols.) We will not be concerned with the number of reduction rulesemployed in the translation of a Turing machine to a TRS; for an undecidabilityproof using a TRS of only two reduction rules, thus establishing that SN isundecidable even for TRS's with only two rules, see Dershowitz [87]. For a(complicated) proof that even for one rule TRS's the property SN is undecidable,see Dauchet [89]. (Even more, for orthogonal one rule TRS's SN is undecidable,as shown in Dauchet [89]. The property `orthogonal' is de�ned in Chapter 2.)A (deterministic) Turing machine M consists of a triple hQ;S; �i where Q is aset fq0; : : : ; qng of states, S = f2; s1; : : : ; smg is the set of tape symbols (2 beingthe empty symbol or `blank'), and � is a partial function (the transition function)from Q � S to Q� S � fL;Rg. Here L represents a move to the left, R to theright.An instantaneous description or con�guration is an element of S�QS� (inthe well-known notation of regular expressions). E.g. in Figure 1.9(a) the con-�guration 2aqba2a is pictured; the understanding is that in the con�gurationw1qw2 the head is in state q and scans the �rst symbol to the right of it, i.e. ofw2. Furthermore, the in�nite portions of tape which are to the left of w1 andto the right of w2, are supposed to be blank. Equivalent con�gurations arise byappending to the left or to the right of the con�guration �nite portions of emptytape, i.e. elements of f2g�:The transition function � determines transition rules, of the formqst� s0q0t (for all t 2 S) whenever �(q; s) = (q0; s0;R)and tqs� q0ts0 for all t 2 S) whenever �(q; s) = (q0; s0; L):A transition rule of the �rst type (`R-type') is a move to the right (see Figure1.9(b)), and of the second type (`L-type') a move to the left. A rule of the �rsttype can also be rendered asqs� s0q0 whenever �(q; s) = (q0; s0;R):Transition rules may be applied in a `context', giving rise to transitions betweencon�gurations, by appending words w1; w2 2 S� to the left and the right. Thus
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Figure 1.9the transition rule qst� s0q0tR generates transitions w1qstw2 � w1s0q0tw2 forall w1; w2 2 S�. Note that transitions operate in fact on equivalence classes ofcon�gurations.We will now translate all this in the terminology of TRS's. That is, weassociate to the Turing machine M = hQ;S; �i a TRS RM as follows. For eachq 2 Q there is a binary function symbol which we will denote with the sameletter. Each s 2 S corresponds to a unary function symbol, also denoted withthe same letter. Furthermore, the alphabet of Rm contains a constant symbol �.A word w 2 S� is translated into the term �(w) as follows:�(") = � (" is the empty word)�(sw) = s(�(w)) for s 2 S;w 2 S�:E.g. the translation of ba�a is b(a(�(a(�)))). In the sequel of this exer-cise we will suppress parentheses by association to the right, thus renderingb(a(�(a(�)))) as ba�a�.



Term Rewriting Systems 27A con�guration w1qw2 will be translated to q(�(w�11 ); �(w2)). Here w�11 is w1reversed. The reason for this reversal will be clear later. E.g. the con�guration�aqba�a is translated to q(a��; ba�a�).We will now de�ne the translation of the transition rules ofM into reductionrules of RM . To transition rules of R-type, qs � s0q0, we let correspond thereduction rule q(x; sy)! q0(s0x; y):In the case that s is �, so that the rule reads q� � s0q0, we add moreover thereduction rule q(x;�)! q0(s0x;�):In some sense, the second rule is a degenerate case of the �rst one; conceiving �as a potentially in�nite portion of tape, satisfying the equation � = ��, it isclear how this rule arises from the �rst one.To a rule of L-type, tqs� q0ts0, we let correspond the reduction ruleq(tx; sy)! q0(x; ts0y):Again we have some extra rules for the `degenerate' cases. If tqs � q0ts0 is infact �qs� q0ts0 we add moreoverq(�; sy)! q0(�;�s0y):If tqs� q0ts0 is in fact tq�� q0ts0 we add moreoverq(tx;�)! q0(x; ts0�):If tqs� q0ts0 is �q� � q0�s0 we add moreoverq(�;�)! q0(�;�s0�):(So the transition rule �q� � q0�s0 corresponds to four reduction rules.)1. Now it is not hard to prove that for con�gurations �;� we have:�� � , �(�)! �(�):2. Prove that, given a TRS R and a term t in R, the problem to determinewhether t has an in�nite reduction in R, is undecidable. This means: thereis no algorithm that accepts as inputs pairs (R; t) of a TRS R (given by a�nite set of rewrite rules) and a term t 2 Ter(R), and that yields as outputthe answer `yes' if t has an in�nite reduction in R, and `no' otherwise.(Using (1), reduce this problem to the well-known undecidable haltingproblem for Turing machines with empty tape as initial con�guration.)3. To each ground term in RM of the form q(t1; t2) where t1; t2 are terms inwhich no q0 2 Q occurs (call such a term `restricted'), there corresponds a



28 J. W. Klopcon�guration of M ; but this is not so without that restriction. Prove thatif some term t in RM has an in�nite reduction in RM , then there is alsoa restricted ground term t0 in RM having an in�nite reduction, and thusyielding a corresponding in�nite run of the Turing machine M .4. Prove, using (3) and referring to the well-known undecidable uniform halt-ing problem for Turing machines, that the problem to determine whethera given TRS is SN (strongly normalizing) is undecidable. The uniformhalting problem for Turing machines is the problem to decide whether agiven Turing machine halts on every input as initial con�guration.1.3 A termination proof techniqueAs Newman's Lemma (WCR & SN ) CR) shows, termination (SN) is auseful property. In general, as noted in Exercise 1.2.21, it is undecidablewhether a TRS is SN; but in many instances SN can be proved and varioustechniques have been developed to do so. (See Huet & Oppen [80], Der-showitz [87].) We will present in this section one of the most powerful ofsuch termination proof techniques: the method of recursive path orderings,as developed by Dershowitz on the basis of a beautiful theorem of Kruskal.(See also the similar concept of `path of subterm ordering' in Plaisted [78],discussed in Rusinowitch [87b].) In fact we will use the presentation ofBergstra & Klop [85], where the rather complicated inductive de�nitionsof the usual presentation are replaced by a reduction procedure which is toour taste easier to grasp.De�nition 1.3.1.1. Let T be the set of commutative �nite trees with nodes labeled bynatural numbers. Example: see Figure 1.10(a). This tree will alsobe denoted by: 3(5; 7(9); 8(0(1; 5))). Commutativity means that the`arguments' may be permuted; thus 3(8(0(5; 1)); 5; 7(9)) denotes thesame commutative tree.2. Let T� be the set of such trees where some of the nodes may bemarked with (a single) �. So T� T�. Example: see Figure 1.10(b);this tree will be denoted by 3�(5; 7(9�); 8�(0(1; 5))):Notation 1.3.2. n(t1; : : : ; tk) will be written as n(~t ). The ti (i = 1; : : : ; k)are elements of T�. Further, if t � n(t1; : : : ; tk) then t� stands forn�(t1; : : : ; tk):De�nition 1.3.3. On T� we de�ne a reduction relation ) as follows.1. place marker at the top:n(~t )) n�(~t ) (~t = t1; : : : ; tk; k � 0)
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Figure 1.102. make copies below lesser top:if n > m, then n�(~t )) m(n�(~t ); : : : ; n�(~t )) (j � 0 copies of n�(~t ))3. push marker down:n�(s;~t )) n(s�; : : : ; s�;~t ) (j � 0 copies of s�)4. select argument:n�(t1; : : : ; tk)) ti (i 2 f1; : : : ; kg; k � 1)It is understood that these reductions may take place in a context, i.e. ift) s, then n(|; t;|)) n(|; s;|)We write )+ for the transitive (but not reexive) closure of ).Example 1.3.4. Figure 1.11 displays a reduction in T�.Clearly, the reduction ) is not SN in T�; for, consider the second stepin Figure 1.11: there the right hand side contains a copy of the left-handside. However:Theorem 1.3.5. The relation )+, restricted to T, is a well-founded par-tial ordering. Or, rephrased, the relation )+, restricted to T, is SN.So there is no in�nite sequence t0 )+ t1 )+ t2 )+ � � � of terms ti(i � 0) without markers. The proof of Theorem 1.3.5 is based on Kruskal'sTree Theorem; we will give the main argument.In order to introduce the next notion of `embedding', we must makethe de�nition of trees t 2 Tsomewhat more precise. An element t 2Tis apair (hD;�; �0i;L) where D is a �nite set f�0; �; ; : : :g with distinguishedelement �0, called the root or the top of t, and partially ordered by �. Werequire that:1. �0 � � for all � 2 D,2. � �  and � � � )  � � or � � , for all �; ; � 2 D.
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Figure 1.11The set D is also called Nodes(t). Furthermore, L: D ! N is a mapassigning labels (natural numbers) to the nodes of t. Finally, we use thenotation � ^ � for the supremum (least upper bound) of �; � 2 D. (Theactual names �; �; : : : of the nodes are not important, which is why theywere suppressed in the pictorial representation of t 2Tabove.)De�nition 1.3.6. Let t; t0 2 T. We say that t is (homeomorphically)embedded in t0, notation t � t0, if there is a map ': Nodes(t)! Nodes(t0)such that:1. ' is injective,2. ' is monotonic (� � � ) '(�) � '(�)),3. ' is sup preserving ('(� ^ �) = '(�) ^ '(�)),4. ' is label increasing (L(�) � L0('(�)), where L;L0 are the labelingmaps of t; t0 respectively; � is the ordering on natural numbers).Actually, (2) is superuous as it follows from (3).Example 1.3.7.1. 2(9; 7(0; 4)) � 1(3(8(0(5; 1)); 9; 5(9)); 2) as the embedding in Figure1.12 shows.2. Note that we do not have 1(0; 0) � 1(0(0; 0)).
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Figure 1.12Clearly, � is a partial order on T: Moreover it satis�es the followingremarkable property:Theorem 1.3.8. (Kruskal's Tree Theorem) Let t0; t1; t2; : : : be a sequenceof trees in T. Then for some i < j: ti � tj .The proof of this theorem, as given in Kruskal [60], is extremely com-plicated. Proofs are given in Dershowitz [79] and Dershowitz & Jouannaud[90]. See also Exercise 1.3.12 for a detailed proof sketch of a restricted casewhich is su�cient for the present purpose.Now we have the following proposition (of which (1) is nontrivial toprove):Proposition 1.3.9.1. )+ is a strict partial order on T,2. if s � t, then t)� s:(Here )� is the transitive-reexive closure of ).) Combining 1.3.8 and1.3.9, we have Theorem 1.3.5. For, suppose there is an in�nite sequencet0 )+ t1 )+ t2 )+ � � � )+ ti )+ � � � )+ tj )+ � � �then for some i < j we have ti � tj , hence tj )� ti, so ti )+ ti, which isimpossible as )+ is a strict partial order.Application 1.3.10 (Dershowitz [87]). Let a TRS R as in Table 1.9 begiven. To prove that R is SN. Choose a `weight' assignment _ 7! 1, ^ 7! 2,



32 J. W. Klop::x ! x:(x _ y) ! (:x ^ :y):(x ^ y) ! (:x _ :y)x ^ (y _ z) ! (x ^ y) _ (x ^ z)(y _ z) ^ x ! (y ^ x) _ (z ^ x)Table 1.9: 7! 3. Now a reduction in R corresponds to a )+ reduction in T (andhence it is also SN) as follows:3(3(t)) )+ t3(1(t; s)) )+ 2(3(t); 3(s))3(2(t; s)) )+ 1(3(t); 3(s))2(t; 1(s; r)) )+ 1(2(t; s); 2(t; r))2(1(s; r); t) )+ 1(2(s; t); 2(r; t))E.g. the second rule:3(1(t; s)) ) 3�(1(t; s))) 2(3�(1(t; s)); 3�(1(t; s))))+ 2(3(1�(t; s)); 3(1�(t; s))))+ 2(3(t); 3(s)):Remark 1.3.11.1. The termination proof method above does not work when a rule ispresent of which the left-hand side is embedded (in the sense of De�ni-tion 1.3.6) in the right-hand side, as in f(s(x)) ! g(s(x); f(p(s(x)))).For an extension of Kruskal's Theorem, leading to a method whichalso can deal with this case, see Kamin & L�evy [80] and Puel [86].2. Another example where the method above does not work directly, isfound in the TRS's corresponding to process algebra axiomatizationsas in Bergstra & Klop [84, 85]. For instance in the axiom system PAthere are the rewrite rulesxky ! (x k y) + (y k x)(x+ y) k z ! (x k z) + (y k z)(a � x) k y ! a � (xky):Here one wants to order the operators as follows: k > k > �;+,but then we get stuck at the third rule with the re-emergence of the`heavy' operator k. In Bergstra & Klop [85] the solution was adopted



Term Rewriting Systems 33to introduce in�nitely many operators k n and k n, where n refers tosome complexity measure of the actual arguments of the operatorsin a reduction. In fact, the operator + does not contribute to theproblem, and forgetting about it and writing xky as g(x; y); x k y ash(x; y); a�x as f(x), we have Example 16 in Dershowitz [87] where thisproblem takes the following form and is solved by a lexicographicalcombination of recursive path orderings:g(x; y) ! h(x; y)h(f(x); y) ! f(g(x; y)):The termination proof as in Bergstra & Klop [85] amounts to thefollowing for the present example. De�ne a norm j j on terms by: j t jis the length of t in symbols; then introduce normed operators gn andhn(n � 2); order the operators thus: gn > hn > f; hn+1 > gn. Thenreplace in a term t every subterm h(s; r) by hjsj+jrj(s; r) and likewisefor g(s; r). Now the recursive path ordering as before is applicable.Caution is required here: the norm must be chosen such that thenorm of a term t is not increased by reduction of a subterm of t. (Forthis reason, taking j t j as the length of t in symbols would not workfor the process algebra example above.)3. A third example were the proof method above does not work, is whenan associativity rule (x � y) � z ! x � (y � z)is present. The same problem occurs in the TRS for Ackermann'sfunction: A(0; x) ! S(x)A(S(x); 0) ! A(x; S(0))A(S(x); S(y)) ! A(x;A(S(x); y))What we need here is the lexicographic path ordering of Kamin &L�evy [80], see Dershowitz [87]. Essentially this says that a reduc-tion in complexity in the �rst argument of A outweighs an increase(strictly bounded by the complexity of the original term) in the sec-ond argument. In fact, an ordering with the same e�ect can easily bedescribed in the framework of reduction with markers � as explainedabove: all one has to do is give up the commutativity of the trees inTand T� and require that an embedding (De�nition 1.3.6) respectsalso the left-right ordering; Kruskal's Tree Theorem works also forthis case of noncommutative trees.Next, the rules in De�nition 1.3.3 are restricted such that the ari-ties of the operators are respected; in De�nition 1.3.3 the operatorswere treated `varyadic'. So rule (3) becomes: n�(t1; : : : ; ti; : : : ; tk))



34 J. W. Klopn(t1; : : : ; t�i ; : : : ; tk) (1 � i � k). Further, we add to the rules inDe�nition 1.3.3 (with (3) amended) the rule5. simplify left argument:n�(~t )) n(t�1; n�(~t ); : : : ; n�(~t ))(~t = t1; : : : ; tk (k � 1); k � 1 copies of n�(~t ))Example: A(S(x); S(y)) ) A�(S(x); S(y))) A(S�(x); A�(S(x); S(y)))) A(x;A�(S(x); S(y)))) A(x;A(S(x); S�(y)))) A(x;A(S(x); y)):Exercise 1.3.12. In this exercise we outline a short proof of a restrictedversion of Kruskal's Tree Theorem 1.3.8, which is su�cient for termination proofsof TRS's where the function symbols have arities uniformly bounded by somenatural number N . (There may be in�nitely many function symbols, as e.g. thegn; hn in the preceding Remark 1.3.11.) A fortiori this is the case for TRS's with�nite alphabet.The proof below is similar to that in Dershowitz [79]; the proof in Dershowitz& Jouannaud [90] is similar but for a short-cut there appealing to a special caseof the Tree Theorem known as Higman's Lemma. These proofs are originally dueto Nash-Williams [63]. First we de�ne:1. The branching degree of a node s in t 2 T is the number of immediatesuccessor nodes of s.2. TN is the subset of Tconsisting of trees where all nodes have branchingdegree � N . Likewise we de�ne T�N:We will now outline a proof of Kruskal's Tree Theorem 1.3.8 whereTis restrictedto TN:1. CLAIM. Each in�nite sequence of natural numbers n0; n1; n2; : : : has aweakly ascending in�nite subsequence.This means that there is a subsequence nf(0); nf(1); nf(2); : : : with f(0) <f(1) < f(2) < : : : such that nf(0) � nf(1) � nf(2) � : : : . The proof issimple.2. DEFINITION.(a) Let t 2TN. Then j t j is the number of nodes of t.(b) Notation: an in�nite sequence of trees t0; t1; : : : will be written as t.The initial segment t0; : : : ; tn�1 is (t)n. The set of in�nite sequencesof trees from TN is T!N:(c) Let D � T!N. Then the sequence t 2 D is minimal in D if 8s 2D (s)n = (t)n )j sn j � j tn j :(d) Furthermore, we say that s, t 2T!N have distance 2�n if (s)n = (t)nbut (s)n+1 6= (t)n+1. This induces a metric on T!N.



Term Rewriting Systems 353. CLAIM. LetD �T!N be non-empty and closed w.r.t. the metric just de�ned.Then D contains a minimal element (with respect to D).The proof of Claim 3 is easy.4. NOTATION.(a) Let s; t 2T!N. Then s � t means that s is a subsequence of t.(b) Let t = t0; t1; : : : and let s = sf(0); sf(1); : : : be a subsequence of t,such that for all i; sf(i) is a proper subtree of tf(i). Then we writes �� t and call s a subsubsequence of t. (See Figure 1.13.)
Figure 1.135. DEFINITION. s = s0; s1; s2; : : : is a chain if s0 � s1 � s2 � : : : , where �is the embedding relation as in Kruskal's Tree Theorem.We will now suppose, for a proof by contradiction, that there is a counterexamplesequence to the restricted version of Kruskal's Tree Theorem that we want toprove. That is, the set C � T!N of sequences s such that for no i < j we havesi � sj, is supposed to be non-empty. Note that C is closed in the sense ofDe�nition 2(d).6. CLAIM. Let t be a minimal element from C. Suppose s �� t.(a) Then for some i < j: si � sj:(b) Even stronger, s contains a subsequence which is a chain.PROOF of Claim 6(a). (Note that a minimal element t exists by the assumptionC 6= ? and by Claim 3.) Let s, t be as in Claim 6. Let s0 be a proper subtree oftf(0) = tk. Consider the sequence t0; : : : ; tk�1; s0; s1; s2; : : : ; that is, (t)k followedby s. By minimality of t, this sequence is not in C. Hence it contains an embeddedpair of elements (the earlier one embedded in the later one). The embedded paircannot occur in the pre�x (t)k because t 2 C. It can also not be of the formti � sj, since then t would contain the embedded pair ti � tf(j). So, theembedded pair must occur in the post�x s.As to part (b) of the claim, suppose s does not contain an in�nite chain assubsequence. Then s contains an in�nite number of �nite chains, each startingto the right of the end of the previous �nite chain and each maximal in the sense



36 J. W. Klopthat it cannot be prolonged by an element occurring to the right of it in s. Nowconsider the last elements of these �nite chains. These last elements constitutean in�nite subsubsequence of t, containing by (a) of the claim an embeddedpair. But that means that one of the maximal �nite chains can be prolonged, acontradiction.7. CLAIM. Let t be minimal in C and suppose s �� r � t. Then s containsan in�nite chain as subsequence.The proof of Claim 7 is trivial. We will now apply a sieve procedure to the mini-mal counterexample sequence t 2 C. By Claim 1 we can take a subsequence t0 oft such that the root labels are weakly ascending. Of t0 we take a subsequence t�with the property that the branching degrees of the roots are a weakly ascend-ing sequence. By Claim 6 every subsubsequence of t� still contains an in�niteembedding chain.Let us `freeze' the elements in t0, that is, we impose an ordering of the suc-cessors of each node in some arbitrary way. So the frozen trees in t0 are no longercommutative trees, and we can speak of the �rst, second etc. `arguments' of anode. (An argument of a node � is the subtree with as root a successor node �of �.)The next step in the sieve procedure is done by considering the sequence of�rst arguments of (the roots of) the elements in t�. As this is a subsubsequence,it contains an in�nite chain. Accordingly, we thin t� out, to the subsequencet��. This sequence has the property that its �rst arguments form a chain. Next,t�� is thinned out by considering the sequence of the second arguments of t��.Again, this sequence contains a chain, and thinning t�� accordingly yields thesubsequence t���.
Figure 1.14After at most N steps of the last kind, we are through. The result is then a chain,since the roots already satis�ed the embedding condition (they form a weaklyascending chain), and the arguments are also related as chains. (See Figure1.14.) However, this contradicts the assumption that t contains no embeddedpair. Hence C is empty, and the restricted version of Kruskal's Tree Theorem isproved.Exercise 1.3.13. (Kruskal [60]) In this exercise we introduce the terminol-ogy of well-quasi-orderswhich is often used to formulate Kruskal's Tree Theorem.



