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Abstract. Graph programs as introduced by Habel and Plump [8] pro-
vide a simple yet computationally complete language for computing func-
tions and relations on graphs. We extend this language such that numer-
ical computations on labels can be conveniently expressed. Rather than
resorting to some kind of attributed graph transformation, we introduce
conditional rule schemata which are instantiated to (conditional) double-
pushout rules over ordinary graphs. A guiding principle in our language
extension is syntactic and semantic simplicity. As a case study for the
use of extended graph programs, we present and analyse two versions
of Dijkstra’s shortest path algorithm. The first program consists of just
three rule schemata and is easily proved to be correct but can be ex-
ponential in the number of rule applications. The second program is a
refinement of the first which is essentially deterministic and uses at most
a quadratic number of rule applications.

1 Introduction

The graph transformation language introduced by Habel and Plump in [8] and
later simplified in [7] consists of just three programming constructs: nondeter-
ministic application of a set of rules (in the double-pushout approach) either in
one step or as long as possible, and sequential composition. The language has a
simple formal semantics and is both computationally complete and minimal [7].
These properties are attractive for formal reasoning on programs, but the price
for simplicity is a lack of programming comfort.

This paper is the first step in developing the language of [7] to a programming
language GP (for graph programs) that is usable in practice. The goal is to design
– and ultimately implement – a semantics-based language that allows high-level
problem solving by graph transformation. We believe that such a language will be
amenable to formal reasoning if programs can be mapped to a core language with
a simple formal semantics. Also, graphs and graph transformations naturally lend
themselves to visualisation which will facilitate the understanding of programs.

The language of [7] has no built-in data types so that, for example, numerical
computations on labels must be encoded in a clumsy way. We therefore extend
graph programs such that operations on labels are performed in a predefined
algebra. Syntactically, programs are based on rule schemata labelled with terms
over the algebra, which prior to their application are instantiated to ordinary
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double-pushout rules. In this way we can rely on the well-researched double-
pushout approach to graph transformation [2, 6] and avoid resorting to some kind
of attributed graph transformation. We also introduce conditional rule schemata
which are rule schemata equipped with a Boolean term over operation symbols
and a special edge predicate. This allows to control rule schema applications by
comparing values of labels and checking the (non-)existence of edges.

To find out what constructs should be added to the language of [7] to make
GP practical, we intend to carry out various case studies. Graph algorithms are
a natural choice for the field of such a study because the problem domain need
not be encoded and there exists a comprehensive literature on graph algorithms.
In Section 7 we present and analyse two graph programs for Dijkstra’s shortest
path algorithm. The first program contains just three rule schemata but can be
inefficient, while the second program is closer to Dijkstra’s original algorithm and
needs at most a quadratic number of rule applications. We prove the correctness
of the first program and the quadratic complexity of the second program to
demonstrate how one can formally reason on graph programs.

In general, we want to keep the syntax and semantics of GP as simple a pos-
sible while simultaneously providing sufficient programming comfort. Of course
there is a trade-off between these aims; for example, we found it necessary to
introduce a while loop in order to efficiently code Dijkstra’s algorithm in the
second program.

2 Preliminaries

A signature Σ = (S, OP ) consists of a set S of sorts and a family OP =
(OPs,s)s∈S∗,s∈S of operation symbols. A family X = (Xs)s∈S of variables consists
of sets Xs that are pairwise disjoint and disjoint with OP . The sets TOP,s(X)
of terms of sort s are defined by x, c ∈ TOP,s(X) for all x ∈ Xs and all
c ∈ OPλ,s, and op(t1, . . . , tn) ∈ TOP,s(X) for all op ∈ OPs1...sn,s and all t1 ∈
TOP,s1(X), . . . , tn ∈ TOP,sn(X). The set of all terms over Σ and X is denoted
by TΣ(X).

A Σ-algebra A consists of a family of nonempty sets (As)s∈S , elements cA ∈
As for all c ∈ OPλ,s, and functions opA: As1 × . . . × Asn → As for all op ∈
OPs1...sn,s.