Term Rewriting Systems 371. DEFINITION. The binary relation � is a quasi-order (qo) if it is reexiveand transitive. (So the relation � in a TRS is a qo.) If in addition � isanti-symmetric (i.e. x � y & y � x) x = y for all x; y) then � is a partialorder (po).2. DEFINITION. Let hX;�i be a qo. A subset Y � X is called a cone ifx 2 Y & x � y ) y 2 Y for all x;y 2 X. The cone generated by Y � X,notation Y ", is the set fx 2 X j 9y 2 Y y � xg. (It is the intersection ofall cones containing Y .) A cone Z is �nitely generated if Z = Y " for some�nite Y .3. DEFINITION. Let hX;�i be a qo (po, respectively). Then hX;�i is a well-quasi-order (wqo) or well-partial-order (wpo) respectively, if every cone ofX is �nitely generated.4. DEFINITION. Let hX;�i be a qo. A subset Y � X is an anti-chain ifthe elements of Y are pairwise incomparable, i.e. for all x; y 2 Y such thatx 6= y we have neither x � y nor y � x:Prove the following lemma:5. LEMMA. Let hX;�i be a qo. Then the following conditions are equivalent:(a) hX;�i is a wqo;(b) X contains no in�nite descending chains x0 > x1 > x2 > � � � and allanti-chains of X are �nite;(c) for every in�nite sequence of elements x0; x1; x2; : : : in X there arei; j such that i < j and xi � xj:So, Kruskal's Tree Theorem as stated in 1.3.8 can be reformulated as follows:hT;�i is a well-quasi-order. Prove that hT;�i is in fact a partial order; soKruskal's theorem states that hT;�i is even a well-partial-order.Exercise 1.3.14.1. Show that the well-partial-order hT;�i is not a linear order.2. Show that )+ is a linear order. As it is well-founded (Theorem 1.3.5),it corresponds to an ordinal. For connections with the ordinal �0, the�rst impredicative ordinal, see Dershowitz [87]. For more about Kruskal'sTree Theorem and the connection with large ordinals, as well as a versionof the Tree Theorem which is independent from Peano's Arithmetic, seeSmory�nski [82] and Gallier [87].Exercise 1.3.15. (Multiset orderings) Very useful for termination proofs(used in some of the Exercises 1.0.8) are the multiset orderings; these are par-ticular cases of the well-founded ordering hT;)+i discussed above, namely byrestricting the domain T:1. Multisets. Let hX;<i be a strict partial order. Then the p.o. of multisetsover X, or the multiset extension of X, notation hX�; <�i, is obtained asfollows. The elements of X� are �nite \sets" of elements from X with theunderstanding that multiplicity of occurrences is taken into account, otherthan in ordinary sets. A multiset will be denoted by square brackets [ ].



38 J. W. KlopE.g. if a; b 2 X then [a; a; b] and [a; b] are di�erent multisets; but [a; a; b]and [a; b; a] denote the same multiset. Stated di�erently, a multiset is a�nite sequence of elements where the order of occurrences in the sequenceis disregarded. Giving a more formal de�nition is left to the reader. Amultiset is also known as a bag. We use in this exercise �;�; : : : as variablesfor multisets.Now we de�ne the following relation >1 between elements of X� by thetwo clauses:(a) [a] >1 [b1; : : : ; bn] for all a; b1; : : : ; bn 2 X (n � 0) such that a > bi(i = 1; : : : ; n);(b) � >1 � ) � [  >1 � [ . Here [ denotes multiset union, de�ned inthe obvious way as a union where the multiplicities of the elementsare respected. E.g. [a; a; b][ [a; b; c] = [a; a; a; b; b; c]. Thus, a multisetgets smaller by replacing an element in it by arbitrarily many (possi-bly 0) elements which are less in the original ordering. The converseof >1 is <1.Furthermore, we de�ne:(c) <� is the transitive closure of <1.Now prove the following statements:(a) If hX;<i is a strict partial order, then so is its multiset extensionhX�;<�i. If hX;<i is moreover a linear order, then so is hX�;<�i:(b) (Dershowitz & Manna [79]) hX;<i is a well-founded p.o. , hX�;<�iis a well-founded p.o. (The p.o. hX;<i is well-founded if there areno in�nite descending chains x0 > x1 > : : : .)(c) Let hX;<i be a well-founded linear order with order type �. ThenhX�;<�i has order type !�:2. Nested multisets. Let hX;<i be a p.o. Then the p.o. of nested multisetsover X, notation: hX�� ;<��i, is de�ned as follows. The domain X�� isthe least set Y such that X � Y and Y � = Y . Or, inductively:(a) X0 = X;(b) Xn+1 = (X0 [ � � � [Xn)�;(c) X�� = [n�0Xn.Note that the elements of X�� can be represented as �nite commutativetrees, with terminal nodes labeled by elements from X, and non-terminalnodes with a label representing the multiset-operator. The depth of � 2X�� is the stage of the inductive de�nition in which it is generated, or inthe tree representation, the maximum of the lengths of the branches of thetree corresponding to �:Furthermore, the ordering <�� is the least relation R extending < andsatisfying:(a) xR� for all x 2 X and multisets � 2 X�� �X;(b) [�]R [�1; : : : ; �n] for all �;�1; : : : ; �n 2 X�� (n � 0) such that �iR�i(i = 1; : : : ; n);(c) �R� ) � [  R � [  for all multisets �;�;  2 X�� �X.Now:



Term Rewriting Systems 39(a) Let hX;<i be a p.o. Prove that hX��;<��i is a p.o. If moreoverhX;<i is a linear order, then so is hX�� ;<��i.(b) Let �;� 2 hX�� ;<��i. Prove that if the depth of � is greater thanthe depth of �, we have � <�� �.(c) (Dershowitz & Manna [79])hX;<i is well-founded , hX�� ;<��i is well-founded.(d) Let hN;<i be the natural numbers with the usual ordering. Provethat hN��;>��i, the nested multisets over the natural numbers, is infact a restriction of the recursive path ordering hT;)+i if the non-terminal nodes of the tree representation of � 2 N��are taken to be0. That is, for �;� 2 N�� �Twe then have: � >�� � , �)+ �:(e) Show that the order type of the well-founded linear ordering hN��;<��iis �0. Note that hN��;<��i is isomorphic to hf0g�� ;<��i. Here `<'in the last occurrence of <�� is the restriction of < to f0g (whichin fact is the empty relation). Figure 1.15 gives an example of twomultisets �;� over f0g, such that � >�� �; or equivalently,� )+ �. All labels at the nodes can be taken 0, and are omitted inthe �gure. Note that the procedure using the markers may employall clauses in De�nition 1.3.3 except clause (2).
Figure 1.151.4 Completion of equational speci�cationsIn this section we will give an introduction to Knuth-Bendix completion ofequational speci�cations. First we will introduce the latter concept.Equational speci�cations: syntax and semanticsWe can be short about introducing the syntax of equational speci�cations:an equational speci�cation is just a TRS \without orientation". Moreprecisely, an equational speci�cation is a pair (�; E) where the signature



40 J. W. Klop(or alphabet) � is as in Section 1.1 for TRS's (�; R), and where E is a setof equations s = t between terms s; t 2 Ter(�):If an equation s = t is derivable from the equations in E, we write(�; E) ` s = t or s =E t. Formally, derivability is de�ned by means of theinference system of Table 1.10.(�; E) ` s = t if s = t 2 E(�; E) ` s = t(�; E) ` s� = t� for every substitution �(�; E) ` s1 = t1; : : : ; (�; E) ` sn = tn(�; E) ` F (s1; : : : ; sn) = F (t1; : : : ; tn) for every n-ary F 2 �(�; E) ` t = t(�; E) ` t1 = t2; (�; E) ` t2 = t3(�; E) ` t1 = t3(�; E) ` s = t(�; E) ` t = s Table 1.10Exercise 1.4.1. (Equational deduction systems) Often the inference sys-tem in Table 1.10 is presented slightly di�erent, as follows. Prove the equivalenceof the two versions below with the system above. Axioms (in addition to theequations in E): t = t reexivityRules: t1 = t2t2 = t2 symmetryt1 = t2; t2 = t3t1 = t3 transitivityt1 = t2t1[x := t] = t2[x := t] substitution(1)t1 = t2t[x := t1] = t[x := t2] substitution(2)



Term Rewriting Systems 41Here [x := t] denotes substitution of t for all occurrences of x. (The assignmentnotation is chosen to avoid the usual confusion between [x=t]; [t=x]; [xnt]; [tnx].)An equivalent formulation is to combine the two substitution rules in one:t1 = t2; t = t0t1[x := t] = t2[x := t0] substitutionIf � is a signature, a �-algebra A is a set A together with functionsFA : An ! A for every n-ary function symbol F 2 �. (If F is 0-ary,i.e. F is a constant, then FA 2 A.) An equation s = t (s; t 2 Ter(�)) isassigned a meaning in A by interpreting the function symbols in s; t via thecorresponding functions in A. Variables in s = t are (implicitly) universallyquanti�ed. If the universally quanti�ed statement corresponding to s = t(s; t 2 Ter(�)) is true in A, we write A j= s = t and say that s = t is validin A. A is called a model of a set of equations E if every equation in Eis valid in A. Abbreviation: A j= E. The variety of �-algebras de�nedby an equational speci�cation (�; E); notation Alg(�; E), is the class of all�-algebras A such that A j= E. Instead of 8A 2Alg(�; E) A j= F , whereF is a set of equations between �-terms, we will write (�; E) j= F . There isthe well-known completeness theorem for equational logic of Birkho� [35]:Theorem 1.4.2. Let (�; E) be an equational speci�cation. Then for alls; t 2 Ter(�) : (�; E) ` s = t , (�; E) j= s = t:Now the validity problem or uniform word problem for (�; E) is:Given an equation s = t between �-terms, decide whether ornot (�; E) j= s = t:According to Birkho�'s completeness theorem for equational logic thisamounts to deciding (�; E) ` s = t. Now we can state why completeTRS's (i.e. TRS's which are SN and CR) are important. Suppose for theequational speci�cation (�; E) we can �nd a complete TRS (�; R) suchthat for all terms s; t 2 Ter(�) :t =R s , E ` t = s (�)Then (if R has �nitely many rewrite rules only) we have a positive solutionof the validity problem. The decision algorithm is simple:1. Reduce s and t to their respective normal forms s0; t02. Compare s0 and t0: s =R t i� s0 � t0:We are now faced with the question how to �nd a complete TRS R for agiven set of equations E such that (�) holds. In general this is not possible,



42 J. W. Klopsince not every E (even if �nite) has a solvable validity problem. The mostfamous example of such an E with unsolvable validity problem is the set ofequations obtained from CL, Combinatory Logic, in Tables 1.3, 1.4 aboveafter replacing `!' by `=': see Table 1.11.Sxyz = xz(yz)Kxy = xIx = xTable 1.11(For a proof of the unsolvability see Barendregt [81].) So the validity prob-lem of (�; E) can be solved by providing a complete TRS (�; R) for (�; E).Note however, that there are equational speci�cations (�; E) with decid-able validity problem but without a complete TRS (�; R) satisfying (�):see the following Exercise.Exercise 1.4.3. Let (�;E) be the speci�cation given by the equationsx+ 0 = xx+ S(y) = S(x+ y)x+ y = y + xProve that there is no complete TRS R `for' E, i.e. such that for all terms s; t 2Ter(�) : s =R t, s =E t. (Consider in a supposed complete TRS R, the normalforms of the open terms x+ y and y + x.)It is important to realize that we have considered up to now equationss = t between possibly open �-terms (i.e. possibly containing variables). Ifwe restrict attention to equations s = t between ground terms s; t, we areconsidering the word problem for (�; E), which is the following decidabilityproblem:Given an equation s = t between ground terms s; t 2 Ter(�),decide whether or not (�; E) j= s = t (or equivalently, (�; E) `s = t).Also for the word problem, complete TRS's provide a positive solution. Infact, we require less than completeness (SN and CR) for all terms, but onlyfor ground terms. (See Example 1.1.3 for an example where this makes adi�erence.) It may be (as in Exercise 1.4.3) that a complete TRS for Ecannot be found with respect to all terms, while there does exist a TRSwhich is complete for the restriction to ground terms.Exercise 1.4.4. Consider the speci�cation as in the previous exercise and�nd a TRS (�;R) such that (�;R)0 (i.e. the restriction of (�;R) to groundterms) is complete.



Term Rewriting Systems 43Remark 1.4.5. Note that there are �nite equational speci�cations (�; E)which have a decidable word problem (so for ground terms) for which nocomplete TRS R (complete with respect to ground terms) exists. Thisstrengthens the observation in Exercise 1.4.3. The simplest such (�; E) isthe speci�cation consisting of a single binary commutative operator + anda constant 0, and equations E = fx + y = y + xg. According to Exercise1.4.3 (which also works for the present simpler speci�cation) no completeTRS R can be found such that for all (open) s; t we have s =R t, s =E t.According to the next exercise, we also have the stronger result that noTRS R exists which is complete for ground terms and such that for groundterms s; t we have s =R t, s =E t:Exercise 1.4.6. (Bergstra & Klop) Prove the following fact:THEOREM. Let (�; E) be the speci�cation with � = f0;+g and E = fx + y =y+ xg. Then there is no �nite TRS R such that the restriction to ground terms,(R)0, is complete and such that =R and =E coincide on ground terms.PROOF SKETCH. De�ne terms t0 � 0, tn+1 � tn + tn (n � 0). Suppose R is aTRS with �nitely many rewrite rules such that =R and =E coincide on groundterms. Let N be the maximum of the depths of the LHS's of the rewrite rules inR. (Here `depth' refers to the height of the corresponding term formation tree.)Consider the terms t� � tN + t2N and t�� � t2N + tN . Clearly, t� =E t��.In fact, ft�; t��g is an E-equivalence class, hence also an R-convertibility class.Therefore there must be a rewrite rule r such that t� is an r-redex or t�� is an r-redex (since there are only two elements in the convertibility class) and such thatt� !r t��. Say t� is an r-redex. Now one can easily show that t� !r t�� !r t�.Hence R is not even SN on ground terms.Term rewriting and initial algebra semanticsWe will now make more explicit the connection between term rewriting andinitial algebra semantics. We suppose familiarity with the concept of aninitial algebra in the class of models of an equational speci�cation (�; E),i.e. the variety Alg(�; E), as de�ned by universal properties in terms ofhomomorphisms. (See e.g. Meinke & Tucker [91], Goguen & Meseguer[85].) Although the initial algebra is only determined up to isomorphism,we will speak of `the' initial algebra and use the notation I(�; E) for it. Itis well-known that I(�; E) can be obtained from the set of ground termsTer0(�) by dividing out the congruence relation =E . Thus we can equatethe initial algebra I(�; E) with the quotient algebra Ter0(�)==E .Now suppose that (�; R) is a TRS `for' (�; E), that is, =R coincides with=E . (So the initial algebra of (�; E) van also be written as Ter0(�)==R.)If R is a complete TRS, then I(�; E) is in fact a computable algebra. Thisis merely a rephrasing of: the word problem (for ground terms) for (�; E)is solvable. As noted in Exercise 1.4.6, the reverse is not necessarily thecase; for some (�; E) with computable initial algebra there does not exist a



44 J. W. Klopcomplete TRS|at least not in the same signature. However, a remarkabletheorem of Bergstra and Tucker states that if we allow an extension ofthe signature with some functions and constants (no new sorts), then acomplete TRS can always be found. (This result also follows from thesimulation of Turing Machines by a TRS|consisting of two rules|as inDershowitz [87].) More precisely:De�nition 1.4.7.1. The algebra A 2 Alg(�; E) is minimal, if it is (isomorphic to) aquotient algebra Ter(�)=� for some congruence �. In particular,I(�; E) is a minimal algebra. In other words, an algebra is minimal ifits elements are generated by functions and constants in the signature.2. A minimal algebra A is computable, if its equality is decidable, i.e. ifthe relation A j= t = s for ground terms t; s 2 Ter(�) is decidable.Theorem 1.4.8. (Bergstra & Tucker [80]) Let A be a minimal�-algebra,� a �nite signature. Then the following are equivalent:1. A is a computable algebra;2. there is an extension of � to a �nite �0, obtained by adding somefunction and constant symbols, and there is a complete TRS (�0; R)such that A � I(�0; R=) j� :Here R= is the equational speci�cation obtained by viewing the reduc-tion rules in R as equations, and j� is the restriction to the signature �.So A is a `reduct ' (see Meinke & Tucker [91]) of an initial algebra given bya complete TRS. (The TRS R as in the theorem is not only ground com-plete, but complete with respect to all terms. Actually, it is an orthogonalTRS as de�ned in the next chapter; and for orthogonal TRS's possessingat least one ground term, ground completeness implies completeness.) Thefunctions (including the constants as 0-ary functions) to be added to �are sometimes referred to as `hidden functions'. Note that according tothe statement in the theorem no new sorts are needed, thus the presenttheorem has also a bearing on the homogeneous (i.e. one-sorted) case thatwe are considering in this chapter.For more information concerning the connection between term rewritingand computability aspects of initial algebra semantics (and `�nal' algebrasemantics), also for the heterogeneous (many-sorted) case, we refer to thevery complete survey Goguen & Meseguer [85].Critical pair completionWe resume the question how to �nd a complete TRS (for the case of openterms, henceforth) for an equational speci�cation (�; E). This is in fact



Term Rewriting Systems 45what the Knuth-Bendix completion algorithm is trying to do. We willnow explain the essential features of the completion algorithm �rst by aninformal, \intuition-guided" completion of the equational speci�cation Eof groups: e � x = xI(x) � x = e(x � y) � z = x � (y � z)Table 1.12First we give these equations a `sensible' orientation:1. e � x! x2. I(x) � x! e3. (x � y) � z ! x � (y � z)(Note that the orientation in rules 1, 2 is forced, by the restrictions onrewrite rules in Section 1.1. As to the orientation of rule 3, the otherdirection is just as `sensible'.) These rules are not conuent, as can be seenby superposition of e.g. 2 and 3. Redex I(x) �x can be uni�ed with a non-variable subterm of redex (x � y)�z (the underlined subterm), with result(I(x)�x)�z. This term is subject to two possible reductions: (I(x)�x)�z !2e �z and (I(x) �x) �z !3 I(x) �(x �z). The pair of reducts he �z; I(x) �(x �z)i iscalled a critical pair, since the conuence property depends on the reductionpossibilities of the terms in this pair. Formally, we have the followingde�nition which at a �rst reading is not easily digested. For the concept ofa `most general uni�er' we refer to Section 1.6 below.De�nition 1.4.9. Let �! � and  ! � be two rewrite rules such that �is uni�able (after renaming of variables) with a subterm of  which is not avariable (a non-variable subterm). This means that there is a context C[ ],a non-variable term t and a `most general uni�er' � such that  � C[t]and t� � ��. The term � � C[t]� can be reduced in two possible ways:C[t]� ! C[�]� and � ! �� : Now the pair of reducts hC[�]�; ��i is calleda critical pair obtained by the superposition of �! � on  ! �: If �! �and  ! � are the same rewrite rule, we furthermore require that � isuni�able with a proper (i.e. 6� �) non-variable subterm of  � �:De�nition 1.4.10. A critical pair hs; ti is called convergent if s and t havea common reduct.Our last critical pair he � z; I(x) � (x � z)i is not convergent: I(x) � (x � z) is