An assignment α: X → A is a family of mappings (αs: Xs → As)s∈S . The ex-
tension α̂: TΣ(X)→ A of α is defined by α̂(x) = α(x) and α̂(c) = cA for all vari-
ables x and all constant symbols c, and α̂(op(t1, . . . , tn)) = opA(α̂(t1), . . . , α̂(tn))
for all op(t1, . . . , tn) ∈ TΣ(X). If t is a variable-free term, then α̂(t) is denoted
by tA.

A label alphabet is a pair C = (CV , CE), where CV is a set of node labels
and CE is a set of edge labels. A partially labelled graph over C is a system
G = (VG, EG, sG, tG, lG,V , lG,E), where VG and EG are finite sets of nodes and
edges, sG, tG: EG → VG are source and target functions for edges, lG,V : VG → CV
is the partial node labelling function and lG,E: EG → CE is the partial edge
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labelling function1. A graph is totally labelled if lG,V and lG,E are total functions.
We write G(C) for the set of partially labelled graphs, and Gt(C) for the set of
totally labelled graphs over C.

A premorphism g: G → H between two graphs G and H consists of two
source and target preserving functions gV : VG → VH and gE: EG → EH , that
is, sH ◦ gE = gV ◦ sG and tH ◦ gE = gV ◦ tG. If g also preserves labels in the
sense that lH(g(n)) = lG(n) for all n in Dom(lG,V ) and Dom(lG,E), then it is a
graph morphism. Moreover, g is injective if gV and gE are injective, and it is an
inclusion if g(n) = n for all nodes and edges n in G.

Assumption 1 We assume a signature Σ = (S, OP ) such that Bool ∈ S,
OPλ,Bool = {true, false}, OPBool,Bool = {¬} and OPBoolBool,Bool = {∧,∨,→
,↔}. The signature is interpreted in a fixed Σ-algebra A such that ABool =
{tt, ff}, trueA = tt, falseA = ff and ¬A,∧A,∨A,→A,↔A are the usual
Boolean operations. We also assume a family of variables X = (Xs)s∈S and that
S contains two distinguished sorts sV and sE for nodes and edges. The label
alphabets CT and CA are defined by

CT = (TOP,sV (X), TOP,sE (X)) and CA = (AsV , AsE ).

3 Rules and Rule Schemata

We recall the definition of double-pushout rules with relabelling given in [9],
before introducing rule schemata over G(CT ).

Definition 1 (Rule). A rule r = (L ← K → R) consists of two graph mor-
phisms K → L and b: K → R over G(CA) such that K → L is an inclusion
and

(1) for all n ∈ L, lL(n) =⊥ implies n ∈ K and lR(b(n)) =⊥, and
(2) for all n ∈ R, lR(n) =⊥ implies lL(n′) =⊥ for exactly one n′ ∈ b−1(n).

The rule r is injective if b: K → R is injective. All rules in the graph programs
for Dijkstra’s algorithm in Section 7 will be injective, but in general we want to
allow non-injective rules.

Definition 2 (Direct derivation). Let G and H be graphs in Gt(CA) and
r = (L← K → R) a rule. A direct derivation from G to H by r consists of two
natural pushouts2 as in Figure 1, where L→ G is injective.

We write G ⇒r,g H or just G ⇒r H if there exists a direct derivation as in
Definition 2. If R is a set of rules, then G ⇒R H means that there is some r
in R such that G⇒r H . Figure 2 shows an example of a rule where we assume
AsV = AsE = R. (In pictures like this, numbers next to the nodes are used to
represent graph morphisms.)
1 Given a partial function f : A → B, the set Dom(f) = {x ∈ A | f(x) is defined} is

the domain of f . We write f(x) =⊥ if f(x) is undefined.
2 A pushout is natural if it is also a pullback. See [9] for the construction of natural

pushouts over partially labelled graphs.
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L K R

G D H

Fig. 1. A direct derivation.

Definition 3 (Match). Given a rule r = (L ← K → R) and a graph G in
Gt(CA), an injective graph morphism g: L→ G is a match for r if it satisfies the
dangling condition: no node in g(L)− g(K) is incident to an edge in G− g(L).

In [9] it is shown that, given r and an injective morphism g: L → G, there
exists a direct derivation as in Figure 1 if and only if g is a match for r. Moreover,
in this case D and H are determined uniquely up to isomorphism.

Definition 4 (Rule schema). If K → L and K → R are graph morphisms
over G(CT ) satisfying the conditions of Definition 1, then r = (L ← K → R) is
a rule schema.

An example of a rule schema is shown in Figure 3, where x, y and z are
variables of sort Real.
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Fig. 2. A rule.
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z
y ←−
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1

x

2

x+y
y

Fig. 3. A rule schema.

Rule schemata are instantiated by evaluating their terms according to some
assignment α: X → A.

Definition 5 (Instances of graphs and rule schemata). Given a graph G
over CT and an assignment α: X → A, the instance Gα of G is the graph over CA
obtained from G by replacing the labelling functions lG with α̂◦ lG. The instance
of a rule schema r = (L← K → R) is the rule rα = (Lα ← Kα → Rα).

For example, the rule in Figure 2 is an instance of the rule schema in Figure 3;
the associated assignment α satisfies α(x) = 1, α(y) = 2 and α(z) = 4. Note
that a rule schema may have infinitely many instances if A contains infinite base
sets.
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Given graphs G and H in Gt(CA) and a rule schema r, we write G ⇒r H
if there is an assignment α such that G ⇒rα H . For a set R of rule schemata,
G⇒R H means that there is some r in R such that G⇒r H .

4 Conditional Rules and Conditional Rule Schemata

We introduce conditional rule schemata which allow to control the application of
a rule schema by comparing values of terms in the left-hand side of the schema.
This concept will be crucial to express graph algorithms conveniently.

Analogously to the instantiation of rule schemata to rules, conditional rule
schemata will be instantiated to conditional rules. We define a conditional rule
as a rule together with a set of admissible matches.

Definition 6 (Conditional rule). A conditional rule q = (r, M) consists of
a rule r = (L ← K → R) and a set M of graph morphisms such that M ⊆
{g: L→ G | G ∈ Gt(CA) and g is a match for r}.

Intuitively, M is a predicate on the matches of r in totally labelled graphs.
Given a conditional rule q = (r, M) and graphs G and H in Gt(CA), we write
G⇒q H if there is a morphism g in M such that G⇒r,g H .

Our concept of a conditional rule is similar to that of [5] where rules are
equipped with two sets of morphisms (representing positive and negative applica-
tion conditions, respectively). Because [5] is based on the so-called single-pushout
approach, admissible morphisms need not satisfy the dangling condition.

Conditional rules as defined above are a semantic concept in that the set M
of admissible matches will usually be infinite. To represent conditional rules in
the syntax of a programming language, we introduce conditional rule schemata
which consist of a rule schema and a Boolean term. This term may contain
any operation symbols of the predefined signature Σ and, in addition, a special
binary predicate edge on the nodes of the left-hand side of the rule schema.

Definition 7 (Conditional sule schema). Given a rule schema (L ← K →
R), extend the signature Σ to ΣL = (SL, OPL) by SL = S∪{Node}, OPL

λ,Node =
VL, OPL

NodeNode,Bool = {edge}, OPL
w,s = OPw,s if w ∈ S∗ and s ∈ S, and OPL

w,s =
∅ otherwise. Then a term c in TOP L,Bool(X) is a condition and 〈(L← K → R), c〉
is a conditional rule schema.

A conditional rule schema is also written as (L ← K → R) where c. In
pictures, a rule or rule schema (L← K → R) is often given in the form L⇒ R.
In this case we assume that K consists of the numbered nodes of L and that
these nodes are unlabelled in K. For example, Figure 4 shows a conditional rule
schema that is applicable to a graph G only if x, y and z are instantiated such
that α(x) + α(y) < α(z) and if there is no edge in G from the image of node 2
to the image of node 1.

Conditional rule schemata are instantiated by instantiating the rule schema
according to some assignment α and by evaluating the condition by an extension
of α which takes into account the meaning of the edge predicate.
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1

x

2

z
y

where x + y < z ∧ ¬ edge(2, 1)

=⇒
1

x

2

x+y
y

Fig. 4. A conditional rule schema.