46 J. W. Klopa normal form and e � z only reduces to the normal form z. So we have theproblematic pair of terms z; I(x) � (x �z); problematic because their equalityis derivable from E, but they have no common reduct with respect to thereduction available so far. Therefore we adopt a new rule4. I(x) � (x � z)! zNow we have a superposition of rule 2 and 4: I(I(y)) � (I(y) � y) !4 y andI(I(y)) � (I(y) �y) !2 I(I(y)) � e. This yields the critical pair hy; I(I(y)) � eiwhich cannot further be reduced. Adopt new rule:5. I(I(y)) � e! y cancelled laterAs it will turn out, in a later stage this last rule will become superuous.We go on searching for critical pairs. Superposition of 4,1: I(e) �(e �z)!4 zand I(e) � (e � z)!1 I(e) � z: Adopt new rule:6. I(e) � z ! z cancelled laterSuperposition of 3, 5: (I(Iy)) �e) �x !3 I(I(y)) �(e �x) and (I(Iy)) �e) �x !5y � x: Adopt new rule:7. I(Iy)) � x! y � x cancelled laterSuperposition of 5, 7: I(I(y)) � e !7 y:e and I(I(y)) � e !5 y: Adopt newrule:8. y � e! ySuperposition of 5, 8: I(I(y)) � e !5 y and I(I(y)) � e !8 I(I(y)): Adoptnew rule9. I(I(y)) ! y cancel 5 and 7(Rule 5 is now no longer necessary to ensure that the critical pair hy; I(I(y))�ei has a common reduct, because: I(I(y)) � e !9 y � e !8 y. Likewise forrule 7.) Superposition of 6, 8: I(e) � e !6 e and I(e) � e !8 I(e): Adoptnew rule10. I(e) ! e cancel 6Superposition of 2, 9: I(I(y)) � I(y) !2 eand I(I(y)) � I(y) !9 y � I(y):Adopt new rule11. y � I(y) ! eSuperposition of 3, 11: (y �I(y)) �x!3 y �(I(y) �x) and (y �I(y)) �x !11 e �x:Adopt new rule12. y � (I(y) � x)! xSuperposition (again) of 3, 11: (x �y) � I(x �y) !11 e and (x �y) � I(x �y) !3x � (y � I(x � y)): Adopt new rule13. x � (y � (y � I(x � y)) ! e cancelled laterSuperposition of 13, 4: I(x) � (x � (y � I(x � y))) !4 y � I(x � y) and I(x) � (x �(y � I(x � y)))!13 I(x) � e: Adopt new rule



Term Rewriting Systems 4714. y � I(x � y) ! I(x) cancelled later cancel 13Superposition of 4, 14: I(y)�(y �I(x�y)) !4 I(x�y) and I(y)�(y �I(x�y)) !14I(y) � I(x): Adopt new rule15. I(x � y) ! I(y) � I(x) cancel 14At this moment the TRS has only convergent critical pairs. The signi�canceof this fact is stated in the following lemma.Lemma 1.4.11. (Critical Pair Lemma; Knuth & Bendix [70], Huet [80])A TRS R is WCR i� all critical pairs are convergent.Exercise 1.4.12. Prove the Critical Pair Lemma. (The proof is not hard,after distinguishing cases as in Figure 1.16, after Le Ch�enadec [86] where the proofalso can be found. Some care has to be taken to deal with repeated variables inleft-hand sides of reduction rules.)Exercise 1.4.13. Prove, using the Critical Pair Lemma: if the TRS R has�nitely many rules and is SN, then WCR and CR are decidable.So the TRS Rc with rewrite rules as in Table 1.13 is WCR.1: e � x ! x2: I(x) � x ! e3: (x � y) � z ! x � (y � z)4: I(x) � (x � z) ! z8: y � e ! y9: I(I(y)) ! y10: I(e) ! e11: y � I(y) ! e12: y � (I(y) � x) ! x15: I(x � y) ! I(y) � I(x)Table 1.13Furthermore, one can prove SN for Rc by a `Knuth-Bendix ordering' (nottreated here) or by the recursive path ordering explained in Section 1.3. (Infact we need the extended lexicographic version of Remark 1.3.11(3), dueto the presence of the associativity rule.) According to Newman's Lemma(1.0.7(2)) Rc is therefore CR and hence complete. We conclude that thevalidity problem for the equational speci�cation of groups is solvable.The following theorem of Knuth and Bendix is an immediate corollaryof the Critical Pair Lemma 1.4.11 and Newman's Lemma:Corollary 1.4.14. (Knuth & Bendix [70]) Let R be a TRS which is SN.Then R is CR i� all critical pairs of R are convergent.
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Figure 1.16The completion procedure above by hand was naive, since we werenot very systematic in searching for critical pairs, and especially since wewere guided by an intuitive sense only of what direction to adopt whengenerating a new rule. In most cases there was no other possibility (e.g. at4: z ! I(x) � (x � z) is not a reduction rule due to the restriction that theLHS is not a single variable), but in case 15 the other direction was at leastas plausible, as it is even length-decreasing. However, the other directionI(y) � I(x) ! I(x �y) would have led to disastrous complications (describedin Knuth & Bendix [70]).The problem of what direction to choose is solved in the actual Knuth-Bendix algorithm and its variants by preordaining a `reduction ordering'on the terms.



Term Rewriting Systems 49De�nition 1.4.15. A reduction ordering > is a well-founded partial or-dering on terms, which is closed under substitutions and contexts, i.e. ifs > t then s� > t� for all substitutions �; and if s > t then C[s] > C[t] forall contexts C[ ].We now have immediately the following fact (noting that if R is SN,then !+R satis�es the requirements of De�nition 1.4.15):Proposition 1.4.16. A TRS R is SN i� there is a reduction ordering >such that � > � for every rewrite rule �! � of R.Simple version of the Knuth-Bendix completion algorithmInput: { an equational speci�cation (�; E){ a reduction ordering > on Ter(�)(i.e. a program which computes >)Output: - a complete TRS R such that for alls; t 2 Ter(�) : s =R t , (�;E) ` s = tR := ?;while E 6= ? dochoose an equation s = t 2 E;reduce s and t to respective normal forms s0 and t0with respect to R;if s0 � t0 thenE := E � fs = tgelseif s0 > t0 then� := s0; � := t0else if t0 > s0 then� := t0; � := s0elsefailure�;CP := fP = Q j hP;Qi is a critical pair betweenthe rules in R and �! �g;R := R [ f�! �g;E := E [CP � fs = tg�od;success Figure 1.17



50 J. W. KlopIn Figure 1.17 a simple version of the Knuth-Bendix completion algo-rithm is presented. As to the reduction ordering > on Ter(�) which is aninput to the algorithm: �nding this is a matter of ingenuity, or experimen-tation. (Also without reduction ordering, computer systems for Knuth-Bendix completion equipped with an interactive question for orientation ofequations into rewrite rules are of great help.)The program of Figure 1.17 has three possibilities: it may (1) termi-nate successfully, (2) loop in�nitely, or (3) fail because a pair of terms s; tcannot be oriented (i.e. neither s > t nor t > s). The third case givesthe most important restriction of the Knuth-Bendix algorithm: equationalspeci�cations with commutative operators cannot be completed.Exercise 1.4.17. Show that there exists no complete TRS for the speci�ca-tion of abelian groups as in Table 1.14. (Consider in a supposed complete TRSthe normal forms of the open terms x+ y and y+ x.)0 + x = x(�x) + x = 0(x+ y) + z = x+ (y + z)x+ y = y + xTable 1.14If one still wants to deal with equational speci�cations having commu-tative/associative operators as in Exercise 1.4.17, one has to work modulothe equations of associativity and commutativity. For completion mod-ulo such equations we refer to Peterson & Stickel [81] and Jouannaud &Kirchner [86].In case (1) the resulting TRS is complete. To show this requires anon-trivial proof, see e.g. Huet [81]. In the next section we will givean abstract formulation of Knuth-Bendix completion, following Bachmair,Dershowitz & Hsiang [86], which streamlines considerably this kind of cor-rectness proofs.The completion program of Figure 1.17 does not `simplify' the rewriterules themselves. Such an optimization can be performed after terminationof the program, as follows.De�nition 1.4.18. A TRS R is called irreducible if for every rewrite rule�! � of R the following holds:1. � is a normal form with respect to R,2. � is a normal form with respect to R� f�! �g:Exercise 1.4.19. Prove that every irreducible ground TRS is complete.(Hint: use Exercise 1.2.19 and Corollary 1.4.14.)



Term Rewriting Systems 51Theorem 1.4.20. (M�etivier [83]) Let R be a complete TRS. Then wecan �nd an irreducible complete TRS R0 such that the convertibilities =Rand =R0 coincide.Exercise 1.4.21. A proof of Theorem 1.4.20 can be given along the followingline. Let R1 be the TRS f� ! �0 j � ! � 2 R and �0 is the normal form of �with respect to Rg. We may assume that R1 does not contain rewrite rules thatare a renaming of another rewrite rule. Further, de�ne R0 = f�! � 2 R1 j � is anormal form with respect to R1�f�! �gg. Now the proof that s =R t, s =R0 tfollows from the (easy) proofs of the sequence of statements:1. if s!R1 t then s!+R t;2. R and R1 de�ne the same set of normal forms;3. R1 is SN;4. if s�R t and t is a normal form then s�R1 t;5. s =R t , s =R1 t;6. R1 is CR;7. if s!R0 t then s!R1 t;8. R1 and R0 de�ne the same set of normal forms;9. R0 is SN;10. if s�R1 t and t is a normal form then s�R0 t;11. s =R1 t , s =R0 t;12. R0 is CR;13. R0 is irreducible.Instead of optimizing the TRS which is the output of the above simplecompletion algorithm after the completion, it is more e�cient to do thisduring the completion. Figure 1.18 contains a more e�cient Knuth-Bendixcompletion algorithm, which upon successful termination yields irreducibleTRS's as output.We conclude this section with a theorem stating that the Knuth-Bendixcompletion algorithm, given an equational speci�cation and a reduction or-dering, cannot generate two di�erent complete irreducible TRS's. Accord-ing to Dershowitz, Marcus & Tarlecki [88] the theorem is originally due toM. Ballantyne, but �rst proved in M�etivier [83].De�nition 1.4.22. Let > be a reduction ordering. We call a TRS Rcompatible with > if for every rewrite rule �! � of R we have � > �:



52 J. W. KlopMore e�cient version of the Knuth-Bendix completion algorithmInput: { an equational speci�cation (�;E){ a reduction ordering > on Ter(�)Output: - a complete irreducible TRS R such that for alls; t 2 Ter(�) : s =R t , (�;E) ` s = tR := ?;while E 6= ? dochoose an equation s = t 2 E;reduce s and t to respective normal formswhile E 6= ? dochoose an equation s = t 2 E;reduce s and t to respective normal forms s0 and t0with respect to R;if s0 � t0 thenE := E � fs = tgelseif s0 > t0 then� := s0; � := t0else if t0 > s0 then� := t0; � := s0elsefailure�;R := f ! �0 j  ! � 2 R and �' is a normal form of �with respect to R [ f�! �gg;CP := fP = Q j hP;Qi is a critical pair betweenthe rules in R and �! �g;E := E [CP [ f = � j  ! � 2 R and  is reducible by�! �g � fs = tg;R := R [ f�! �g � f ! � j  is reducible by �! �g�od;success Figure 1.18Theorem 1.4.23. (M�etivier [83]) Let R1 and R2 be two complete irre-ducible TRS's compatible with a given reduction ordering >. Suppose R1and R2 de�ne the same convertibility. Then R1 and R2 are equal (moduloa renaming of variables).Exercise 1.4.24. (Huet [80]) In this exercise we collect some criteria forconuence in terms of properties of critical pairs, as well as some counterexamples,



Term Rewriting Systems 53from Huet [80]. Also some questions are listed which are, as far as we know, open.See Table 1.15.
Table 1.151. In row 1 of the table the Critical Pair Lemma 1.4.11 is stated: if everycritical pair ht; si is convergent (notation: t # s), then WCR holds. How-ever, CR need not to hold; a counterexample is given by the TRS with fourconstants a; b; c; d and rules as in Figure 1.3.2. Row 2 of the table is Theorem 1.4.14 of Knuth and Bendix.3. In row 3, LL means that the TRS is left-linear, RL right-linear (i.e. noright-hand side of a reduction rule contains repetitions of a variable).Strongly conuent is de�ned in Exercise 1.0.8(10).We furthermore de�ne:DEFINITION. A TRS is strongly closed if for every every critical pair ht; si thereare t0, t00 such that t � t0  � s and s � t00  � t. Prove that `stronglyclosed' is not su�cient to guarantee CR, by considering the non-left-linear TRSfF (x; x)! A; F (x;G(x))! B; C ! G(C)g. However, if the TRS is left-linear,right-linear and strongly closed, then CR holds (for a proof see Huet [80]); infact, we then have strong conuence.4. In 3, RL cannot be dropped. A nice counterexample is in Huet [80], givenby J.-J. L�evy: it contains the following eight left-linear rules. See alsoFigure 1.19.F (A;A) ! G(B;B) G(B;B) ! F (A;A)A ! A0 B ! B0F (A0; x) ! F (x; x) G(B0; x) ! G(x;x)F (x;A0) ! F (x; x) G(x;B0) ! G(x;x)Check that CR does not hold, and that the TRS is strongly closed.
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Figure 1.195. This is a remarkable fact: if the TRS is left-linear, and for every criticalpair ht; si we have t !jj s, then WCR�1 holds, and hence CR. Here !k(parallel reduction) denotes a sequence of redex contractions at disjointoccurrences.6,7,8. If in 5 we replace t !k s by s !k t, then the CR question is open.Likewise (7) if t !k s is replaced by s !� t, or (8) replaced by: \t !� sor s!� t".Exercise 1.4.25. Knuth & Bendix [70] contains completions of two speci�-cations which closely resemble the speci�cation of groups (see Table 1.16), called`L-R theory' and `R-L theory'. Prove, using the completions, that x � e = x isnot derivable in L-R theory and that in R-L theory the equations e � x = x andx � I(x) = e are not derivable. Furthermore, in L-R theory the equation x � e = xis not derivable. Hence the three theories are di�erent, i.e. determine di�erentvarieties of algebras. In fact, note that the variety of groups is a proper subsetof both the variety of L-R algebras and that of R-L algebras, and that the lattertwo varieties are incomparable with respect to set inclusion.1.5 An abstract formulation of completion(This section is taken from Klop & Middeldorp [88].)There are many completion algorithms such as the two above (in Figures1.17 and 1.18), di�ering in order of execution or ways of optimization. Thequestion is, how to prove that these algorithms are correct, i.e. deliverupon successful termination indeed a TRS R with the same equality as theone generated by the original set of equations E. As there is a whole familyof completion algorithms, one needs to extract the `abstract principles' ofsuch algorithms; and this is done indeed by Bachmair, Dershowitz & Hsiang[86]. Their method for proving correctness of completion algorithms startswith the introduction of a derivation system where the objects are pairs



Term Rewriting Systems 55group theory L-R theory: R-L theory:e � x = x e � x = x x � e = xI(x) � x = e x � I(x) = e I(x) � x = e(x � y) � z = x � (y � z) (x � y) � z = x � (y � z) (x � y) � z = x � (y � z)completion: completion: completion:e � x! x e � x! xx � e! x x � e! xI(x) � x! e I(x) � x! ex � I(x)! e x � I(x)! e(x � y) � z ! x � (y � z) (x � y) � z ! x � (y � z) (x � y) � z ! x � (y � z)I(e) ! e I(e) ! e I(e) ! eI(x � y) ! I(y) � I(x) I(x � y) ! I(y) � I(x) I(x � y) ! I(y) � I(x)x � (I(x) � y) ! y x � (I(x) � y) ! y e � x! I(I(x))I(x) � (x � y) ! y I(x) � (x � y) ! y x � I(I(y)) ! x � yI(I(x)) ! x x � e! I(I(x))I(I(I(x))) ! I(x) I(I(I(x))) ! I(x)x � (y � I(y)) ! xI(I(x)) � y ! x � y x � (I(I(y)) � z)! x � (y � z)x � (y � (I(y) � z))! x � zI(x) � (x � y) ! I(I(y))Table 1.16(E;R); each derivation step from (E;R) to (E0; R0) preserves equality:=E[R coincides with =E0[R0 ; and moreover, along a sequence of derivationsthe actual proofs of equations s = t will be getting `better and better', withas optimal proof format that of a \rewrite proof". See Figure 1.20, whereit is shown how E (that is the pair (E;?)) is gradually transformed viapairs (E0; R0) to a TRS R (that is the pair (?; R)); along the way the twoexample proofs in Figure 1.20 get more and more oriented until they arein rewrite form. (Here direction is downward; horizontal steps are withoutdirection.)There are two crucial ideas in this recent approach. One is the conceptof a derivation system on pairs (E;R) as discussed above. The other is theconcept of ordering the proofs of equations s = t according to their degreeof orientation. We will now proceed to a more formal explanation.
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Figure 1.20De�nition 1.5.1. Let (�; E) be an equational speci�cation. If s =E t byapplication of exactly one equation in E we write s $E t. So s $E t i�there exists a context C[ ], a substitution � and an equation u = v (orv = u) in E such that s � C[u�] and t � C[v� ]:De�nition 1.5.2. Let (�; E) be an equational speci�cation and R a TRSwith signature �:1. A proof in E [R of an equation s = t between terms s; t 2 Ter(�) isa sequence of terms (s0; : : : ; sn) such that s0 � s; sn � t, and for all0 < i � n we have si�1 $E si, si�1 !R si or si�1  R si:2. A subproof of P � (s0; : : : ; sn) is a proof P 0 � (si; : : : ; sj) with 0 �i � j � n: The notation P [P 0] means that P 0 is a subproof of P .(Actually, as occurrence of a subproof of P .)3. A proof of the form s0 �R sk �R sn is called a rewrite proof.By de�nition, P � (s) is a proof of s = s. Figure 1.21 contains anexample of a proof.Knuth-Bendix completion aims at transforming every proof (s0; : : : ; sn)
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Figure 1.21into a rewrite proof s0 � t � sn. We now present an inference systemfor Knuth-Bendix completion. The objects of this system are pairs (E;R).The inference system BC (basic completion) has the following rules (seeTable 1.17); > is a reduction ordering.(C1) orienting an equation(E [0 fs =0 tg; R) ) (E;R [ fs! tg) if s > t(C2) adding an equation(E;R) ) (E [ fs = tg; R) if s R u!R t(C3) simplifying an equation(E [0 fs =0 tg; R) ) (E [ fu = tg; R) if s!R u(C4) deleting a trivial equation(E [0 fs = sg; R) ) (E;R)Table 1.17The notation s =0 t means s = t or t = s; the symbol [0 denotesdisjoint union. A BC-derivation is a �nite or in�nite sequence (E0; R0) )(E1; R1)) (E2; R2)) � � � . We write )+ for the transitive closure of ).It is easily seen that, given a derivation step (E;R)) (E0; R0), if R isSN then so is R0 and furthermore =E[R coincides with =E0[R0 . However,proofs in E0 [R0 are in general `simpler' than in E [R. For example, byadding equations to E by inference rule C2 some subproofs s  R u !R tcan be replaced by s $E0 t. To formalize this reduction in complexity weintroduce orderings on proofs.De�nition 1.5.3. A binary relation� on proofs is monotonic if Q� Q0implies P [Q]� P [Q0] for all proofs P;Q and Q0. The relation� is stableif P � (s; : : : ; ui; : : : ; t)� (s; : : : ; vj; : : : ; t) � Qimplies that



58 J. W. Klop(C[s�]; : : : ; C[u�i ]; : : : ; C[t�])� (C[s� ]; : : : ; C[v�j ]; : : : ; C[t�])for all proofs P and Q, contexts C[ ] and substitutions �. A proof orderingis a stable, monotonic, well-founded partial ordering on proofs.Exercise 1.5.4. To illustrate the concept of proof ordering we will give analternative proof of Newman's Lemma 1.0.7(2) using this notion. (`Alternative'with respect to the proofs that we have seen in the literature. The present proofis nevertheless well-known.) See also Exercise 1.3.15 for our multiset notations.Let R be a TRS which is SN and WCR. Let P � (s0; : : : ; sn) be a proofof the conversion s0 = sn. We de�ne the complexity j P j of the proof P asthe multiset [s0; : : : ; sn]. The ordering � which we will use is induced by themultiset extension of !+R, notation: (!+R)�. SoP � P 0 i� j P j (!+R)� j P 0 j :(This means that P � P 0 if the multiset j P 0 j arises from the multiset j P jby repeatedly replacing an element of the multiset by arbitrarily many elementswhich are less in the sense of the well-founded ordering !+R. I.e. by repeatedlyreplacing a term t in the multiset of terms by a number (� 0) of proper reductsof t.)1. Prove that � is a proof ordering.2. If P � (s0; : : : ; sn) is not a rewrite proof, then there is a proof P 0 of theequation s0 = sn such that P � P 0. (Hint: consider a `peak' in theconversion P , and replace it by a `valley', using WCR. See Figure 1.22.)3. Conclude that R is CR.
Figure 1.22The proof ordering which we use for completion is based on the givenreduction ordering and on the elementary steps (!R; R or $E) in aproof.