Definition 8 (Instance of a conditional rule schema). Given a conditional
rule schema r = 〈(L ← K → R), c〉, an assignment α: X → A and a graph
morphism g: Lα → G with G ∈ Gt(CA), define the extension αg: TΣL(X) → A
as follows:

(1) αg(x) = α(x) and αg(c) = cA for all variables x and all constants c in Σ.3

(2) αg(edge(v, w)) =
{
tt if there is an edge in G from g(v) to g(w),
ff otherwise.

(3) αg(op(t1, . . . , tn)) = opA(αg(t1), . . . , αg(tn))
for all op(t1, . . . , tn) ∈ TOP L,SL(X) with op ∈ OP .

Then the instance rα of r is the conditional rule 〈(Lα ← Kα → Rα), M〉 where
M = {g: Lα → G | G ∈ Gt(CA), g is a match and αg(c) = tt}.

Given graphs G and H in Gt(CA) and a conditional rule schema q = r where c,
we write G⇒q H if there is an assignment α: X → A and a graph morphism g
such that G⇒rα,g H and αg(c) = tt.

Operationally, the application of a conditional rule schema (L ← K →
R) where c to a graph G in Gt(CA) amounts to the following steps:

1. Find an injective premorphism g: L→ G satisfying the dangling condition.
2. Find an assignment α: X → A such that for all n in Dom(lL), α̂(lL(n)) =

lG(g(n)).
3. Check whether αg(c) = tt.
4. Construct for (Lα ← Kα → Rα) and g the natural pushouts of Definition 2

(according to [9]).

5 Deterministic Conditional Rule Schemata

For an implementation of a programming language based on rule schemata it
is prohibitive to enumerate all instances of a rule schema r = (L ← K → R)
in order to find an instance that turns a given premorphism g: L → G into a
graph morphism. This is because r may have infinitely many instances. Even
if one restricts attention to instances rα where α evaluates the terms in L to
labels of corresponding nodes and edges in G, there may be infinitely many
instances left. For example, consider the conditional rule schema in Figure 5 and
an associated premorphism g: L → G. Whereas the values α(k) and α(z) are
uniquely determined by g, there are infinitely many choices for α(x), α(y) and

3 Note that αg is undefined for all constants in OP L
λ,Node.
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1

x+y

2

z
k

where m < z

=⇒
1

x

2

k+m
k

Fig. 5. A conditional rule schema that is not deterministic.

α(m) if nodes are labelled with integers, say. We therefore introduce a subclass of
(conditional) rule schemata which are instantiated by premorphisms in at most
one way.

A term t in TΣ(X) is simple if it is a variable or does not contain any
variables. We denote by Var(t) and Var(G) the sets of variables occuring in a
term t or graph G.

Definition 9 (Deterministic conditional rule schema). A rule schema
(L← K → R) is deterministic, if

(1) all labels in L are simple terms, and
(2) Var(R) ⊆ Var(L).

A conditional rule schema 〈r, c〉 with r = (L ← K → R) is deterministic if r is
deterministic and Var(c) ⊆ Var(L).

For example, the conditional rule schema in Figure 4 is deterministic.

Proposition 1. Let r = 〈(L ← K → R), c〉 be a deterministic conditional rule
schema and g: L → G a premorphism with G ∈ Gt(CA). Then there is at most
one instance r′ of r such that g is a match for r′.

Proof. Let rα and rβ be instances of r such that g is a match for both. By
Definition 5 and Definition 8, we have rα = rβ if α̂(t) = β̂(t) for all terms t
in L and R, and αg(c) = βg(c) (note that every term in K occurs also in L).
Therefore it suffices to show that α(x) = β(x) for each variable x in Var(L) ∪
Var(R) ∪ Var(c). Since r is deterministic, we have x ∈ Var(L) . Hence there is
a node or an edge in L that is labelled with a term containing x. Without loss
of generality let v be a node such that x ∈ Var(lL,V (v)). Because all terms in
L are simple, x = lL,V (v). Thus, by Definition 5, α(x) = α̂(x) = α̂(lL,V (v)) =
lG,V (gV (v)) = β̂(lL,V (v)) = β̂(x) = β(x). ��

Proposition 1 ensures that premorphisms cannot “instantiate” deterministic
(conditional) rule schemata in more than one way. The next proposition gives
a necessary and sufficient condition for such an instantiation to take place. The
condition makes precise how to find an assignment α as required in the second
step of the description of rule-schema application, given at the end of Section 4.