Term Rewriting Systems 59De�nition 1.5.5.1. The complexity j P j of a proof P � (s0; : : : ; sn) is the multiset[c(s0; s1); : : : ; c(sn�1; sn)] where c(si�1; si), the complexity of an ele-mentary proof step, is de�ned byc(si�1; si) = 8<: [si�1] if si�1 !R si[si] if si�1  R si[si�1; si] if si�1 $E si2. To compare the complexities of the elementary proof steps we usethe multiset extension >� of the reduction ordering >. (See Exercise1.3.15.) To compare proof complexities we use the multiset extensionof >�; notation: >�� : Now we de�ne:P �BC P 0 , jP j>��jP 0 j :De�nition 1.5.6. A proof ordering� is compatible with BC if (E;R))+(E0; R0) implies that for every proof P in E [R of an equation s = t thereexists a proof P 0 of s = t in E0 [R0 such that P � P 0 or P � P 0:The following proposition has a straightforward proof, which followsfrom considering Figure 1.23 and applying stability and monotonicity of�BC . Figure 1.23 suggests how proofs are reduced in complexity by appli-cation of a transformation step according to C1; : : : ; C4: For instance, in thecase of C2 (see Figure 1.23) the complexity of the subproof t R s!R u is[[s]; [s]] which decreases to the complexity of the subproof t$R u, namely[[t; u]]. This is indeed a decrease since [s] >� [t; u].Proposition 1.5.7. The ordering !BC is a proof ordering, which more-over is compatible with BC.So in a BC-derivation (E0; R0)) (E1; R1)) (E2; R2)) � � � the proofsin Ej [Rj are no more di�cult than corresponding proofs in Ei [Ri; forall j > i. The following fairness property of BC-derivations implies thatmoreover every proof in Ei [ Ri of an equation s = t which is not yet arewrite proof, can be simpli�ed to a rewrite proof of s = t in Ej [Rj forsome j > i:De�nition1.5.8. A BC-derivation (E0; R0)) (E1; R1)) (E2; R2)) � � �is called fair if1. Tj>iEj = ? for all i � 0, and2. if hc; di 2 Tj�iCPj for some i � 0 then c = d 2 Ek for some k � 0.(CPj is the set of all critical pairs between the rewrite rules of Rj.)So, according to (2) every critical pair which arises will be (or was)an equation at some time, and by (1) every equation will be `considered'
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Figure 1.23eventually, that is, oriented in a rewrite rule, simpli�ed, or deleted. Thefollowing fact can now be proved routinely.Proposition 1.5.9. Let (E0; R0) ) (E1; R1) ) (E2; R2) ) � � � be a fairBC-derivation and let P be a proof of s = t in Ei [ Ri. If P is not yet arewrite proof then for some j � i there exists a proof P 0 in Ej [Rj of s = tsuch that P �BC P 0.By a completion procedure we mean a strategy for applying the inferencerules of BC to inputs (�; E) and reduction ordering >, in order to generatea BC-derivation (E0; R0) ) (E1; R1) ) � � � with (E0; R0) = (E;?). Be-cause for some inputs a fair derivation may not be possible, we allow for acompletion procedure to fail. We say that a completion procedure is fair ifit generates only fair derivations unless it fails. We now have:Theorem 1.5.10. (Bachmair, Dershowitz & Hsiang [86]) Let C be a faircompletion procedure that does not fail on input (�; E) and > :1. If s =E t then C will generate a pair (Ei; Ri) such that s and t have



Term Rewriting Systems 61a common reduct in Ri:2. R1 (= SnRn) is a complete TRS.1.6 Uni�cationIn the preceding sections about completion algorithms, we have used as a`subroutine' the determination of a most general uni�er of two terms. Inthe present section we will describe a version of a uni�cation algorithm, dueto Martelli & Montanari [82]; this nondeterministic algorithm to computemgu's is itself phrased in the terminology of rewriting. We start with pre-senting the rewrite rules for `syntactic uni�cation', and afterwards extendthese rules to include `semantic uni�cation' or `E-uni�cation'.Syntactic uni�cationBefore presenting the syntactic uni�cation algorithm, we introduce somemore concepts about substitutions, which were de�ned in Section 1.1 ashomomorphisms (with respect to term formation) from the set of termsTer(R) of the TRS R to Ter(R). The composition of substitutions �; � isthe usual one for functions: (� � �)(t) = � (�(t)) for t 2 Ter(R); however,� � � will be written as �� , and in accordance with our earlier notationconvention, �(t) as t� . Note that this notation is unambiguous: (t�)� =t(��):The support of substitution � is the restriction of � to the set of thosevariables xi for which xi 6� x�i . Usually, the support will be �nite, and inthis case we write � (by some `abus de langage') as its support, which is a�nite list of `bindings' of terms to variables:fxi1 := ti; : : : ; xin := tng:A renaming substitution is a bijective substitution. This implies that arenaming, restricted to the set of variables V ar = fxi j i � 0g, is a permu-tation of V ar. Note that the composition �� of renamings �; � is again arenaming, and that the inverse ��1 of a renaming � exists and is again arenaming. Terms s; t di�ering a renaming, i.e. t� � s for some renaming�; are called variants (of each other).If t; s are terms such that t� � s for some substitution �; we writet � s. The relation � is not yet a partial ordering; it is a quasi-ordering,also called the subsumption relation. One easily proves for all s; t 2 Ter(R):s � t & t � s , s; t are variants. For substitutions �; � we write � � � if� = �� for some substitution �. In this case � is called more general than� . (The `overloading' of the symbol � will cause no confusion.) Analogousto the case of terms, one easily proves: � � � & � � � , �; � di�er arenaming (�� = � for some renaming �).



62 J. W. KlopWe call � a uni�er of a set of terms T = ft1; : : : ; tng if t�1 � t�n. It is amost general uni�er (mgu) of T if for every uni�er � of T we have � � � .Each �nite set of terms which can be uni�ed (has a uni�er) has a mgu; itis unique modulo renamings.The task of �nding a most general uni�er of two terms F (t1; : : : ; tn) andF (s1; : : : ; sn) can be viewed as the task of solving the set of equations ft1 =s1; : : : ; tn = sng. A very elegant algorithm exploiting this representationwas given by Martelli-Montanari [82]. It consists of rules which transformone set of equations into another one. To conform with the notation in`equational logic programming' as in H�olldobler [89], we write instead offt1 = s1; : : : ; tn = sng : ( t1 = s1; : : : ; tn = sn;called also an equational goal. The empty goal (empty set of equations)will be denoted as �. The algorithm to be presented transforms, nonde-terministically, goals into goals; just as in logic programming we intend toend a sequence of transformations in the empty goal:G0� G1� � � �� �:Here � denotes an elementary `derivation' step; G0; G1; : : : are equa-tional goals. Actually, at some of the �-steps we may obtain as a `side-e�ect' a substitution �; it will be denoted as a subscript, so that such astep has the form G�� G0. So a derivation may have the form, e.g.:G0� G1��1 G2��2 G3� G4� G5��5 G6� � � �� �:Derivation sequences ending in � are successful; it will also be possiblethat a derivation is stuck and cannot be prolonged to reach �, because notransformation rule applies. In that case we conclude the sequence afterthe goal where the sequence got stuck, with the symbol � (for `failure'):G0� G1� � � �� �:In the case of a successful derivation, we can obtain the `harvest' by com-posing all the substitutions that are found, in their order of appearance; inthe example above: �1�2�5 � � � . This substitution is the computed answersubstitution of the successful derivation that we are considering.We will now present the four derivation rules for equational goals thattogether constitute a uni�cation algorithm. With some adaptations, these`Martelli-Montanari rules' (MM-rules) are as follows. Here ( t = s; Estands for an equational goal containing the equation t = s; with E wedenote the remaining equations in the goal.



Term Rewriting Systems 631. Term decomposition( F (t1; : : : ; tn) = F (s1; : : : ; sn); E�( t1 = s1; : : : ; tn = sn; E2. Removal of trivial equations( x = x; E � ( E3. Swap ( t = x; E � ( x = t; Eif t is not a variable4. Variable elimination( x = t; E �fx:=tg ( Efx:=tgif x 62 t(If E is t1 = s1; : : : ; tn = sn; then E� is t�1 = s�1 ; : : : ; t�n = s�n. With`2' we abbreviate `occurs in'. Note that only in transformation rule (4) asubstitution is delivered.)We have the following well-known `completeness' theorem:Theorem 1.6.1. (Uni�cation Theorem) Let G be an equational goal( t1 = s1; : : : ; tn = sn. Then the following are equivalent:1. the equations in G can be uni�ed;2. there is a mgu � such that t�1 � s�1 ; : : : ; t�n � s�n;3. the derivation tree with root G and constructed with the MM rulesis �nite and has only success branches, all yielding an mgu of theequations in G as computed answer substitution.Furthermore, if the equations in G cannot be uni�ed, the MM-derivationtree with root G is also �nite, but now with all branches ending unsuccess-fully.(It will be clear what is meant in the statement of the theorem abovewith derivation tree; it arises because the rules can be applied nondeter-ministically.) In the original presentation of Martelli and Montanari, thefollowing two rules are also included; they enhance e�ciency, by pruningthe MM-derivation tree of some unsuccessful subtrees. But we don't needthem for the completeness of this (nondeterministic) uni�cation algorithm.(Also, when extending the set of rules to deal with E-uni�cation, as we willdo below, (5) and (6) must be omitted.)



64 J. W. Klop5. Failure rule( F (t1; : : : ; tn) = G(s1; : : : ; sm); E � �6. Occur check ( x = t; E � �if x 6� t and x 2 tIt is not hard to prove that the MM rules are indeed terminating, asstated by the Uni�cation Theorem. (See Martelli-Montanari [82], Apt [90],or Dershowitz & Jouannaud [90].)If t; s are uni�able terms we will denote with mgu(s; t) a particularmgu of fs; tg, obtained by performing the MM transformations accordingto some �xed strategy.Example 1.6.2.1. We want to determine `the' mgu of the terms F (G(x);H(x; u)) andF (z;H(F (y; y); z)). The MM rules yield the following successfulderivation:( F (G(x);H(x; u)) = F (z;H(F (y; y); z)) �(1)( G(x) = z; H(x; u) = H(F (y; y); z) �(3)( z = G(x); H(x; u) = H(F (y; y); z) �(4);fz:=G(x)g( H(x; u) = H(F (y; y); G(x)) �(1)( x = F (y; y); u = G(x) �(4);fx:=F (y;y)g( u = G(F (y; y)) �(4);fu:=G(F (y;y))g�with computed answer substitution fz := G(x)gfx := F (y; y)gfu :=G(F (y; y))g = fz := G(F (y; y)); x := F (y; y); u := G(F (y; y))g. In-deed this is a mgu of the original pair of terms.2. A failing uni�cation attempt:( F (x; y) = F (y;G(x)) �(1)( x = y; y = G(x) �(2);fx:=yg( y = G(y) �(6)�Semantic uni�cationIn the previous section we have presented an algorithm to solve equationst1 = t2 `syntactically'; this is a particular case of the important problemto solve equations `semantically', i.e. modulo some equational theory E(for this reason semantic uni�cation is also called E-uni�cation). More



Term Rewriting Systems 65precisely, in the presence of an equational theory E, and given an equa-tion t1 = t2, we want to �nd substitutions � such that E � t�1 = t�2 orequivalently (see Theorem 1.4.2) E ` t�1 = t�2 . So syntactic uni�cation isE-uni�cation with empty E.The situation is now much more complicated than for the case of syn-tactic uni�cation, since in general there will not be a most general uni�er� for t1; t2. We will not really enter the vast area of uni�cation theory (seeSiekmann [84]), but will mention two algorithms for E-uni�cation whichare pertinent to term rewriting. Both algorithms operate under the as-sumption that E, the underlying equational theory, is a complete TRS (orrather corresponds to one after orienting the equality axioms of E intorewrite rules). So here we have another important application of Knuth-Bendix completion: it prepares the way for equation solving over E, bydelivering a complete TRS for E (if possible).NarrowingA well-known technique to solve equations t1 = t2 in the presence of anequational theory E uses the `narrowing' transformation on terms. We willgive an `intuitive' explanation �rst, which also explains why narrowing iscalled `narrowing'.If (�; E) is an equational theory, we write [t = s]E for the set of solutionsof the equation t = s in E, i.e. f� j E ` t� = s�g. A solution � is asubstitution as de�ned earlier, i.e. a map from V ar, the set of variables,to Ter(�). Let Sub be the set of all substitutions, and if X � Sub, let�X denote f�� j � 2 Xg. Now noting that for every � we have [t = s]E ��[t� = s� ]E, there is in principle the possibility of a stepwise determinationof [t = s]E . This stepwise determination consists of two kind of steps. The�rst is as just described: guess a component � of a solution and narrow[t = s]E to �[t� = s� ]E. The second is: apply an equation of E in one ofthe sides of the equation t = s under consideration. Clearly, a step of thesecond kind preserves equality of the solution set. By an iteration of suchsteps, alternating between steps of the �rst kind and steps of the secondkind, we may reach the solution set of a trivial equation r = r (which isSub): [t = s]E � �[t� = s�]E = �[r = s� ]E� ��1[r�1 = s��1 ]E = � � �� � � �� ��1 � � ��n[r = r]E:The last solution set ��1 � � ��n[r = r]E of this `narrowing' chain has asa most general element the substitution ��1 � � ��n. The word `narrowing'has been given a formal content: it denotes a certain method, based on



66 J. W. Klopterm rewriting, to perform a stepwise determination of [t = s]E as de-scribed. A narrowing step combines a step of the �rst kind and one of thesecond. Actually, the narrowing relation is �rst de�ned on terms ratherthan equations, as in the following de�nition, where we suppose that R isa TRS equivalent to E (i.e. =R coincides with =E ). Note that narrowingis a generalization of reduction: any reductions step in a TRS is also anarrowing step. Formally:De�nition 1.6.3. Let term t contain the subterm u, so t � C[u] for somecontext C[ ]. In the presence of a TRS R we say that t is narrowable to t0at the (nonvariable) subterm u � t using rewrite rule r : t1 ! t2 2 R, via� = mgu(u; t1), if t0 � C[t2]�. Notation: t ;u;r;� t0. (Sometimes we willdrop mention of u; r; but not of �.)
Figure 1.24We now extend the narrowing transformation, which was de�ned onterms, to equations: if t;� t0, then t = s;� t0 = s and likewise s = t;�s = t0 are said to be narrowing steps (on equations). As we have seen, theword narrowing actually refers to the solution sets: if t = s;� t0 = s� then[t = s]R � �[t� = s� ]R. Note how narrowing cuts down the search space fordetermining the solution set, �rst by using the directional aspect of a TRS,and second by performing substitutions which are as `small' (as general)as possible. However, there is a price to be paid: to ensure completeness



Term Rewriting Systems 67of the narrowing method for solving equations, we must require that theunderlying TRS is . . . complete. More precisely (as stated in Hullot [80]): inorder to solve an equation t1 = t01 in an equational theory E, correspondingto a complete TRS R, we can construct all possible narrowing derivationsstarting from the given equation until an equation tn = t0n is obtained suchthat tn and t0n are syntactically uni�able. In fact, we are sure to �nd allpossible solutions of the equation. We will make this more precise, via thefollowing de�nition.De�nition 1.6.4. Let �; � be substitutions and E an equational theory.Then � �E � if for some � we have �� =E �. (Here �� =E � means:E ` x�� = x� for all x.)Now we have the following completeness theorem for narrowing plussyntactic uni�cation. (See Martelli, Moiso & Rossi [86], Theorem 2. Seealso H�olldobler [89] for a proof of this theorem and many related facts.) Theformulation of the theorem refers to a slightly more general setting than inour discussion of narrowing above: the narrowing procedure may be appliednot only to single equations, but to equational goals( t1 = s1; : : : ; tn = sn.Theorem 1.6.5. Let R be a complete TRS. Suppose t�1 =R t�2 (i.e. � isa solution of the equation t1 = t2). Then there is a successful derivationsequence starting with ( t1 = t2 and using narrowing steps and MMsteps (1{4), such that the computed answer substitution � of this sequence`improves' �, i.e. � �R �:Remark 1.6.6.1. Note that the subscript R in � �R � is necessary. (Example: R =ff(b) ! g(b); a ! bg. Now � = fx=ag is a solution for ( f(x) =g(x), but as computed answer substitution we only �nd � = fx=bg:)2. Also completeness of R is necessary.(a) To see that conuence of R is necessary, consider the TRS R =fa! b; a! cg (so R is not conuent). Now the equation( b =c cannot be solved, i.e. we do not �nd the expected computedanswer substitution � (the identity substitution). However, ifwe turn R into a conuent system, e.g. by adding the rewriterules b! d and c! d, then narrowing (together with syntacticuni�cation) gives a refutation of ( b = c:( b = c ;� ( d = c ;� ( d = d �1 �:(b) To see that termination of R is necessary, consider the conu-ent but nonterminating TRS with one rule: c ! f(c). Nownarrowing plus syntactic uni�cation is not complete: the equa-tion x = f(x) has a solution, fx := cg, but cannot be resolved,



68 J. W. Klopbecause the only subterm where narrowing may be applied isf(x) (narrowing may not be performed on a variable) and thisdoes not unify with c. (Also syntactic uni�cation does not help,since x occurs in f(x).) So we do not �nd a computed answersubstitution.3. Theorem 1.6.5 can be improved in the following sense: we can dropthe termination requirement on R, thus only requiring R to be conu-ent, if we consider only normalizable solutions � (as in the statementof the theorem above). Here � is called normalizable if all terms x�(x a variable) have a normal form. (Note that the solution fx := cgin 2(b) was not normalizable.) If moreover we consider not only nor-malizable solutions �; but normal � (meaning that every x� is innormal form), then we can even drop the subscript R in � �R �, inthe statement of the theorem above.Lazy term rewriting as a complete E-uni�cation algorithmAn interesting complete E-uni�cation algorithm is given by Martelli, Moiso& Rossi [86], also for the case where E corresponds after orienting theequations to a complete TRS R. The nondeterministic algorithm consistsof the four derivation rules (1){(4) for syntactic uni�cation as given abovetogether with a single rule called `term rewriting' in Martelli e.a. [86]. Ofcourse derivation rules 5 (failure rule) and 6 (occur check) are not includednow. Actually, this rule does not resemble what is usually called termrewriting. Here we will call the present rule `lazy term rewriting'.7. Lazy term rewriting( C[F (t1; : : : ; tn)] = s; E�( C[t] = s; t1 = s1; : : : ; tn = sn; Eif F (s1; : : : ; sn)! tand likewise with the reverse of the equations C[F (t1; : : : ; tn)] = s andC[t] = s. Here C[ ] is some context, and F (s1; : : : ; sn)! t is a rewrite rulefrom the complete TRS R.Note how amazingly little is `done' in a lazy term rewriting step, ascompared to the rather complicated narrowing procedure.2 Orthogonal Term Rewriting SystemsIn the preceding sections we have considered general properties of TRS'sand how these properties are related; among them the most importantproperty, conuence, with its consequence of uniqueness of normal forms.



Term Rewriting Systems 69We will now consider a special class of TRS's, the orthogonal ones (in theliterature mostly known as non-ambiguous and left-linear TRS's), which allhave the conuence property as well as various other desirable propertiesconcerned with reduction strategies.A remark concerning the choice of the word `orthogonal': to avoid thecumbersome phrase `non-ambiguous and left-linear', Klop [80a] introducedthe abbreviation `regular'. This terminology is also used in e.g. O'Donnell[85], Kennaway [89], Klop [87], and in early versions of Dershowitz & Jouan-naud [90]. On a proposal of Dershowitz and Jouannaud the word `regular'has been replaced in the present paper by `orthogonal'; this in view ofthe fact that many authors found the terminology `regular' objectionable.Indeed, the word `orthogonal' has the right intuitive connotations.2.1 Basic theory of orthogonal TRS'sDe�nition 2.1.1.1. A TRS R is orthogonal if the reduction rules of R are left-linear (Ris left-linear) and there are no critical pairs.2. R is weakly orthogonal if R is left-linear and R contains only trivialcritical pairs, i.e. ht; si is a critical pair then t � s.We recall that a reduction rule t ! s is left-linear if t is linear, i.e.no variable occurs twice or more in t. E.g. the rule D(x; x) ! E is notleft-linear; nor is the rule if x then y else y ! y. A TRS R without criticalpairs is also called non-ambiguous or non-overlapping. One problem withnon-left-linear rules is that their application requires a test for syntacticequality of the arguments substituted for the variables occurring more thanonce. As terms may be very large, this may be very laborious. Anotherproblem is that the presence of non-left-linear rules may destroy the CRproperty.Exercise 2.1.2. Let R consist of the rules D(x; x)! E, C(x)! D(x;C(x)),A! C(A). To show: R is WCR, but not CR; for, we have reductions C(A)� Eand C(A)� C(E) but C(E), E have no common reduct. There are no criticalpairs in R. Hence, in view of our later theorem stating that orthogonal TRS's areconuent, the non-conuence of R is caused by the non-left-linear rule D(x; x)!E. In the preceding section (De�nition 1.4.9) we have already de�ned thenotion of `critical pair'. Since that de�nition is often found di�cult, wewill now explain the absence of critical pairs in a more `intuitive' way. LetR be the TRS as in Table 2.1:



70 J. W. Klopr1 F (G(x; S(0)); y;H(z)) ! xr2 G(x; S(S(0))) ! 0r3 P (G(x; S(0))) ! S(0)Table 2.1Call the context F (G(�; S(0));�;H(�)) the pattern of rule r1. (Earlier,we de�ned a context as a term with exactly one hole �, but it is clear whata context with more holes is.) In tree form the pattern is the shaded areaas in Figure 2.1. For a left-linear rule it is only its pattern that `counts'.
Figure 2.1
Figure 2.2The TRS R in Table 2.1 has the property that in no term patterns canoverlap, i.e. R has the non-overlapping or non-ambiguity property. Figure2.2 shows a term in R with all patterns indicated, and indeed they do notoverlap.