Proposition 2. Let g: L → G be a premorphism where L ∈ G(CT ) is labelled
with simple terms and G ∈ Gt(CA). Then there is an assignment α: X → A such
that g is a graph morphism from Lα to G, if and only if for all nodes and edges
n, n′ in L,
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(1) lG(g(n)) = tA if lL(n) is a variable-free term t, and
(2) lG(g(n)) = lG(g(n′)) if lL(n) = lL(n′) ∈ X.

Proof. Suppose first that g is a graph morphism from Lα to G. If n is labelled
with a variable-free term t in L, then n’s label in Lα is α̂(t) = tA. Since g is
label-preserving, g(n) is labelled with tA, too. Moreover, if n and n′ are labelled
with the same variable x in L, then both are labelled with α(x) in Lα. Hence
lG(g(n)) = α(x) = lG(g(n′)).

Conversely, suppose that conditions (1) and (2) are satisfied. For every sort
s in S, let ds be a fixed element in As. Then, by (2),

α(x) =
{

lG(g(n)) if there is a node or edge n with lL(n) = x,
ds otherwise, where x ∈ Xs

defines an assignment α: X → A. Consider any node or edge n in Lα. If lL(n)
is variable-free, then (1) gives lG(g(n)) = tA = α̂(t) = lLα(n). Otherwise lL(n)
is a variable x, and hence by definition of α, lG(g(n)) = α(x) = lLα(n). Thus
g: Lα → G is label-preserving. ��

6 Graph Programs

We extend the language of [8, 7] by replacing rules with deterministic conditional
rule schemata and adding a while-loop.

Definition 10 (Syntax of programs). Programs are defined as follows:

(1) For every finite set R of deterministic conditional rule schemata, R and R↓
are programs.

(2) For every graph B in G(CT ) and program P , while B do P end is a program.
(3) If P and Q are programs, then P ; Q is a program.

A finite set of conditional rule schemata is called an elementary program.
Our syntax is ambiguous because a program P1; P2; P3 can be parsed as both
(P1; P2); P3 and P1; (P2; P3). This is irrelevant however as the semantics of se-
quential composition will be relation composition which is associative.

Next we define a relational semantics for programs. Given a binary relation
φ ⊆ A × B between two sets A and B, the domain of φ is the set Dom(φ) =
{a ∈ A | a φ b for some b ∈ B}. If A = B we write φ∗ for the reflexive-transitive
closure of φ. The composition of two relations φ and � on A is the relation
φ ◦ � = {〈a, c〉 | a φ b and b � c for some b}. Given a graph B in G(CT ), let B? =
{(B ← B → B)} with B → B being the identity morphism on B.

Definition 11 (Semantics of programs). The semantics of a program P is
a binary relation �P � on Gt(CA)4 which is inductively defined as follows:
4 Strictly speaking, the graphs in Gt(CA) should be considered as abstract graphs,

that is, as isomorphism classes of graphs. For simplicity we stick to ordinary graphs
and consider them as representatives for isomorphism classes; see [8, 7] for a precise
account.
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(1) For every elementary program R, �R� = ⇒R.
(2) �R↓� = {〈G, H〉 | G⇒∗

R H and H �∈ Dom(⇒R)}.
(3) �while B do P end� = {〈G, H〉 ∈ �B?; P � ∗ | H �∈ Dom( �B?� )}.
(4) �P ; Q� = �P � ◦ �Q� .

By clause (3), the operational interpretation of while B do P end is that P is
executed as long as B occurs as a subgraph. In particular, the loop has no effect
on a graph G not containing B: in this case we have G �while B do P end� H
if and only if G = H . Note also that if G contains B but P fails on input
G either because a set of rules in P is not applicable or because P does not
terminate, then the whole loop fails in the sense that there is no graph H such
that G �while B do P end� H .