Term Rewriting Systems 71Overlap can already occur in one rule, e.g. in the rule L(L(x)) ! 0;see Figure 2.3(a). An overlap at the root (of the tree corresponding to aterm), arising from the rules F (0; x; y) ! 0, F (x; 1; y) ! 1, is shown inFigure 2.3(b). Another overlap at the root, arising from the rules for thenon-deterministic or: or(x; y)! x, or(x; y)! y, is shown in Figure 2.3(c).
Figure 2.3We will now formulate and sketch the proofs of the basic theorems fororthogonal TRS's. To that end, we need the notion of `descendant ' in areduction. Somewhat informally, this notion can be introduced as follows:Let t be a term in a orthogonal TRS R, and let s � t be a redex whose headsymbol we will give a marking, say by underlining it, to be able to `trace' itduring a sequence of reduction (rewrite) steps. Thus if s � F (t1; : : : ; tn), itis marked as F (t1; : : : ; tn). First consider the rewrite step t!s0 t0, obtainedby contraction of redex s0 in t. We wish to know what has happened inthis step to the marked redex s. The following cases can be distinguished,depending on the relative positions of s and s0 in t:Case 1. The occurrences of s0 and s in t are disjoint. Then we �nd backthe marked redex s, unaltered, in t0.Case 2. The occurrences of s and s0 coincide. Then the marked redex hasdisappeared in t0; t0 does not contain an underlined symbol.Case 3. s0 is a proper subterm of the marked redex s (so s0 is a subterm ofone of the arguments of s). Then we �nd back the marked redex, with somepossible change in one of the arguments. (Here we need the orthogonalityof R; otherwise the marked redex could have stopped being a redex in t0after the `internal' contraction of s0.)Case 4. s is a proper subterm of s0. Then the marked redex s is n timesmultiplied for some n � 0; if n = 0, s is erased in t0. The reduct t0 nowcontains n copies of the marked redex, all of them still marked.Now the marked redexes in t0 are called the descendants of s � t inthe reduction step t !s0 t0. It is obvious how to extend this de�nition



72 J. W. Klopby transitivity to sequences of rewrite steps t !s0 t0 !s00 t00 ! � � � !t(n�1) !s(n) t(n):Proposition 2.1.3. Let R be a orthogonal TRS, t 2 Ter(R). Let t con-tain, possibly among others, the mutually disjoint redexes s1; : : : ; sn. Letthese redexes be marked by underlining their head symbol. Furthermore,suppose that t� t0 is the sequence of n rewrite steps obtained by contrac-tion of all redexes si (in some order), and let t !s t00 be a rewrite stepobtained from contracting redex s. (See Figure 2.4(a).) Then a commonreduct t000 of t0; t00 can be found by contracting in t00 all marked redexes(which still are mutually disjoint). The reduction t0 � t000 consists of thecontraction of all descendants of s in t0 after the reduction t� t0.Figure 2.4The proof is a matter of easy casuistics, left to the reader. An immediatecorollary is the `Parallel Moves Lemma':Lemma 2.1.4. (Parallel Moves Lemma) We consider reductions in anorthogonal TRS. Let t � t00, and let t !s t0 be a one step reduction bycontraction of redex s. Then a common reduct t000 of t0; t00 can be found bycontraction in t00 of all descendants of redex s, which are mutually disjoint.(See Figure 2.4(b).)By repeated application of the Parallel Moves Lemma we now have:Theorem 2.1.5. Every orthogonal TRS is conuent.Theorem 2.1.5 also holds for weakly orthogonal TRS's. The earliestproof of Theorem 2.1.5 is probably that of Rosen [73]; but earlier proofs ofthe conuence of CL (Combinatory Logic), work just as well for orthogonalTRS's in general. The conuence theorem for (weakly) orthogonal TRS'sis also a special case of a theorem of Huet (mentioned already in Exercise1.4.24), stated here without proof. We need a de�nition �rst:De�nition 2.1.6. (Parallel reduction) t !k s if t � s via a reduction ofdisjoint redexes.



Term Rewriting Systems 73Theorem 2.1.7. (Huet [80]) Let R be a left-linear TRS. Suppose forevery critical pair ht; si we have t !k s. Then !k is strongly conuent,hence R is conuent.(For the de�nition of `strongly conuent' see Exercise 1.0.8(10). Infact, the proof in Huet [80] yields more: !k is even subcommutative|seeDe�nition 1.0.1(5).)Exercises 2.1.8.1. Combinatory Logic (Table 1.4) has rule patterns as in Figure 2.5; theycannot overlap. As CL is left-linear, it is therefore orthogonal and henceconuent.
Figure 2.52. SKIM, in Table 1.5, is orthogonal. Likewise for the TRS's CL with test forequality, binary or applicative, in Tables 1.6, 1.7 respectively. Also WeakCategorical Combinatory Logic in Table 1.8 is orthogonal.3. A Recursive Program Scheme (RPS) is a TRS with(a) a �nite set of function symbols F = fF1; : : : ; Fng (the `unknown'functions), where Fi has arity mi � 0 (i = 1; : : : ; n), and(b) a �nite set G = fG1; : : : ;Gkg (the `known' or `basic' functions), dis-joint from F , where Gj has arity pj � 0 (j = 1; : : : ; k),(c) reduction rules of the formFi(x1 : : : ; xmi)! ti (i = 1; : : : ; n)where all the displayed variables are pairwise di�erent and where tiis an arbitrary term built from operators in F ;G and the displayedvariables. For each Fi (i = 1; : : : ; n) there is exactly one rule.Every RPS is orthogonal, hence conuent. For an extensive treatise onsemantical aspects of Recursive Program Schemes, see Courcelle [90].Exercise 2.1.9. For a deterministic Turing machine M , the TRS RM asde�ned in Exercise 1.2.21 is orthogonal.Apart from conuence, many interesting facts can be proved for orthog-onal TRS's.



74 J. W. KlopDe�nition 2.1.10.1. A TRS is non-erasing if in every rule t! s the same variables occurin t and in s. (E.g. CL is not non-erasing, due to the rule Kxy ! x.)2. A TRS is weakly innermost normalizing (WIN) if every term has anormal form which can be reached by an innermost reduction. (In aninnermost reduction a redex may only be `contracted' if it containsno proper subredexes.)The next theorem was proved in Church [41] for the case of the non-erasing version of �-calculus, the �I-calculus, where the restriction on termformation is adopted saying that in every abstraction term �x:M the vari-able x must have a free occurrence in M .Theorem 2.1.11. Let R be orthogonal and non-erasing. Then: R is WNi� R is SN.Another useful theorem, which also reduces the burden of a termination(SN) proof for orthogonal TRS's, is:Theorem 2.1.12. (O'Donnell [77]) Let R be an orthogonal TRS. Then:R is WIN i� R is SN.The last two theorems can be re�ned to terms: call a termWN if it has anormal form, SN if it has no in�nite reductions, WIN if it has a normal formreachable by an innermost reduction. The `local' version of Theorem 2.1.11then says that for a term in an orthogonal, non-erasing TRS the propertiesWN and SN coincide. Likewise there is a local version of Theorem 2.1.12.Thus, if in CL a term can be normalized via an innermost reduction, allits reductions are �nite.Exercise 2.1.13. In this exercise we sketch a proof of Theorem 2.1.11 andO'Donnell's Theorem 2.1.12.1. The following proposition has an easy proof:PROPOSITION. Let t be a term in an orthogonal TRS, containing mu-tually disjoint redexes s1; : : : ; sn, and a redex s. Let t � t0 be the n-stepreduction obtained by contraction, in some order, of the redexes s1; : : : ; sn.Suppose s has after the reduction t � t0 no descendants in t0. Then forsome i 2 f1; : : : ; ng: s � si. This means that either s coincides with somesi, or is contained in an argument of some si.2. We write `1(t)' if the term t has an in�nite reduction t!! � � � . So 1(t)i� t is not SN. Using the proposition in (1) one can now prove (the proofis non-trivial):LEMMA. Let t be a term in an orthogonal TRS such that1(t). Let t!s t0be a reduction step such that :1(t0). Then the redex s must contain aproper subterm p with 1(p) that is erased in the step t !s t0 (i.e. has no



Term Rewriting Systems 75descendants in t0).3. Using the Lemma it is now easy to prove Theorem 2.1.11: `critical' stepst! t0 in which 1(t) but :1(t0), cannot occur in a non-erasing TRS.4. Theorem 2.1.12 follows from the Lemma in (2) by observing that an inner-most contraction cannot erase a proper subterm which admits an in�nitereduction, since otherwise the contracted redex would not have been in-nermost.Exercise 2.1.14. STS's (Semi-Thue Systems), viewed as TRS's as explainedin Section 1.1, are always non-erasing (since left-hand side and right-hand sideof every rule end in x, in their TRS version). Also, if there are no critical pairsin the STS, it is orthogonal. So if a STS has no critical pairs, the properties SNand WN coincide.This rather trivial observation could have been more easily made by notingthat for a STS without critical pairs the property WCR1 holds, as de�ned inExercise 1.0.8(15), whence WN , SN.Exercise 2.1.15. (Klop [80a]) Let t0 be a term in an orthogonal TRS.Suppose t0 has a normal form, but has also an in�nite reduction t0 ! t1 ! t2 !� � � . Show that t0 has also an in�nite `expansion' (the reverse of a reduction)� � � ! t�2 ! t�1 ! t0: (Hint: use the lemma in Exercise 2.1.13, and note thatan `erasing redex' can be used to `pump' an in�nite expansion.)Exercise 2.1.16. (Klop [85])1. Let R be orthogonal, and suppose R is WN (i.e. every term has a normalform), but not SN. Let t 2 Ter(R) be a term with an in�nite reduction.Then G(t), the reduction graph of t, contains an in�nite expansion (byconuence, there must then also be an in�nite expansion of the normalform t0 of t inside G(t)). In fact, G(t) contains reductions as follows:t� t1 � t2 � � � � and t0 � t01 � t02 � � � �such that tn ! t0n for all n � 1 and such that the ti (n � 1) are pairwisedistinct, and likewise the t0j (n � 1) are pairwise distinct.2. Let t be a term in an orthogonal TRS. Prove: if G(t) contains an in�nitereduction but contains no in�nite acyclic expansion, then t reduces to acontext C[ ] of a term s without normal form. (The set of s such thatt � C[s] for some C[ ], is called in Barendregt [81] the family of t.) (Inparticular the conclusion holds if G(t) is �nite but contains a reduction cy-cle. Curiously, in CL as in Table 1.4 this is impossible, i.e. �nite reductiongraphs in CL based on S;K;I are acyclic; see Klop [80b].)3. The following �gure displays the reduction graph of a term t in an orthog-onal TRS R. Give an example of such t, R. Conclude, using (2), that tmust have a term without normal form in its family. A fortiori, such areduction graph cannot occur in an orthogonal TRS which is WN.



76 J. W. Klop
Figure 2.6Exercise 2.1.17. (Klop [80a]) Prove for all orthogonal TRS's R with �nitealphabet and �nitely many rules:1. R is non-erasing , R has the property FB�1. (See De�nition 1.0.3(8) forFB�1.)2. R has the property SN�1 , R has the property Inc. (See De�nition 1.0.3.)(Hint: Prove SN�1 ) non-erasing, use (1) and use the implication FB�1& SN�1 ) Inc; see Figure 1.2.)2.2 Reduction strategies for orthogonal TRS'sTerms in a TRS may have a normal form as well as admitting in�nitereductions. So, if we are interested in �nding normal forms, we should havesome strategy at our disposal telling us what redex to contract in order toachieve that desired result. We will in this section present some strategieswhich are guaranteed to �nd the normal form of a term whenever such anormal form exists. We will adopt the restriction to orthogonal TRS's; forgeneral TRS's there does not seem to be any result about the existence of`good' reduction strategies.The strategies below will be of two kinds: one step or sequential strate-gies (which point in each reduction step to just one redex as the one tocontract) and many step strategies (in which a set of redexes is contractedsimultaneously). Of course all strategies must be computable.Apart from the objective of �nding a normal form, we will consider theobjective of �nding a `best possible' reduction even if the term at handdoes not have a normal form.



Term Rewriting Systems 77De�nition 2.2.1. Let R be a TRS.1. A one step reduction strategy F for R is a map F: Ter(R) ! Ter(R)such that(a) t � F(t) if t is a normal form,(b) t! F(t) otherwise.2. A many step reduction strategy F for R is a map F: Ter(R)! Ter(R)such that(a) t � F(t) if t is a normal form,(b) t!+ F(t) otherwise.Here !+ is the transitive (but not reexive) closure of !. Instead of `onestep strategy' we will also say `sequential strategy'.De�nition 2.2.2.1. A reduction strategy (one step or many step) F for R is normalizingif for each term t in R having a normal form, the sequence fF n(t) jn � 0g contains a normal form.2. F is co�nal if for each t the sequence fF n(t) j n � 0g is co�nal inG(t), the reduction graph of t. (See Exercise 1.0.8(13) for `co�nal'and see Figure 2.7.)
Figure 2.7A normalizing reduction strategy is good, but a co�nal one is even bet-ter: it �nds, when applied on term t, the best possible reduction sequencestarting from t (or rather, a best possible) in the following sense. Considera reduction t ! s as a gain in information; thus normal forms have max-imum information. In case there is no normal form in G(t), one can stillconsider in�nite reductions as developing more and more information. Nowthe co�nal reductions t � t0 ! t1 ! t2 ! � � � are optimal since for every t0



78 J. W. Klopin G(t) they contain a tn with information content no less than that of t0(since t0 � tn for some tn; by de�nition of `co�nal'). In a sense, a co�nalreduction plays the role of a kind of `in�nite normal form'. See e.g. Berry& L�evy [79] and Boudol [85], where spaces of �nite and in�nite reductionsmodulo the so-called permutation equivalence are studied; this give riseto cpo's or even complete lattices where the bottom point corresponds tothe empty reduction of t, i.e. to t itself, and the top point correspondsto the normal form (or rather the equivalence class of reductions to thenormal form), if it exists, and otherwise to the equivalence class of co�nalreductions.We now present some well-known reduction strategies.De�nition 2.2.3.1. The leftmost-innermost (one step) strategy is the strategy in whichin each step the leftmost of the minimal or innermost redexes is con-tracted (reduced).2. The parallel-innermost (many step) strategy reduces simultaneouslyall innermost redexes. Since these are pairwise disjoint, this is noproblem.3. The leftmost-outermost (one step) strategy: in each step the leftmostredex of the maximal (or outermost) redexes is reduced. Notation:Flm.4. The parallel-outermost (many step) strategy reduces simultaneouslyall maximal redexes; since these are pairwise disjoint, this is no prob-lem. Notation: Fpo.5. The full substitution rule (or Kleene reduction, or Gross-Knuth re-duction): this is a many step strategy in which all redexes are simul-taneously reduced. Notation: FGK .Strategies (1){(4) are well-de�ned for general TRS's. Strategy (5) isonly de�ned for orthogonal TRS's, since for a general TRS it is not possibleto de�ne an unequivocal result of simultaneous reduction of a set of possiblynested redexes. The �ve strategies are illustrated in Figure 2.8 (taken fromBergstra, Heering & Klint [89]), for the following TRS:and(true; x) ! xand(false; x) ! falseor(true; x) ! trueor(false; x) ! trueWe will be mainly interested here in the strategies (3){(5), for a reasonthat will be clear by inspection of Table 2.2 below. We have the followingfacts (for proofs see O'Donnell [77] or Klop [80a]):
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Figure 2.8 (after Bergstra, Heering & Klint [89])Theorem 2.2.4. For orthogonal TRS's:1. FGK is a co�nal reduction strategy.2. Fpo is a normalizing reduction strategy.Remark 2.2.5. For �-calculus this theorem also holds. Moreover, Flmis there also a normalizing strategy, just as it is for the orthogonal TRSCL (Combinatory Logic). However, in general Flm is not a normalizingstrategy for orthogonal TRS's (see Exercise 2.2.6).Exercise 2.2.6.1. An example showing that the leftmost-outermost strategy is not normal-izing in general, is given in Huet & L�evy [79]: take the orthogonal TRSfF (x;B) ! D; A ! B; C ! Cg and consider the term F (C;A). Checkthat this term has a normal form which is not found by the leftmost-outermost strategy.



80 J. W. Klop2. An example (by N. Dershowitz) showing that parallel-outermost reductionneed not be co�nal can be found in the TRS fA! F (A); G(x)! G(x)g.Even though Flm is in general for orthogonal TRS's not normalizing,there is a large class of orthogonal TRS's for which it is:De�nition 2.2.7. (O'Donnell [77]) An orthogonal TRS is left-normal ifin every reduction rule t ! s the constant and function symbols in theleft-hand side t precede (in the linear term notation) the variables.Example 2.2.8.1. CL (Combinatory Logic) is left-normal.2. RPS's (Recursive Program Schemes) as de�ned in Exercise 2.1.8(3)are all left-normal.3. F (x;B)! D is not left-normal; F (B; x)! D is left-normal.Exercise 2.2.9. (Primitive Recursive Functions) The primitive recursivefunctions fromN toN are de�ned by the following inductive de�nition (Shoen�eld[67]):1. The constant functions Cn;k , the projection functions Pn;i and the suc-cessor function S are primitive recursive. (Here Cn;k(x1; : : : ; xn) = k,Pn;i(x1; : : : ; xn) = xi, S(x) = x+ 1.)2. If G;H1; : : : ;Hk are primitive recursive, then F de�ned byF (~x ) = G(H1(~x ); : : : ;Hk(~x ))(where ~x = x1; : : : ; xn) is primitive recursive.3. If G and H are primitive recursive, then F de�ned byF (0; ~x ) = G(~x )F (S(y); ~x ) = H(F (y; ~x ); y; ~x )is primitive recursive.Show that, by replacing every `=' by `!' in the de�ning equations, every primitiverecursive function is de�ned by a terminating, left-normal, orthogonal constructorTRS. (For the de�nition of `constructor TRS', see the end of Section 2.3.)Theorem 2.2.10. (O'Donnell [77], Klop [80a]) Let R be a left-normalorthogonal TRS. Then Flm is a normalizing reduction strategy for R.Exercise 2.2.11. (Hindley)1. Consider CL extended with Recursor, where Recursor = fRxy0 ! x,Rxy(Sz)! yz(Rxyz)g. Note that this applicative TRS is not left-normal,and show that Flm is not normalizing.2. However, for the TRS CL [ Recursor� where Recursor� = fR�0xy !x; R�(Sz)xy ! yz(Rzxy)g the strategy Flm is normalizing.



Term Rewriting Systems 81In the reduction strategy FGK (full substitution) every redex is `killed'as soon as it arises, and this repeatedly. Suppose we relax this requirement,and allow ourselves some time (i.e. some number of reduction steps) beforegetting rid of a particular redex|but with the obligation to deal with iteventually. The reductions arising in this way are all co�nal.De�nition 2.2.12.1. Let R = t0 ! t1 ! � � � be a �nite or in�nite reduction sequence.Consider some redex s in some term tn of R. We say that s is securedin R if eventually there are no descendants of s left, i.e.9m > n (tm contains no descendants s0; s00; : : : of s � tn):2. R is fair if every redex in R is secured.Theorem 2.2.13. For reductions R in orthogonal TRS's: R is fair ) Ris co�nal.Note that Theorem 2.2.4(1) is a corollary of the present theorem, sinceevidently reductions obtained by applying FGK are fair. A similar relax-ation of constraints applies to the other two strategies Fpo and Flm :De�nition 2.2.14.1. A reduction R is leftmost-fair ifR ends in a normal form or in�nitelymany times the leftmost outermost redex is contracted in R.2. R = t0 ! t1 ! � � � is outermost-fair if R does not contain a termtn with an outermost redex which in�nitely long stays an outermostredex but which is never contracted.Theorem 2.2.15. Let R be an orthogonal TRS. Then:1. Outermost-fair reductions are normalizing.2. If R is moreover left-normal, then leftmost-fair reductions are nor-malizing.We will now summarize some of the main properties of the variousreduction strategies (and their `relaxed' versions) in Table 2.2. Before doingso, we introduce one more property of strategies:De�nition 2.2.16. A reduction strategy F for R is perpetual, if for all t:1(t))1(F(t)):Here 1(t) means that t has an in�nite reduction, i.e. not SN(t). Soa perpetual strategy is the opposite of a normalizing one; it tries to avoidnormal forms whenever possible, and could therefore also be called `anti-normalizing'.



82 J. W. KlopIn Table 2.2 p; n; c stand for perpetual, normalizing, co�nal respectively.In case a property is not mentioned, it does not hold generally. Note thatfor the leftmost-outermost strategy, when applied to orthogonal TRS's ingeneral, none of the three properties holds generally. Proofs that leftmost-outermost reduction is normalizing for left-normal orthogonal TRS's andthat parallel-outermost reduction is normalizing for all orthogonal TRS'scan be found in O'Donnell [77]. The latter fact is also proved in Bergstra& Klop [86] (Appendix).
Table 2.2Computable reduction strategiesA strategy is recursive or computable if it is, after a coding of the termsinto natural numbers, a recursive function. Obviously we are primarilyinterested in computable strategies; and indeed all �ve strategies in De�-nition 2.2.3 are computable. We may now ask whether there is always foran orthogonal TRS a computable one-step normalizing reduction strategy.A priori this is not at all clear, in view of TRS's such as the one given byG. Berry: CL extended with rulesFABx ! CFBxA ! CFxAB ! Cwhich is an orthogonal TRS. This TRS seems to require a parallel reductionstrategy (so, not a one-step or sequential strategy), because in a term of theform FMNL we have no way to see the `right' argument for computation:a step in the third argument may be unnecessary, namely if the �rst andsecond argument evaluate to A and B respectively (which is undecidabledue to the presence of CL); likewise a step in the other arguments may beunnecessary. In the next section about sequential TRS's this problem willbe analyzed extensively.When we want to be more liberal, we can consider the same problemfor the weakly orthogonal TRS obtained by extending CL with Parallel-or:



Term Rewriting Systems 83or(true; x) ! trueor(x; true) ! trueIt has been claimed by some authors that such TRS's require a parallelevaluation. However, there is the following surprising fact.Theorem 2.2.17. (Kennaway [89]) For every weakly orthogonal TRSthere exists a computable sequential normalizing reduction strategy.The algorithm involved is however too complicated to be of more thantheoretical interest.Standard reductions in orthogonal TRS'sFor �-calculus and CL there is a very convenient tool: the StandardizationTheorem (see Barendregt [81], Klop [80a]). For orthogonal TRS's there isunfortunately not a straightforward generalization of this theorem (how-ever, see Huet & L�evy [79] for a generalization). The obstacle is the same asfor the normalizing property of the leftmost reduction strategy, discussedin the previous section. When we restrict ourselves again to left-normalorthogonal TRS's, there is a straightforward generalization.De�nition 2.2.18. (Standard Reductions) Let R be a TRS and R =t0 ! t1 ! � � � be a reduction in R. Mark in every step of R all redex headsymbols to the left of the head symbol of the contracted redex, with `�'.Furthermore, markers are persistent in subsequent steps.Then R is a standard reduction if in no step a redex is contracted witha marked head operator.Exercise 2.2.19. Consider CL [ Pairing, where Pairing = fD0(Dxy) !x; D1(Dxy)! yg:1. Show that the reduction D0(D(KII)I)! D0(DII)! I is not standard.2. Show that D0(D(KII)I)! KII ! I is standard.Exercise 2.2.20. (Hindley) Consider in the applicative TRS R = fPxQ!xx; R! S; Ix! xg the reductionR = PR(IQ)! PRQ! RR! SRand show that there is no standard reduction for R (i.e. a reduction PR(IQ)�SR which is standard).Theorem 2.2.21. (Standardization theorem for left-normal orthogonalTRS's) Let R be a left-normal orthogonal TRS. Then: if t� s there is astandard reduction in R from t to s.For a proof see Klop [80a]. A corollary is our earlier theorem statingthat Flm is a normalizing strategy for left-normal orthogonal TRS's; this



84 J. W. Klopfact is in �-calculus and CL literature also known as the NormalizationTheorem.Exercise 2.2.22. Prove the Normalization Theorem for left-normal orthog-onal TRS's from the Standardization Theorem. (Hint: suppose t has a normalform t0. By the Standardization Theorem, there is a standard reduction from tto t0. This is in fact the reduction as given by Flm.)2.3 Sequential orthogonal Term Rewriting SystemsAn important feature of orthogonal TRS's is whether they are `sequential'.The property of sequentiality is relevant both for the existence of nor-malizing reduction strategies and for the de�nability (implementability) in�-calculus or CL.That a TRS is sequential, does of course not mean that it is impos-sible to rewrite redexes in a parallel way. It means that there are alsoadequate sequential reduction strategies, i.e. it is not necessary to rewritein a parallel way in order to �nd normal forms. Sequentiality is a desir-able property, but unfortunately it is an undecidable property. However,there is a stronger version, `strong sequentiality', which is decidable andwhich guarantees the existence of a recursive one-step normalizing reduc-tion strategy. This was shown in Huet & L�evy [79]. In this section wefollow this paper, as well as Klop & Middeldorp [89]. We note that here weare primarily interested in `mathematical' properties of strong sequential-ity, and are not concerned with e�ciency of decision algorithms; for thelatter see Huet & L�evy [79].As remarked in Kennaway [89], one can ask whether `sequential' is theright terminology, in view of his theorem (2.2.17) stating that every or-thogonal TRS has a computable, sequential, normalizing strategy. Yet wefeel that the terminology is right, if we are interested in `feasibly sequen-tial' (admitting a sequential normalizing strategy that is computable in a`feasible' way).De�nition 2.3.1. Let t 2 TerR), R orthogonal. Let s � t be a redex.Then s is a needed redex (needed for the computation of the normal form,if it exists) i� in all reductions t! � � � ! t0 such that t0 is a normal form,some descendant of s is contracted. (So, trivially, any redex in a termwithout normal form is needed.)Exercise 2.3.2. Show that the leftmost outermost redex in t 2 TerR) whereR is a left-normal orthogonal TRS, is a needed redex.Theorem 2.3.3. (Huet & L�evy [79]) Let t be a term in an orthogonalTRS R.



Term Rewriting Systems 851. If t is not in normal form, t contains a needed redex.2. Repeated contraction of a needed redex leads to the normal form, ifit exists. (So, needed reduction is normalizing.)The proof involves quite some e�ort and is not included here. (For aproof di�erent from the one of Huet and L�evy, see Kennaway & Sleep [89].)Exercise 2.3.4.1. The present theory about needed reductions in orthogonal TRS's trivializesfor non-erasing TRS's: Show that in a non-erasing orthogonal TRS everyredex in a term is needed.2. (Kennaway [89]) Furthermore the present theory does not have a straight-forward generalization to weakly orthogonal TRS's: Show that Theorem2.3.3 does not hold for weakly orthogonal TRS's, by considering for(true; x)! true, or(x; true) ! trueg. (However, see O'Donnell [85].)Thus, Theorem 2.3.3 gives us a normalizing reduction strategy: justcontract some needed redex. However, the de�nition of `needed' refers toall reductions to normal form, so in order to determine what the neededredexes are, we have to inspect the normalizing reductions �rst, whichis not a very good recipe for a normalizing reduction strategy. In otherwords, the determination of needed redexes involves look-ahead, and it isthis necessity for look-ahead that we wish to eliminate. Before we do so,�rst the following observation, which is easy to prove:Proposition 2.3.5. Let t 2 TerR), R orthogonal. Let s and s0 be redexesin t such that s � s0. Then: s is needed ) s0 is needed.Corollary 2.3.6. Let t be a term not in normal form. Then some outer-most redex of t is needed.Now let C[ ; : : : ; ] denote a context with n holes. Denote by � a sub-stitution of redexes s1; : : : ; sn in the holes 1; : : : ; n. Then the last corollarystates:8C[ ; : : : ; ] in normal form 8� 9i si is needed in C[s1; : : : ; sn]:So, which si is needed, may depend on �, i.e. from the other sj . Amore pleasant state of a�airs would be when the TRS R would satisfy thefollowing property:De�nition 2.3.7. Let R be an orthogonal TRS. Then R is sequential� if8C[ ; : : : ; ] in normal form 9i 8�; si is needed in C[s1; : : : ; sn]:



86 J. W. KlopExercise 2.3.8. (Middeldorp)1. Show that the orthogonal TRS (where CL is Combinatory Logic)CL� fF (A;B; x)! C; F (B;x;A)! C; F (x;A;B)! Cg(due to G. Berry) is not sequential� .2. Show that the TRS fF (A;B; x) ! C; F (B;x;A) ! C; F (x;A;B) ! Cgis sequential� .3. Conclude that `sequential� ' is not a modular property.The concept `sequential�' is only introduced for expository purposes. Itis not a satisfactory property as it is undecidable. As it will turn out, amore satisfactory property is `strongly sequential�', de�ned as follows.De�nition 2.3.9.1. Let R be an orthogonal TRS and C[ ] a context. Then a reductionrelation!? (possible reduction) is de�ned as follows. For every redexs and every term t: C[s]!? C[t]As usual, �? is the transitive reexive closure. The concept of `de-scendant' is de�ned for !? in the obvious way.2. Let s be a redex in t. Then s is strongly needed if in every reduc-tion t !? : : : !? t0 where t0 is a normal form, a descendant of s iscontracted. Clearly: s is strongly needed ) s is needed.3. R is strongly sequential� if 8C[ ; : : : ; ] in normal form 9i 8� si isstrongly needed in C[s1; : : : ; sn].This property of `strong sequentiality�' may be rather subtle, as thefollowing example of Huet & L�evy [79] in Exercise 2.3.10 shows.Exercise 2.3.10. Let R have rewrite rules, written in tree notation, as inFigure 2.9(a) (the RHS's are irrelevant). Show that R is not strongly sequential� ,by considering the context as in Figure 2.9(b).Now the situation takes a pleasant turn, since as we will prove, it isdecidable whether a orthogonal TRS is strongly sequential�, and moreover,there is a simple algorithm to compute an i as in the de�nition. Actually,Huet & L�evy de�ne concepts `sequential' and `strongly sequential' in adi�erent way; our `sequential�' does not exactly coincide with `sequential'but `strongly sequential�' is equivalent with `strongly sequential'. We willde�ne these concepts now. We need some preliminary de�nitions:De�nition 2.3.11.1. Let R be a orthogonal TRS. Then the set Ter
(R) of 
-terms of Rconsists of those terms that can be built from function and constant
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Figure 2.9symbols from R together with a new constant 
. Reduction relations! and !? are extended to Ter
(R) in the obvious way. As before,we say that t is a normal form if t 2 Ter
(R), t contains no 
 and tcontains no redexes. Further, t is an 
-normal form if t contains noredexes (but t may contain occurrences of 
).2. On Ter
(R) we de�ne a partial order � by:(a) 
 � t for all t 2 Ter
(R),(b) ti � t0i (i = 1; : : : ; n) ) F (t1; : : : ; tn) � F (t01; : : : ; t0n).Clearly, t � s i� t � C[
; : : : ;
] and s � C[t1; : : : ; tn] for somecontext C[ ; : : : ; ] not containing 
, and some ti 2 Ter
(R) (i =1; : : : ; n; n � 0):3. A predicate P on Ter
(R) is monotone if t � t0 implies P (t)) P (t0):4. The predicate nf is de�ned on Ter
(R) as follows:nf(t) holds if t� n where n is a normal form (so without 
):5. The predicate nf? is de�ned on Ter
(R) as follows:nf?(t) holds if t�? n where n is a normal form:6. Let P be a monotone predicate on Ter
(R). Let t � C[
; : : : ;
; : : : ;
]where all 
's in t are displayed. Then the underlined occurrence of 
is an index with respect to P (or P -index) if for all s such that t � s,where s � C[t1; : : : ; ti; : : : ; tn]; we have: P (s) ) ti 6= 
: (Note thatin particular, if t has a P -index, then P (t) does not hold.)It is easily proved that the predicates nf and nf? are monotone. Nowwe de�ne (after Huet & L�evy [79]):



88 J. W. KlopDe�nition 2.3.12.1. The orthogonal TRS R is sequential if every t 2 Ter
(R) in 
-normalform, but not in normal form, has a nf-index.2. The orthogonal TRS R is strongly sequential if every t 2 Ter
(R) in
-normal form, but not in normal form, has a nf?-index.Exercise 2.3.13. (Middeldorp)1. Show that: R is sequential ) R is sequential� , but not vice versa. Hint:consider the TRS as in Exercise 2.3.8(2), with the term F (
;
;
):2. Show that: R is strongly sequential , R is strongly sequential� .Exercise 2.3.14. Let t � C[
; : : : ;
; : : : ;
] 2 Ter
(R), R not necessarilystrongly sequential. The i-th occurrence of 
 in t is underlined. Suppose that thisunderlined occurrence is a nf?-index of t. Show then that in C[s1; : : : ; si; : : : ; sn],where si is a redex and the other sj are arbitrary terms, the redex si is stronglyneeded.To link the beginning of this section, which used the terminology ofcontexts, with the present set-up via 
-terms, we note that a context innormal form, containing at least one hole, corresponds with an 
-term in
-normal form, but not in normal form. Before devoting the rest of thissection to an exposition of the long proof that strong sequentiality is adecidable property, we will �rst show how to �nd a nf?-index. First, weneed some de�nitions.De�nition 2.3.15. Let t 2 Ter
(R):1. t is a redex compatible 
-term if t can be re�ned to a redex (i.e. t � t0for some redex t0).2. 
-reduction replaces a redex compatible subterm 6� 
 by 
, notation:!
. So, C[t]!
 C[
] if t is redex compatible and t 6� 
:3. The �xed part !(t) of an 
-term t is the result of maximal applicationof 
-reductions. (In other words, the normal form with respect to
-reduction.)Exercise 2.3.16. Show that !(t) is well-de�ned, by proving that 
-reductionis conuent and terminating.Now let t � C[
; : : : ;
; : : : ;
] be an 
-normal form containing at leastone 
. We wish to test whether the i-th occurrence of 
, the underlinedone, is a nf?-index of t. To this end we replace it by a fresh constantsymbol, p. Result: t0 � C[
; : : : ; p; : : : ;
]:Claim 2.3.17. 
 is a nf?-index in t , p occurs in !(t0). (See Figure2.10.)
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Figure 2.10The proof of the claim is routine and we omit it. Intuitively, the per-sistence of the test symbol p in !(t0) means that whatever the redexes (oreven general terms, cf. Exercise 2.3.14) in the other places are, and what-ever their reducts might be, the p does not vanish, is not erasable by theaction of the other redexes (or general terms). So if instead of p an actualredex si was present, the only way to normalize the term at hand is toreduce si itself, eventually. Huet & L�evy [79] gives an e�cient algorithmfor executing the `p-test', i.e. for �nding nf?-indexes (and hence, stronglyneeded redexes, cf. Exercise 2.3.14).The decision procedure for the strong sequentiality property itself ismuch more di�cult. We will now present a proof (in a slightly informalway) which is a simpli�cation of the one in Huet & L�evy [79], but wherewe do not pay any attention to the e�ciency of the decision procedure.In the following we will refer to a nf?-index as an `index' for short. An
-occurrence which is not an index, will be called `free'. A term in whichall 
's are free, is called free.The main `problem' is that we do not have the following transitivityproperty for indexes, which on �rst sight one might expect to hold: if inthe 
-terms C1[
]; C2[
]; where in both terms the displayed occurrence of
 is an index (there may be other 
's occurring), then the displayed 
 inC1[C2[
]] is again an index.Example 2.3.18. Counterexample to transitivity for indexes. Considerthe TRS as in Exercise 2.3.10, and the term F (G(
;
);
): The under-lined occurrence is an index, as is easily seen by applying the `p-test':!(F (G(
;
); p)) = F (
; p): However, substituting the same term in theindex position, with result F (G(
;
); F (G(
;
);
)); we have the `con-text' in Figure 3.12(b), which is as shown, essentially, in Exercise 2.3.10, afree term.However, some `partial' transitivity properties for the propagation ofindexes do hold, notably the one in Proposition 2.3.21 below. We will now



90 J. W. Klopmake explicit some properties of index propagation. To this end we employthe following notational convention: instead of \the displayed occurrenceof 
 in C[
] is an index "(here the 
-term C[
] may contain other 
's)we will just write \C[
#]". However, the absence of an arrow as e.g. inC[
;
#] does not mean that (in this case) the �rst 
 is not an index.Furthermore we stipulate that in C[
; : : : ;
] (or a version with arrow an-notations) more occurrences of 
 may occur than the ones displayed, unlessspeci�ed explicitly otherwise. Finally, the notations s; t; C[
; : : :;
] (pos-sibly with arrow annotations) will refer to 
-terms, which we sometimescall just `terms'.Proposition 2.3.19.1. C1[C2[
#]]) C1[
#] and C2[
#]:2. The reverse implication does not hold generally.Figure 2.11Proof. See Figure 2.11, where an arrow points to an index-
. Part (2) isthe counterexample in 2.3.18. Part (1) follows by an easy argument usingthe p-test criterion for indexes.Proposition 2.3.20.1. Let !(t) = 
: Then C[t;
#]) [
;
#]:2. The reverse implication holds for all t: C[t;
#]( C[
;
#]:Proof. (See Figure 2.12.) Simple applications of the p-test.The following proposition (from Klop & Middeldorp [89]) states the`partial transitivity' for index propagation mentioned before. Here � refersto the maximal height of the trees corresponding to the redex schemes (i.e.,the left-hand-sides of reduction rules) of R. Furthermore, the depth of anoccurrence in a term is the length of the branch leading from the rootsymbol to that occurrence.Proposition 2.3.21. Let the depth of 
 in C2[
] be at least �. Then:C1[C2[
#]] and C2[C3[
#]] ) C1[C2[C3[
#]]]:
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Figure 2.12
Figure 2.13Proof sketch. Suppose contexts Ci[
] (i = 1; 2; 3) as in the propositionare given. Consider !(C1[C2[C3[p]]]). We claim that p is still present inthis term. For if not, consider an 
-reduction leading to !(C1[C2[C3[p]]])and especially the 
-reduction step in which the symbol p is lost. Theredex compatible subterm which is removed in this step, has a root symbols. Now s cannot occur in the subterm C2[C3[p]] of C1[C2[C3[p]]]; for oth-erwise p would not occur in !(C2[C3[p]]). But s can also not occur in theC1-part of C1[C2[C3[p]]], for then p would not occur in !(C1[C2[p]]) due tothe assumption referring to �.In the following propositions, a rigid term t is a term t such that!(t) = t. Terms t such that !(t) = 
; will be called soft ; they `meltaway' completely by 
-reduction. It is not hard to prove that every termhas a unique decomposition in a top part which is rigid and some subtermswhich are soft. (The top context may be trivial, i.e. equal to 
:)



92 J. W. KlopProposition 2.3.22. Every term t 2 Ter
(R) can be written, uniquely,as C[t1; : : : ; tn] such that C[
; : : : ;
] is rigid and the ti (i = 1; : : : ; n) aresoft.Proposition2.3.23. Suppose C[t1; : : : ; tn] is a term such thatC[
; : : : ;
]is rigid and tk is soft for k = 1; : : : ; n. Let ti � C 0[
]. Then:C0[
#] ) C[t1; : : : ; ti�1; C 0[
#]; ti+1; : : : ; tn]:Proof. (See Figure 2.14.) By routine arguments involving the p-test.Figure 2.14In an attempt to decide whether the TRS R is strongly sequential, wewill try to construct a term t 2 Ter
(R) in 
-normal form but not innormal form, which is free, i.e. has no indexes. If such a free term exists,then and only then R is not strongly sequential. Especially we will lookfor a minimal free term, minimal with respect to the length. Accordingto the last proposition, we may suppose that a minimal free term, if itexists, is soft. So, such a minimal free term is built from redex compatibleterms (i.e. originates, starting from a redex compatible term, by repeatedlysubstituting redex compatible terms for 
's)|this follows at once fromthe de�nition of `soft' and 
-reduction. (See Figure 2.15(a).) However,this observation is not yet su�cient for a sensible attempt to construct aminimal free term, for there are in general in�nitely many redex compatibleterms which may be the building blocks of the minimal free term we arelooking for. Fortunately, we may even suppose that a minimal free termis built from a special kind of redex compatible terms, the preredexes, ofwhich only �nitely many exist if the TRS R has �nitely many reductionrules as was our assumption. (See Figure 2.15(b).)De�nition 2.3.24.1. A redex scheme (or redex pattern) is a left-hand side of a reductionrule where all variables are replaced by 
:2. A preredex is a term which can be re�ned to a redex scheme. (SeeFigure 2.16.)
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Figure 2.15
Figure 2.16So, a redex scheme itself is a preredex; every preredex is also a redexcompatible term. If the TRS R has �nitely many rules, there are only�nitely many preredexes. The 
's in a redex scheme are all free; the 
'sarising by `truncating' a redex scheme and thus forming a preredex, maybe free or an index depending on other redex schemes. The `old' 
's in thetruncation, if there are any, remain free. All this follows immediately fromthe de�nitions and the p-test.We have already noted that a minimal free term t may be supposed tobe built from redex compatible terms, as in Figure 2.15(a). This `partition'in redex compatible terms need not be unique, but that does not matter.