Consider now subsets G1 and G2 of Gt(CA) and a relation φ ⊆ G1 × G2. We
say that a program P computes φ if φ = �P � ∩ (G1 × G2), that is, if φ coincides
with the semantics of P restricted to G1 and G2. This includes the case of partial
functions φ:G1 → G2, which are just special relations.

7 Dijkstra’s Shortest Path Algorithm

The so-called single-source shortest path algorithm by Dijkstra [1, 11] computes
the distances between a given start node and all other nodes in a graph whose
edges are labelled with nonnegative numbers. Given a graph G and nodes v and
w, a path from v to w is a sequence e1, . . . , en of edges such that sG(e1) = v,
tG(en) = w and tG(ei) = sG(ei+1) for i = 1, . . . , n − 1. The distance of such a
path is the sum of its edge labels. A shortest path between two nodes is a path
of minimal distance.

Dijkstra’s algorithm stores the distance from the start node to a node v in
a variable d(v). Initially, the start node gets the value 0 and every other node
gets the value ∞. Nodes for which the shortest distance has been computed are
added to a set S, which is empty in the beginning. In each step of the algorithm,
first a node w from VG−S is added to S, where d(w) is minimal. Then for each
edge e outgoing from w, d(tG(e)) is changed to min(d(tG(e)), d(w) + lG,E(e)).

7.1 A Simple Graph Program for Dijkstra’s Algorithm

Before giving our graph programs, we specify the signature Σ and the algebra
A of Assumption 1. The programs will store calculated distances as node labels,
so we need some numerical type for both edge and node labels. Let Real be a
sort in Σ, sV = sE = Real, and let R

+ be the set of nonnegative real numbers.
We assume the following operation symbols in Σ:5 OPλ,Real = R

+ ∪ {∞, ∗, �},
OPRealReal,Bool = {<} and OPRealReal,Real = {+}. The algebra A is given by
AReal = R

+ ∪ {∞, ∗, �}, cA = c for all c ∈ OPλ,Real, x <A y = tt if and only if

5 Note that all numbers in R
+ are used as constant symbols. The representation of

numbers in an implementation of our programming language is beyond the scope of
this paper.
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(x, y ∈ R
+ and x < y) or (x �=∞ and y =∞), x +A y = x + y if x, y ∈ R

+ and
x +A y =∞ otherwise.

Our first program for Dijkstra’s algorithm, Simple Dijkstra, is given in
Figure 6. We assume that the program is started from a graph in Gt(CA) whose
edges are labelled with nonnegative numbers and whose start node is marked by
a unique loop labelled with ∗. The rule schema S Prepare relabels every node of
the input graph with ∞, S Start deletes the unique loop and relabels the start
node with 0, and S Reduce changes a stored distance whenever a shorter path
has been found.

Simple Dijkstra = S Prepare ↓; S Start; S Reduce ↓

S Prepare : 1

x

where x <∞

=⇒
1

∞

S Start :
x

1

∗

=⇒
1

0

S Reduce :

x

1

z

2

y

where (x + y) < z

=⇒ x

1

x+y

2

y

Fig. 6. The program Simple Dijkstra.

Proposition 3 (Correctness of Simple Dijkstra). Let G be a graph
in Gt(CA) containing a unique loop e, where lG,E(e) = ∗ and lG,E(e′) ∈ R

+

for all other edges e′. When started from G, Simple Dijkstra terminates and
produces a unique graph H which is obtained from G by removing e and labelling
each node v with the shortest distance from sG(e) to v.

Proof. Termination of Simple Dijkstra follows from the fact that every appli-
cation of S Prepare reduces the number of nodes not labelled with ∞, and that
every application of S Reduce reduces the sum of all node labels in a graph.