94 J. W. KlopSuppose a certain partition of t is given, corresponding to some 
-reductionfrom t to 
: Each redex compatible term from which t is built, and whichis removed in this 
-reduction, consists of a preredex re�ned with some`extra' subterms. (The subterms that make the di�erence between Figure2.15(a) and (b).) Now we remove from t all these extra subterms. (SeeFigure 2.17.)
Figure 2.17We claim that the term t0, originating after removing all `extra' sub-terms, is again free. Namely, consider the example in Figure 2.16, andremove the two extra subterms of the redex compatible subterm s. The
's that arise after this removal are free in s; this follows easily by applyingthe p-test and noting that subterm r is soft. But then these 
's are alsofree in t; this follows from Proposition 2.3.19(1). Furthermore, the presentremoval of the extra subterms of s also does not turn free 
's at otherplaces into indexes, by Proposition 2.3.20(2).We will now try to construct a minimal free term t in a tree-like proce-dure, as suggested in Figure 2.18.Of course, we want t to be in 
-normalform|cf. De�nition 2.3.12(2).We start, therefore, with the �nitely many proper preredexes, where a pre-redex is `proper' if it is not a redex scheme. Now at every index 
, weattach in the next construction step, again a proper preredex. This nonde-terministic procedure is repeated. A branch in the thus originating tree ofconstruction terminates `successfully' if a free term is reached. In that casethe TRS R is not strongly sequential. However, there may arise in�nitebranches in the construction tree. But these we may `close', eventually, bysome form of `loop checking' in the following way. First a de�nition.De�nition 2.3.25.1. Let Ci[
] be preredexes (i = 1; : : : ; n). Then the term� � C1[C2[: : : [Cn[
]] : : :]]
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Figure 2.18is called a tower of preredexes. If 1 � i < j � n, we say that tower �contains the subtower � 0 � Ci[Ci+1[: : : [Cj[
]] : : :]]:2. Let � be the maximal height of redex schemes of R. A tower � �C1[: : : [Cn[
]] : : :] of preredexes is su�ciently high if the depth of thedisplayed 
 in � is at least �:



96 J. W. Klop3. Let t be a term built from preredexes. A main tower in � is a tower(arising after removing some subterms of t) containing a completebranch in the tree corresponding to t (so, from root to some `�nal'symbol).Now if in the construction tree we observe at some construction branchthe arising of a term which has a main tower containing two disjoint suf-�ciently high identical subtowers, that construction branch is stopped un-successfully.So every branch of the construction tree terminates, either successfullyin a free term, or unsuccessfully. Because the construction tree is �nitelybranching, the result is a �nite construction tree. Now if all construc-tion branches terminate unsuccessfully, the TRS R is strongly sequential;otherwise the presence of a free term at the end of a successful branch re-veals that TRS R is not strongly sequential. Hence strong sequentiality isdecidable.We still have to prove that our decision procedure is correct, in partic-ular we have to justify the correctness of the `loop check' for unsuccessfullyclosing branches at which a repetition of subtowers occurs. To this end,consider the term s at some point (node) in the construction tree, andconsider a successor s0 obtained by adjoining a proper preredex � at someindex position of s. In general, � will contain some free 
's as well assome index 
's (with respect to �). The free 
's remain free with respectto the whole term s0 (Proposition 2.3.19(1)). What about the indexes of�? They may become free in s0. Now what happens with them is entirelydetermined by the main tower of proper preredexes in s0 leading to the 
in s where � will be adjoined. This follows from Proposition 2.3.20 statingthat removal of soft terms does not a�ect the index or non-index status ofother 
's.In fact, what happens with the indexes of � is already determined bythe subtower of height � � immediately above the adherence point 
: Thisfollows from Proposition 2.3.21. But then it is easy to see that in a minimalfree term there will not be a repetition of two identical su�ciently largedisjoint subtowers (see Figure 2.19). For, if such a repetition occurs in aminimal free term, we can construct a smaller one by cutting away partof the term as in Figure 2.19, contradicting the minimality. This ends theproof of decidability of strong sequentiality.Many TRS's arising in `practice' are constructor TRS's. For such TRS'sit is easy to decide strong sequentiality. A constructor TRS is a TRSin which the set of function symbols can be partitioned into a set D ofde�ned function symbols and a set C of constructors, such that for everyrewrite rule t ! s, the left-hand side t has the form F (t1; : : : ; tn) withF 2 D and t1; : : : ; tn 2 Ter(C;V), the set of terms built from variables andconstructors.
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Figure 2.19The reason that for constructor TRS's deciding strong sequentiality iseasy, is that we do have transitivity of indexes now, in contrast with thecase of general TRS's (cf. Counterexample 2.3.18).Proposition 2.3.26. Let R be an orthogonal constructor TRS. Let C2[
]start with a de�ned function symbol. Then: C1[
#] and C2[
#] impliesC1[C2[
#]]:Proof. Straightforward, using the p-test for �nding indexes.Corollary 2.3.27. A constructor TRS is strongly sequential i� everyproper preredex has an index.So, in order to decide whether a constructor TRS R is strongly se-quential, we only have to compute the indexes of its �nitely many properpreredexes. (R is supposed to have only �nitely many rewrite rules.) Also,the computation of these indexes is very easy: Let C[
; : : : ;
; : : : ;
] bea preredex of R. Now it is not di�cult to see that C[
; : : : ;
#; : : :;
] i�C[
; : : : ; p; : : : ;
] is not redex compatible.Exercise 2.3.28. Let R be an orthogonal constructor TRS. Show that R isstrongly sequential if every proper preredex P has an 
-occurrence which is inall



98 J. W. Klopredex schemes S such that P � S, more de�ned (i.e. replaced by an 
-term6� 
):Exercise 2.3.29. (Huet & L�evy [79]) Let R be a left-normal orthogonalTRS. Show that R is strongly sequential. Show that, in fact, in C[
; : : : ;
](where C[; : : : ; ] is an 
-free context in normal form) the leftmost occurrence of
 is an index.Exercise 2.3.30. (Klop & Middeldorp [89]) Show that strong sequentialityis a modular property of orthogonal TRS's, i.e. if R1;R2 are orthogonal TRS'swith disjoint alphabet, then:R1 � R2 is strongly sequential , R1 and R2 are strongly sequential.Exercise 2.3.31. (Thatte [87]) Let R1;R2 be orthogonal TRS's. De�neR1;R2 to be left-equivalent if the rewrite rules of R1;R2 have identical left-handsides. An orthogonal TRS R is called left-sequential if all TRS's which are left-equivalent with R, are sequential (De�nition 2.3.12(1)).Let R be an orthogonal TRS and C[
; : : : ;
] a context in 
-normal form.The i-th occurrence of 
 is called an index with respect to left-sequentiality if this
 is an index with respect to sequentiality for all TRS's left-equivalent with R.1. Let R be the TRS with rules fF (A;B; x)! x; F (x;A;B)! x; F (B;x;A)! x; G(A)! Ag. Show that the third occurrence of 
 in F (G(
);G(
);
)is an index with respect to left-sequentiality, but not with respect to strongsequentiality.2. Prove that strong sequentiality implies left-sequentiality.�3. (Open problem.) Does the reverse of (2) also hold, i.e. is every left-sequential TRS strongly sequential?3 Conditional Term Rewriting SystemsOf growing importance in the �eld of term rewriting are the conditionalTerm Rewriting Systems (CTRS's). CTRS's have originally arisen fromUniversal Algebra (see Meinke & Tucker [91]) and in the theory of Ab-stract Data Types, as implementations of speci�cations containing positiveconditional equationst1(~x ) = s1(~x ) ^ : : :^ tn(~x ) = sn(~x )) t0(~x ) = s0(~x ) (�)(If n = 0, the equation is called unconditional.) Here ~x = x1; : : : ; xk; notevery ti; si needs to contain all those variables. In (�) we implicitly useuniversal quanti�cation over ~x, i.e. (�) is meant to be8~x ( ^i=1;::;n ti(~x ) = si(~x )) t0(~x ) = s0(~x )):



Term Rewriting Systems 99Hence the variables appearing in the conditions ti(~x ) = si(~x ), i = 1; : : : ; n,but not in the consequent t0(~x ) = s0(~x ) have an `existential' meaning; e.g.E(x; y) = true ^ E(y; z) = true ) E(x; z) = trueis by elementary predicate logic equivalent to9y (E(x; y) = true ^ E(y; z) = true) ) E(x; z) = true:Henceforth we will, conform the notation often used in `equational logicprogramming', write instead of (�):t0(~x ) = s0(~x ) ( t1(~x ) = s1(~x ); : : : ; tn(~x ) = sn(~x ):Example 3.0.1. A speci�cation of gcd on natural numbers with 0 andsuccessor S, using conditional equations:0 < 0 = 0 S(x) � S(y) = x� y0 < S(x) = S(0) 0� x = 0S(x) < 0 = 0 x� 0 = xS(x) < S(y) = x < ygcd(x; y) = gcd(x� y; y) ( y < x = S(0)gcd(x; y) = gcd(x; y � x) ( x < y = S(0)gcd(x; x) = x(To keep the speci�cation one-sorted, 0 and S(0) are used as booleans falseand true respectively. Furthermore, `�' is cut-o� subtraction.)The satisfaction relation A j= ', for an equational implication or as wewill call them henceforth, conditional equation '; is clear; see also Meinke& Tucker [91], where it is also shown that analogous to the equationalcase we can develop initial algebra semantics for conditional equations.Conditional equations not only facilitate some speci�cations, they also area strictly stronger speci�cation mechanism. In Bergstra & Meyer [84] aconditional speci�cation is given with an initial algebra that cannot bespeci�ed (in the same signature) by means of equations.Again we can ask whether there exists a deduction system and a corre-sponding completeness theorem, in analogy with Birkho�'s theorem 1.4.2for equational logic.Conditional equational deductionSelman [72] presents a sound and complete deduction system for, as theyare called there, equation conjunction implication (ECI) languages, or aswe will say, for conditional equational logic. We state this deduction systemin a considerably simpli�ed way, by considering in a conditional equation



100 J. W. Klopt = s ( E where E = t1 = s1; : : : ; tn = sn (n � 0), the sequence ofconditions E as a set rather than an ordered tuple as in Selman [72], andby admitting empty E. (See Table 3.1.) Adapting the inference system tothe case where E is a multiset or even an ordered tuple is straightforward.axioms t = s ( t = s; t0 = s0t = t (t = s ( t = r; s = rF (t1; : : : ; tn) = F (s1; : : : ; sn) ( t1 = s1; : : : ; tn = snfor every n-ary Frules t = s ( t0 = s0; E; t0 = s0 ( Ft = s ( E; Ft = s ( E for every substitution �t� = s� ( E� Table 3.1Here E = ft1 = s1; : : : ; tn = sng (n � 0), F = ft01 = s01; : : : ; t0m = s0mg(m � 0); E� = ft�1 = s�1 ; : : : ; t�n = s�ng.Operational semantics of conditional equationsIn the unconditional case, there is no problem in the transition from equa-tions to directed equations, i.e. rewrite rules: t0(~x ) = s0(~x ) is replacedby t0(~x ) ! s0(~x ), provided the left-hand side is not a single variable andvariables occurring in the right-hand side do also occur in the left-handside. (Of course, choosing the `right' direction may be a problem|see ourdiscussion of Knuth-Bendix completion.)In the conditional case the transition from conditional equations to con-ditional rewrite rules does present a problem, or at least some choices. Der-showitz, Okada & Sivakumar [88] make the following distinctions, therebyextending a classi�cation introduced in Bergstra & Klop [86]. First weintroduce some notation.



Term Rewriting Systems 101De�nition 3.0.2. Let ! be a rewrite relation.1. t # s (t; s are joinable) if t� u and s� u for some term u. (So ! isconuent if = (convertibility) and # coincide.)2. s�! t if s� t and t is a ground normal form.Now there are several choices for evaluating the conditions of CTRS's.In the terminology of Dershowitz, Okada & Sivakumar [88] we can distin-guish (among others) the following types of CTRS's:1. semi-equational systemst0 ! s0 ( t1 = s1; : : : ; tn = sn2. join systems t0 ! s0 ( t1 # s1; : : : ; tn # sn3. normal systems t0 ! s0 ( t1 �! s1; : : : ; tn �! sn4. generalized systems t0 ! s0 ( P1; : : : ; Pn:In the last type of CTRS's, the Pi (i = 1; : : : ; n) are conditions formulatedin a general mathematical framework, e.g. in some �rst order language,involving the variables occurring in the consequent (and possibly others).In Bergstra & Klop [86] semi-equational systems were called to be ofType I, join systems of Type II, and normal systems of Type IIIn: Actually,Bergstra & Klop [86] de�ne: t�! s if s is a ground normal form even withrespect to the unconditional part from the CTRS R (obtained by removingall conditions). This is necessary since otherwise the reduction relationmay not be well-de�ned.Note that in the cases (1){(3), the de�nition of ! is circular since itdepends from conditions involving in some way or another a reference to!;but it is not hard to see that in fact ! is well-de�ned since all conditionsof type (1){(3) are positive. Hence the rewrite rules constitute a positiveinduction de�nition of !. In the case of generalized CTRS's we have totake care in formulating the conditions, in order to ensure that ! is well-de�ned.Remark 3.0.3. In a rewrite rule t ! s one requires that in s no newvariables appear with respect to t. The same requirement is made forconditional rewrite rules t ! s ( C. But, as observed in Dershowitz,Okada & Sivakumar [88], for CTRS's it would make good sense to lift this



102 J. W. Kloprequirement, as e.g. in the following perfectly natural conditional rewritespeci�cation of the Fibonacci numbers:Fib(0) ! h0; 1iFib(x+ 1) ! hz; y + zi ( Fib(x) # hy; zi:We will not study this more liberal format here, since it introduces a con-siderable complication of the theory.We will now discuss several conuence criteria for CTRS's. The �rstone is a generalization due to Middeldorp [91] (also in Middeldorp [90]) ofToyama's theorem 1.2.2, stating that conuence is a modular property ofTRS's, to CTRS's:Theorem 3.0.4. Let R1; R2 be both semi-equational CTRS's or both joinCTRS's or both normal CTRS's with disjoint alphabet. Then:R1; R2 are conuent , R1 �R2 is conuent.(The disjoint sum R1�R2 is de�ned analogously to the unconditional case:simply join the sets of rewrite rules.) The proof is a nontrivial applicationof Toyama's theorem 1.2.2.Orthogonal Conditional Term Rewriting SystemsWe will now state some conuence criteria for orthogonal CTRS's.De�nition 3.0.5.1. Let R be a CTRS (of any type, semi-equational, join, : : :). Then Ru;the unconditional version of R, is the TRS which arises from R bydeleting all conditions.2. The CTRSR is called (non-)left-linear ifRu is so; likewise for (weakly)orthogonal. (See Section 2.1 for orthogonal TRS's.)De�nition 3.0.6.1. Let R be a CTRS with rewrite relation !; and let P be an n-arypredicate on the set of terms of R. Then P is closed with respect to! if for all terms ti; t0i such that ti � t0i (i = 1; : : : ; n):P (t1; : : : ; tn) ) P (t01; : : : ; t0n):2. Let R be a CTRS with rewrite relation !. Then R is closed if allconditions (appearing in some conditional rewrite rule of R), viewed



Term Rewriting Systems 103as predicates with the variables ranging over R-terms, are closed withrespect to !.Theorem 3.0.7. (O'Donnell [77]) Let R be a generalized, weakly orthog-onal CTRS which is closed. Then R is conuent.The proof is a rather straightforward generalization of the conuence prooffor weakly orthogonal TRS's.Obviously, the convertibility conditions ti = si (i = 1; : : : ; n) in arewrite rule of a semi-equational CTRS are closed. Hence:Corollary 3.0.8. Weakly orthogonal semi-equational CTRS's are conu-ent.Example 3.0.9. Let R be the orthogonal, semi-equational CTRS obtainedby extending Combinatory Logic with a `test for convertibility':Sxyz ! xz(yz)Kxy ! xIx ! xDxy ! E ( x = y:Then R is conuent.The question now arises whether analogous facts hold for the other typesof CTRS's. Indeed, this is the case for normal conditions. The followingtheorem is a slight generalization of a result in Bergstra & Klop [86]:Theorem 3.0.10. Weakly orthogonal normal CTRS's are conuent.Remark 3.0.11.1. Orthogonal join CTRS's are in general not conuent, and even ingeneral not weakly conuent. In Bergstra & Klop [86] the followingcounterexample is given:C(x) ! E ( x # C(x)B ! C(B):See Figure 3.1. C(E) # E does not hold, since this would requireC(E)! E, i.e. C(E) # E:2. The counterexample in (1) exhibits an interesting phenomenon, orrather, makes a pitfall explicit. According to Corollary 3.0.8 above,the semi-equational CTRS with rulesC(x) ! E ( x = C(x)B ! C(B)



104 J. W. KlopFigure 3.1is conuent. Hence its convertibility, =, coincides with the joinabilityrelation, #. So x = C(x) i� x # C(x). Yet the join CTRS obtainedby replacing the condition x = C(x) by x # C(x), is according to (1)of this remark not conuent.The complexity of normal formsWhereas in the unconditional case, being in `normal form' is an easilydecidable property, this needs no longer to be so in the case of CTRS's.In fact, there are semi-equational orthogonal CTRS's for which the set ofnormal forms is undecidable (and hence not even r.e., since the complementof the set of normal forms is r.e.). The same holds for normal orthogonalCTRS's, and for join CTRS's. The proof is short and instructive enoughto be included:Consider CL (Combinatory Logic); it is well-known (cf. Barendregt[81]) that there is a representation n, a ground CL-term in normal form, ofthe natural number n for each n � 0; together with a computable coding #from the set of ground CL-terms into natural numbers, and an `enumerator'E (also a ground CL-term in normal form) such that E#(M ) � M forevery ground CL-term M . Now let R be the normal CTRS obtained byextending CL with a new constant symbol F and the ruleFx! 1 ( Ex� 0:(Note that the reduction relation ! of R satis�es Fx ! 1 , Ex � 0.)If R had decidable normal forms, then in particular the set fn j Fn� 1gwould be decidable, i.e. the set fn j En� 0g would be so. However, thenthe set X = fM a ground CL-term jM � 0gis decidable; for, givenM we compute #(M ) and decide whether E(#(M ))� 0 or not. (By conuence forR it follows fromE(#(M ))� 0 and E#(M )� M that M � 0.) But this contradicts the fact that X is undecidable;this follows from a theorem of Scott stating that any nonempty propersubset of the set of ground CL-terms which is closed under convertibility inCL, must be undecidable.



Term Rewriting Systems 105For a condition guaranteeing decidability of normal forms, we refer tothe notion `decreasing' below.Exercise 3.0.12. Adapt the proof above such that it holds for normalCTRS's, and for join CTRS's.Exercise 3.0.13. (Bergstra & Klop [86]) In this exercise we give a crite-rion for decidability of normal forms which does not imply termination (as thecriterion `decreasing' does).Let R be a normal CTRS. If r: t ! s ( t1 � n1; : : : ; tk � nk is a rule ofR, then an instance t� (� some substitution) is called a candidate r-redex of R.(Of course it depends on the validity of the instantiated conditions t�i � ni of rwhether t� is an actual r-redex or not.)We de�ne inductively the set NFn of normal forms of order n for all n � 0as follows: NF0 is the set of normal forms of Ru, the unconditional part ofR. Suppose NFi (i � n) have been de�ned. Then M 2 NFn+1 if for everycandidate r-redex t� �M , r as above, the left-hand side of one of the conditions,t�i ; evaluates to a `wrong' normal form mi, i.e. mi 6� ni, such that mi is oforder � n. Furthermore, NF is the set of all normal forms of R. We say thatNF�Sn�0 NFn contains the normal forms of in�nite order.1. Show that if NF is undecidable, then there must be some normal form ofin�nite order.2. Suppose for every rule r (as above) of R we have ti � t (ti is a propersubterm of t), i = 1; : : : ; k. Then we say that R has subterm conditions.Show that if R has subterm conditions, there are no normal forms of in�niteorder. Hence NF is decidable.Non-orthogonal conditional rewritingFollowing Dershowitz, Okada & Sivakumar [88] (see also Dershowitz &Okada [90]), we will now consider CTRS's which are not orthogonal (i.e.may have `critical pairs') and formulate some conditions ensuring conu-ence.De�nition 3.0.14. (Critical Pairs)1. Let R be a CTRS containing the two conditional rewrite rulesti ! si ( Ei (i = 1; 2):(Suppose these are `standardized apart', i.e. have no variables incommon.) Suppose t2 can be uni�ed with the nonvariable subterm uin t1 � C[u], via � = mgu(t2; u). Then the conditional equation(!)s�1 = C[t2]� ( (E1; E2)�is a critical pair of the two rules.