Let now H be a graph such that G �Simple Dijkstra� H . Since there are no
rule schemata for adding or deleting nodes, and S Start is the only rule schema
that alters G’s edges, it is clear that H can be obtained from G by removing the
loop e and relabelling the nodes. Thus, H is uniquely determined if each node
v is labelled with the shortest distance from sG(e) to v. To show the latter, we
need the following invariance property.
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Claim. Let G �S Prepare↓; S Start� H0 ⇒∗
S Reduce H ′. Then for each node v in

H ′, either lH′,V (v) =∞ or lH′,V (v) is the distance of a path from sG(e) to v.

Proof. The proposition holds for H0, because sG(e) is labelled with 0 and every
other node is labelled with ∞. Moreover, it is easy to see that every application
of S Reduce preserves the claimed property. ��

Suppose now that there is a node v in H such that lH,V (v) is not the shortest
distance from sG(e) to v. We distinguish two cases.

Case 1: v = sG(e). Since v is labelled with 0 after the application of S Start,
and lH,V (v) �= 0, there must be an application of S Reduce that changes v′s
label to a negative number. But this contradicts the above claim.

Case 2: v �= sG(e). By the above claim, there is a path from sG(e) to v (as
otherwise lH,V (v) �=∞). Let e1, . . . , en be a shortest path from sG(e) to v. Let
v0 = sG(e) and vi = tH(ei) for i = 1, . . . , n. By Case 1, lH,V (v0) = 0. Hence,
there is some k, 1 ≤ k ≤ n, such that lH,V (vk) is not the shortest distance from v0

to vk and for i = 0, . . . , k−1, lH,V (vi) is the shortest distance from v0 to vi. Now
since e1, . . . , en is a shortest path to vn it follows that e1, . . . , ek is a shortest path
to vk and that e1, . . . , ek−1 is a shortest path to vk−1. So the shortest distance
from v0 to vk is

∑k−1
i=1 lH,E(ei) + lH,E(ek) = lH,V (vk−1) + lH,E(ek). As this sum

is smaller than lH,V (vk), S Reduce is applicable to ek. But this contradicts the
fact that H �∈ Dom(⇒S Reduce). ��

The correctness of Simple Dijkstra was easy to show, however the program
can be expensive in the number of applications of the rule schema S Reduce. For
example, the right-hand derivation sequence in Figure 7 contains 48 applications
of S Reduce and represents the worst-case program run for the given input graph
of 5 nodes. In contrast, Dijkstra’s algorithms (as sketched at the beginning of
this section) changes distances only 10 times when applied to the same graph.
Although Simple Dijkstra needs only 4 applications of S Reduce in the best
case, there is no guarantee that it does not choose the worst case. We therefore
refine Simple Dijkstra by modelling more closely the original algorithm.

7.2 A Refined Program

The program Dijkstra of Figure 8 uses a while-loop to repeatedly select a
node of minimal distance and to update the distances of the target nodes of
the outgoing edges of that node. Nodes that have not yet been selected are
marked by a �-labelled loop. Removing the ∗-labelled loop from a node by Next
corresponds to adding that node to the set S of the original algorithm. Note
that Dijkstra is essentially deterministic: Min ↓ always determines a node of
minimal distance among all nodes marked with loops, and Reduce is applied
only to edges outgoing from this node.

The left-hand derivation sequence of Figure 7 is a worst-case run of Dijkstra,
containing 26 rule-schema applications. Among these are only 10 applications of
Reduce, which correspond to the 10 distance changes done by the original algo-
rithm. The next proposition establishes the worst-case complexity of Dijkstra
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Fig. 7. Derivation sequences of Simple Dijkstra and Dijkstra.

in terms of the number of rule-schema applications, where we assume that input
graphs satisfy the precondition of Proposition 3.

Proposition 4 (Complexity of Dijkstra). When started from a graph con-
taining n nodes and e edges, Dijkstra terminates after O(n2 + e) rule-schema
applications.
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Dijkstra = Prepare ↓; Start; while B do Min ↓; Reduce ↓; Next end; CleanUp
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Fig. 8. The program Dijkstra.
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Proof. The initialisation phase Prepare ↓; Start uses n rule-schema applica-
tions. The body of the while-loop is executed (n − 1)-times because initially
there are n − 1 loops labelled with �, and each execution of the body reduces
this number by one. So the overall number of Next-applications is n − 1, too.
Each execution of Min↓ takes at most n − 1 steps because there is only one ∗-
labelled loop. Hence, there are at most (n− 1)2 applications of Min overall. The
total number of Reduce-applications is at most e since Reduce cannot be applied
twice to the same edge. This is because Reduce is applied only to edges outgoing
from the ∗-marked node, and the ∗ mark is removed by Next. Thus, a bound
for the overall number of rule-schema applications is n + (n− 1) + (n− 1)2 + e,
which is in O(n2 + e). ��

Note that if we forbid parallel edges in input graphs, then e is bounded by
n2 and hence the complexity of Dijkstra is O(n2).

n n-1 4 3 2 1. . .

2n−2 + 1

1

5

1

3

1

2

1

∗

Fig. 9. A worst-case input for Simple Dijkstra.

The quadratic complexity of Dijkstra means a drastic improvement on the
running time of Simple Dijkstra which may be exponential. More precisely,
one can show that for every n ≥ 2 there is a graph with n nodes and 2(n − 1)
edges such that there is a run of Simple Dijkstra in which the rule schema
S Reduce is applied

∑n−1
k=1 2k times. Such a graph is shown in Figure 9. (The

running time of Dijkstra for this graph is actually linear.)

8 Related Work

A guiding principle in our ongoing design of the graph programming language
GP is syntactic and semantic simplicity, which distinguishes GP from the com-
plex PROGRES language [15]. It remains to be seen how much we have to
compromise this principle to enable practical programming in application areas.
Our approach also differs from a language such as AGG [4] in that we insist on
a formal semantics. We want GP to be semantics-based since we consider the
ability to formally reason on programs as a key feature.

The rule schemata intoduced in this paper are not the only way to extend
graph transformation with calculations on labels. An alternative is to use one of
the approaches to attributed graph transformation that have been proposed in
the literature. The recent papers [10, 3], for example, merge graphs and algebras
so that attributed graphs are usually infinite. We rather prefer to work with
finite graphs in which “attributes” are ordinary labels.

Our method of working with rule schemata and their instances is close to
Schied’s approach to double-pushout transformations on graphs labelled with
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algebra elements [14]. (A single-pushout version of this approach is outlined
in [13].) Roughly, his double-pushout diagrams can be decomposed into our
diagrams with rule schema instantiations on top of them. A major difference
between the present paper and [14] is that our rules can relabel and merge items
whereas the rules in [14] are label preserving and injective. Schied also introduces
conditions for rules, in the form of propositional formulas over term equations,
but he does not consider built-in predicates on the graph structure such as our
edge predicate.

Surprisingly, there seems to be hardly any work on studying graph algorithms
in the framework of graph transformation languages. We are only aware of a
case study on Floyd’s all-pairs shortest path algorithm in Kreowski and Kuske’s
paper [12]. The paper presents a program for Floyd’s algorithm and proves its
correctness as well as a cubic bound for the number of rule applications. (The
program consists of rules with parameters, similar to our rule schemata, but [12]
does not give a general formalism for such rules.)

9 Conclusion

As pointed out in the Introduction, this paper is only the first step in extending
the language of [7] to a graph programming language GP. We have introduced
graph programs over rule schemata to incorporate numerical data and other basic
data types. Rule schemata can have Boolean application conditions which may
contain built-in predicates on the graph structure. We have identified determin-
istic conditional rule schemata as a class of schemata that admit a reasonable
implementation in that their applicability and the graphs resulting from ap-
plications are uniquely determined by premorphisms from left-hand sides into
graphs. As a case study for extended graph programs, we have given two pro-
grams for Dijkstra’s shortest path algorithm and have analysed their correctness
and complexity.

In future work, more case studies on graph algorithms and in other areas
will be pursued to find out what additional programming constructs are needed
to make GP a practical language. We hope that new constructs can be mapped
to a small core of GP – possibly the language used in this paper – to keep
the semantics comprehensible and to facilitate formal reasoning on programs,
static program analysis, program transformation, etc. And, of course, GP should
eventually be implemented so that its practical usefulness can be proved.
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