106 J. W. Klop2. A critical pair is an overlay if in (1), t1 and t2 unify at the root, i.e.t1 � u:3. A CTRS is non-overlapping (or non-ambiguous) if it has no criticalpairs.4. A critical pair s = t ( E is joinable if for all substitutions � suchthat E� is true, we have s� # t�:Theorem 3.0.15. (Dershowitz, Okada & Sivakumar [88])1. Let R be a semi-equational CTRS. Then: If R is terminating and allcritical pairs are joinable, R is conuent.2. Let R be a join system. Then: If R is decreasing and all critical pairsare joinable, R is conuent.3. Let R be a join system. If R is terminating and all critical pairs areoverlays and joinable, R is conuent.This theorem contains the unexplained notion of a `decreasing' CTRS:De�nition 3.0.16. (Dershowitz, Okada & Sivakumar [88]) Let R be aCTRS.1. > is a decreasing ordering for R if(a) > is a well-founded ordering on the set of terms of R (i.e. thereare no descending chains t0 > t1 > t2 > � � �);(b) t � s ) t < s (here � is the proper subterm ordering);(c) t! s ) t > s;(d) for each rewrite rule t ! s ( t1 # s1; : : : ; tn # sn (n � 0)and each substitution � we have: t� > t�i ; s�i (i = 1; : : : ; n).(Likewise for other CTRS's than join CTRS's.)2. A CTRS is decreasing if it has a decreasing ordering.A consequence of `decreasing' is termination. Moreover, the notions!;�; #, and normal form are decidable.Remark 3.0.17. Related notions are fair or simplifying CTRS's (Kaplan[84, 87]) and reductive CTRS's (Jouannaud & Waldmann [86]). In fact:reductive ) simplifying) decreasing; see also Dershowitz & Okada [90].We conclude this section by mentioning a useful fact:Theorem 3.0.18. (Dershowitz, Okada & Sivakumar [88]) Let R= be adecreasing semi-equational CTRS. Let R# be the corresponding join CTRS(where conditions ti = si are changed into ti # si). Then:R= is conuent ) R# is conuent.



Term Rewriting Systems 107AcknowledgementsI am grateful to several persons for their support in writing this chapter.In particular I like to thank Henk Barendregt, Nachum Dershowitz, RonanSleep, Roel de Vrijer, as well as editors and co-authors of this Handbook.Special thanks to Aart Middeldorp for several contributions, and to Jean-Jacques L�evy for his close scrutiny of a previous version including manyhelpful comments. Finally, many thanks to Aart Middeldorp, Vincent vanOostrom, Jane Spurr and Fer-Jan de Vries for the heroic struggle to trans-form an early Macintosh version into LATEX.4 ReferencesApt, K.R. (1990). Logic Programming. In: Formal models and semantics, Hand-book of Theoretical Computer Science, Vol. B (ed. J. van Leeuwen), 495-574.Bachmair, L. (1988). Proof by consistency in equational theories. In: Proceedingsof the 3rd IEEE Symposium on Logic in Computer Science, Edinburgh, 228-233.Bachmair, L. (1989). Canonical Equational Proofs. Birkh�auser, Boston, 1991.Bachmair, L. & Dershowitz, N. (1986). Commutation, transformation, and ter-mination. Proceedings of the 8th Conference on Automated Deduction (ed. J.H.Siekmann), Oxford, Springer LNCS 230, 5-20.Bachmair, L., Dershowitz, N. & Hsiang, J. (1986). Orderings for equationalproofs. In: Proceedings of the 1st IEEE Symposium on Logic in Computer Sci-ence, Cambridge, Massachusetts, 346-357.Bachmair, L. & Plaisted, D.A. (1985). Associative path orderings. In: Proceed-ings of the 1st International Conference on Rewriting Techniques and Applica-tions (ed. J.-P. Jouannaud), Dijon, Springer LNCS 202, 241-254.Barendregt, H.P. (1981). The Lambda Calculus, its Syntax and Semantics (1stedn. 1981, 2nd edn. 1984). North-Holland, Amsterdam.Barendregt, H.P. (1989). Functional programming and lambda calculus. In:Handbook of Theoretical Computer Science (ed. J. van Leeuwen), North-Holland,Amsterdam.Barendregt, H.P., van Eekelen, M.C.J.D., Glauert, J.R.W., Kennaway, J.R., Plas-meijer, M.J. & Sleep, M.R. (1987). Term graph rewriting. In: Proceedings ofthe 1st Conference on Parallel Architectures and Languages Europe (PARLE),Eindhoven, Vol. II, Springer LNCS 259, 141-158.Bergstra, J.A., Heering, J. & Klint, P. (eds.) (1989). Algebraic speci�cation.Addison-Wesley, Reading, Massachusetts.Bergstra, J.A. & Klop, J.W. (1984). Process algebra for synchronous communi-cation. Information and Control 60 (1/3), 109-137.Bergstra, J.A. & Klop, J.W. (1985). Algebra of communicating processes withabstraction. TCS 37 (1), 171-199.Bergstra, J.A. & Klop, J.W. (1986). Conditional rewrite rules: conuence andtermination. JCSS 32 (3), 323-362.



108 J. W. KlopBergstra, J.A. & Meyer, J.-J.Ch. (1984). On specifying sets of integers. EIK(Elektronische Informationsverarbeitung und Kybernetik) 20 (10/11), 531-541.Bergstra, J.A. & Tucker, J.V. (1980). A characterisation of computable datatypes by means of a �nite equational speci�cation method. In: Proceedings of ofthe 7th International Colloquium on Automata, Languages and Programming,(eds. J.W. de Bakker & J. van Leeuwen), Amsterdam, Springer LNCS 85, 76-90.Berry, G. & L�evy, J.-J. (1979). Minimal and optimal computations of recursiveprograms. JACM 26, 148-175.Birkho�, G. (1935). On the structure of abstract algebras. In: Proceedings of theCambridge Philosophical Society 31, 433-454.Boudol, G. (1985). Computational semantics of term rewriting systems. In: Al-gebraic methods in semantics (eds. M. Nivat and J.C. Reynolds), CambridgeUniversity Press, 169-236.Courcelle, B. (1990). Recursive application schemes. In: Formal models andsemantics, Handbook of Theoretical Computer Science, Vol. B, (ed. J. vanLeeuwen), Elsevier - The MIT Press, Amsterdam, 459-492.Church, A. (1941). The calculi of lambda conversion. Annals of MathematicsStudies, Vol. 6, Princeton University Press.Curien, P.-L. (1986). Categorical combinators, sequential algorithms and func-tional programming. Research Notes in Theoretical Computer Science, Pitman,London.Dauchet, M. (1989). Simulation of Turing machines by a left-linear rewrite rule.In: Proceedings of the 3rd International Conference on Rewriting Techniques andApplications, Chapel Hill, Springer LNCS 355, 109-120.Dauchet, M. & Tison, S. (1984). Decidability of conuence for ground termrewriting systems. Report, Universit�e de Lille I.Dauchet, M., Tison, S., Heuillard, T. & Lescanne, P. (1987). Decidability of theconuence of ground term rewriting systems. In: Proceedings of the 2nd Sympo-sium on Logic in Computer Science, Ithaca, NY, 353-359.Dershowitz, N. (1979). A note on simpli�cation orderings. Information Process-ing Letters 9 (5), 212-215.Dershowitz, N. (1981). Termination of linear rewriting systems. Proceedings ofthe 8th International Colloquium on Automata, Languages and Programming,(Eds. S. Even and O. Kariv), Springer LNCS 115, 448-458.Dershowitz, N. (1985). Computing with rewrite systems. Information and Con-trol 65, 122-157.Dershowitz, N. (1987). Termination of rewriting. J. of Symbolic Computation 3(1), 69-116. Corrigendum: 4 (3), 409-410.Dershowitz, N. & Jouannaud, J.-P. (1990). Rewrite systems. In: Formal modelsand semantics, Handbook of Theoretical Computer Science, Vol. B, (ed. J. vanLeeuwen), Elsevier - The MIT Press, Amsterdam, 243-320.Dershowitz, N. & Manna, Z. (1979). Proving termination with multiset orderings.Comm. of the ACM 22 (8), 465-476.Dershowitz, N., Marcus, L. & Tarlecki, A. (1988). Existence, uniqueness, and



Term Rewriting Systems 109construction of rewrite systems. SIAM J. Comput. 17 (4), 629-639.Dershowitz, N. & Okada, M. (1990). A rationale for conditional equational pro-gramming. TCS 75, 111-138.Dershowitz, N., Okada, M. & Sivakumar, G. (1987). Conuence of ConditionalRewrite Systems. In: Proceedings of the 1st International Workshop on Condi-tional Term Rewrite Systems, Orsay, Springer LNCS 308, 31-44.Dershowitz, N., Okada, M. & Sivakumar, G. (1988). Canonical ConditionalRewrite Systems. In: Proceedings of the 9th Conference on Automated Deduc-tion, Argonne, Springer LNCS 310, 538-549.Drosten, K. (1989). Termersetzungssysteme. Informatik-Fachberichte 210,Springer. (In German.)Ehrig, H. & Mahr, B. (1985). Fundamentals of Algebraic Speci�cation 1. Equa-tions and Initial Semantics. Springer-Verlag, Berlin.Gallier, J.H. (1987). What's so special about Kruskal's Theorem and the ordinal�0. Technical report MS-CIS-87-27, University of Pennsylvania, Philadelphia.Ganzinger, H. & Giegerich, R. (1987). A note on termination in combinations ofheterogeneous term rewriting systems. Bulletin of the EATCS (European Asso-ciation for Theoretical Computer Science) 31, 22-28.Geser, A. (1990). Relative Termination. Ph.D. Thesis, University of Passau,1990.Goguen, J.A. & Meseguer, J. (1985). Initiality, induction, and computability. In:Algebraic methods in semantics (eds. M. Nivat & J.C. Reynolds), CambridgeUniversity Press 1985, 459-542.Guessarian, I. (1981). Algebraic semantics. Springer LNCS 99.Hardin, T. (1989). Conuence results for the pure Strong Categorical Logic CCL;�-calculi as subsystems of CCL. TCS, Fundamental Studies 65 (3), 291-342.Hindley, J.R. (1964). The Church-Rosser property and a result in combinatorylogic. Ph.D. Thesis, University of Newcastle-upon-Tyne.Hindley, J.R. & Seldin, J.P. (1986). Introduction to Combinators and �-Calculus.London Mathematical Society Student Texts 1, Cambridge University Press.H�olldobler, S. (1989). Foundations of Equational Logic Programming. SpringerLNCS 353.Huet, G. (1980). Conuent reductions: Abstract properties and applications toterm rewriting systems. JACM 27 (4), 797-821.Huet, G. (1981). A complete proof of correctness of the Knuth-Bendix completionalgorithm. JCSS 23, 11-21.Huet, G. & Lankford, D.S. (1978). On the uniform halting problem for termrewriting systems. Rapport Laboria 283, IRIA, 1978.Huet, G. & L�evy, J.-J. (1979). Call-by-need computations in non-ambiguous lin-ear term rewriting systems. Rapport INRIA 359. To appear as: Computationsin orthogonal term rewriting systems in: Computational logic, essays in honourof Alan Robinson (eds. J.-L. Lassez & G. Plotkin), MIT Press, Cambridge, Mas-sachusetts.Huet, G. & Oppen, D.C. (1980). Equations and rewrite rules: A survey. In:



110 J. W. KlopFormal Language Theory: Perspectives and Open Problems (ed. R.V. Book),Academic Press, London, 349-405.Hullot, J.M. (1980) Canonical forms and uni�cation. In: Proceedings 5th Con-ference on Automated Deduction, Les Arcs, France, 318-334.Jantzen, M. (1988). Conuent string rewriting and congruences. EATCS (Euro-pean Association for Theoretical Computer Science) Monographs on TheoreticalComputer Science 14, Springer-Verlag, Berlin.Jouannaud, J.-P. & Kirchner, H. (1986). Completion of a set of rules modulo aset of equations. SIAM J. Comp. 15 (4), 1155-1194.Jouannaud, J.-P. & Waldmann, B. (1986). Reductive conditional Term Rewrit-ing Systems. In: Proceedings of the 3rd IFIP Working Conference on FormalDescription of Programming Concepts, Ebberup, 223-244.Kamin, S. & L�evy, J.-J. (1980). Two generalizations of the recursive path order-ing. Unpublished manuscript, University of Illinois.Kaplan, S. (1984). Conditional Rewrite Rules. TCS 33 (2,3).Kaplan, S. (1987). Simplifying conditional term rewriting systems: Uni�cation,termination and conuence. J. of Symbolic Computation 4 (3), 295-334.Kennaway, J.R. (1989). Sequential evaluation strategies for parallel-or and re-lated reduction systems. Annals of Pure and Applied Logic 43, 31-56.Kennaway, J.R. & Sleep, M.R. (1989). Neededness is hypernormalizing in regularcombinatory reduction systems. Preprint, School of Information Systems, Uni-versity of East Anglia, Norwich.Klop, J.W. (1980a). Combinatory Reduction Systems. Mathematical CentreTracts 127, CWI, Amsterdam.Klop, J.W. (1980b). Reduction cycles in Combinatory Logic. In: Festschrift `ToH.B. Curry, Essays on Combinatory Logic, Lambda Calculus and Formalism'(eds. J.P. Seldin & J.R. Hindley), Academic Press, London, 193-214.Klop, J.W. (1985). Term Rewriting Systems. Notes for the Seminar on Reduc-tion Machines, Ustica. Unpublished.Klop, J.W. (1987) Term rewriting systems: a tutorial, Bulletin of the EATCS32, 143-182.Klop, J.W. & Middeldorp, A. (1988). An Introduction to Knuth-Bendix Com-pletion. CWI Quarterly 1(3), Centre for Mathematics and Computer Science,Amsterdam, 31-52.Klop, J.W. & Middeldorp, A. (1989). Sequentiality in Orthogonal Term Rewrit-ing Systems. Report CS-R8932, CWI, Centre for Mathematics and ComputerScience, Amsterdam. To appear in J. of Symbolic Computation.Knuth, D.E. & Bendix, P.B. (1970). Simple word problems in universal algebras.In: Computational Problems in Abstract Algebra (ed. J. Leech), PergamonPress, 263-297.Kruskal, J.B. (1960). Well-Quasi-Ordering, the Tree Theorem, and Vazsonyi'sConjecture. Transactions of the AMS 95, 210-225.Kurihara, M. & Kaji, I. (1988). Modular Term Rewriting Systems: Termina-tion, Conuence and Strategies. Report, Hokkaido University. Abridged version:



Term Rewriting Systems 111Modular term rewriting systems and the termination. Information ProcessingLetters 34 34, 1-4.Lankford, D.S. (1979). On proving term rewriting systems are Noetherian. MemoMTP-3, Mathematical Department, Louisiana Technical University, Ruston,Louisiana.Le Ch�enadec, P. (1986). Canonical forms in �nitely presented algebras. ResearchNotes in Theoretical Computer Science, Pitman, London.Martelli, A. & Montanari, U. (1982). An e�cient uni�cation algorithm. Trans-actions on Programming Languages and Systems 4(2), 258-282.Martelli, A., Moiso, C. & Rossi C.F. (1986). An Algorithm for Uni�cation inEquational Theories. In: Proceedings Symposium on Logic Programming, 180-186.Meinke, K. & Tucker, J.V. (1991). Universal algebra. In: Handbook of Logicin Computer Science (eds. S. Abramsky, D. Gabbay & T. Maibaum), OxfordUniversity Press, this volume.M�etivier, Y. (1983). About the rewriting systems produced by the Knuth-Bendixcompletion algorithm. Information Processing Letters 16, 31-34.Middeldorp, A. (1989a). Modular aspects of properties of term rewriting systemsrelated to normal forms. In: Proceedings of 3rd International Conference onRewriting Techniques and Applications, Chapel Hill, Springer LNCS 355, 263-277.Middeldorp, A. (1989b). A su�cient condition for the termination of the directsum of term rewriting systems. In: Proceedings of the 4th IEEE Symposium onLogic in Computer Science, Paci�c Grove, 396-401.Middeldorp, A. (1990). Modular properties of term rewriting systems. Ph.D.Thesis, Vrije Universiteit, Amsterdam.Middeldorp, A. (1991). Modular properties of conditional term rewriting proper-ties. To appear in Information and Computation.Nash-Williams, C.St.J.A. (1963). On well-quasi-ordering �nite trees. In: Pro-ceedings of the Cambridge Philosophical Society 59(4), 833-835.Nederpelt, R.P. (1973). Strong normalization for a typed lambda calculus withlambda structured types. Ph.D. Thesis, Technische Hogeschool, Eindhoven, theNetherlands.Newman, M.H.A. (1942). On theories with a combinatorial de�nition of \equiv-alence". Annals of Math. 43(2), 223-243.O'Donnell, M.J. (1977). Computing in systems described by equations. SpringerLNCS 58.O'Donnell, M.J. (1985). Equational logic as a programming language. The MITPress, Cambridge, Massachusetts.Oyamaguchi, M. (1987). The Church-Rosser property for ground term rewritingsystems is decidable. TCS 49(1), 43-79.Peterson, G.E. & Stickel, M.E. (1981). Complete sets of reductions for someequational theories. J. of the ACM, 28(2), 233-264.Plaisted, D.A. (1978). A recursively de�ned ordering for proving termination of



112 J. W. Klopterm rewriting systems. Report R-78-943, University of Illinois, Urbana, Illinois.Plaisted, D.A. (1985). Semantic conuence tests and completion methods. Infor-mation and Control, bf 65, 182-215.Puel, L. (1986). Using unavoidable sets of trees to generalize Kruskal's theorem.J. of Symbolic Computation 8(4), 335-382.Raoult, J.-C. & Vuillemin, J. (1980). Operational and semantic equivalence be-tween recursive programs. Journal of the ACM 27(4),772-796.Rosen, B.K. (1973). Tree-manipulating systems and Church-Rosser theorems.Journal of the ACM 20(1), 160-187.Rusinowitch, M. (1987a). On termination of the direct sum of term rewritingsystems Information Processing Letters 26, 65-70.Rusinowitch, M. (1987b). Path of subterms ordering and recursive decompositionordering revisited. Journal of Symbolic Computation 3, 117-131.Selman, A. (1972). Completeness of calculii for axiomatically de�ned classes ofalgebras. Algebra Universalis 2, 20-32.Shoen�eld, J.R. (1967). Mathematical Logic. Addison-Wesley, Reading, Mas-sachusetts.Siekmann, J. (1984). Universal uni�cation. In: Proceedings of the 7th Interna-tional Conference on Automated Deduction (ed. R.E. Shostak), Napa, California,Springer LNCS 170, 1-42.Smory�nski, C. (1982). The variety of arboreal experience. The MathematicalIntelligencer, 4(4), 182-189.Staples, J. (1975). Church-Rosser theorems for replacement systems. In: Algebraand Logic (ed. J. Crosley), Springer Lecture Notes in Mathematics 450, 291-307.Thatte, S. (1987). A re�nement of strong sequentiality for term rewriting withconstructors. Information and Computation 72, 46-65.Toyama, Y. (1987a). Counterexamples to termination for the direct sum of TermRewriting Systems. Information Processing Letters 25, 141-143.Toyama, Y. (1987b). On the Church-Rosser property for the direct sum of termrewriting systems. Journal of the ACM 34(1), 128-143.Toyama, Y. (1988). Commutativity of Term Rewriting Systems. In: Program-ming of Future Generation Computer II (eds. K. Fuchi and L. Kott), North-Holland, Amsterdam, 393-407.Toyama, Y., Klop, J.W. & Barendregt, H.P. (1989). Termination for the di-rect sum of left-linear term rewriting systems. In: Proceedings of the 3rd In-ternational Conference on Rewriting Techniques and Applications, Chapel Hill,Springer LNCS 355, 477-491. Extended version: Report CS-R8923, CWI, Ams-terdam.Turner, D.A. (1979). A new implementation technique for applicative languages.Software Practice and Experience, 9, 31-49.Winkler, F. & Buchberger, B. (1983). A criterion for eliminating unnecessaryreductions in the Knuth-Bendix algorithm. In: Proceedings of the Colloquium onAlgebra, Combinatorics and Logic in Computer Science, Gy�or, Hungary.


