
Shaped Generic Graph Transformation

Frank Drewes1, Berthold Hoffmann2, Dirk Janssens3,
Mark Minas4, and Niels Van Eetvelde3

1 Ume̊a universitet, Sweden
2 Universität Bremen, Germany

3 Universiteit Antwerpen, Belgium
4 Universität der Bundeswehr München, Germany

Abstract. Since the systematic evolution of graph-like program mod-
els has become important in software engineering, graph transformation
has gained much attention in this area. For specifying model evolution
concisely, graph transformation rules should be as expressive as possi-
ble. The generic rules proposed in this paper may contain placeholders
for graphs of varying number and shape. Expansion of these placehold-
ers by graphs yields the actual transformation rules to be applied. Even
rather complex transformations occurring in real-life applications, such
as the Pull-Up-Method refactoring operation, can be specified by a single
generic rule.

1 Introduction

The systematic transformation of models and programs has become an impor-
tant issue in the world of software engineering. On the one hand, the general
idea of model-driven engineering has attracted a lot of attention from both the
academic and the industrial communities, and on the other hand the need for
better support of software evolution has become clear. In the model-driven ap-
proach, a software system is seen as a cluster of models, on various levels of
abstraction and with various characteristics. Each of these models captures cer-
tain features or aspects of the systems, allows its own kind of analysis, and has
its own tools available. In this way one may apply the many sophisticated tools
and theories that have been developed for particular models by the research com-
munity. It is clear, however, that this will not work unless one develops powerful
tools for integrating the various models, transforming them into one another,
generating code from them, and keeping them consistent. Thus model transfor-
mation is a key issue here. In the area of software evolution, a lot of attention
has been devoted to refactoring: the stepwise modification of programs, aimed
at improving their internal organization, but preserving their behavior. The list
of refactoring operations published by Fowler [12] is a well-known example. In
order to get to a precise and manageable definition of what constitutes a model
(or program) transformation, it is quite natural to view a model or program as a
graph, and to describe large transformation processes as being compositions of
“small” transformations – and thus, to describe model transformations by graph
transformation systems.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 201–216, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

202 F. Drewes et al.

Unfortunately, the rules of classical graph transformation formalisms are
rather restricted. E.g., double pushout (DPO) rules [10] just allow to remove
a constant subgraph from a host graph, and insert another constant graph for
it. For describing the behavior of complex real-life systems, one needs a large
number of such rules, and may have to program their application using control
structures. In this paper, which continues [17], we pursue another idea: we make
rules generic by introducing (i) multiple nodes that represent sets of nodes and
(ii) placeholders for subgraphs of various shapes. A shape is a set of graphs
that may be assigned to a given placeholder. A generic transformation rule
abstracts from a (possibly infinite) set of ordinary graph transformation rules,
one for every assignment of node sets and subgraphs to its multiple nodes and
placeholders, respectively. Thus graph transformation is a two-level process: it
first instantiates a generic rule, and then applies the resulting ordinary rule to
the host graph afterwards.

To define the shapes that may replace the placeholders in generic rules, we
use adaptive star grammars. These have been introduced in [9], partly motivated
by earlier research on modeling and refactoring of object-oriented programs [21].
A first issue to be addressed was the specification of the set of graphs represent-
ing programs. Being context-free devices with nice computational properties,
hyperedge and node replacement grammars [14,8,11] have proven particularly
useful for defining graph languages. Unfortunately, these types of graph gram-
mars turned out to be too weak to generate program graphs in a reasonable way.
Therefore, we have proposed the adaptive star grammar as an extension which
is able to generate languages of this type. The rules of an adaptive star grammar
have a context-free flavor: each of them replaces a so-called star (a nonterminal
node and its incident edges) with another graph.

The remainder of this paper is structured as follows. In the next section, we
recall basic notions regarding graphs and graph transformation, and discuss how
refactoring can be modeled. It turns out that we need a grammatical mechanism
to specify the shape of graph models, and generic rules to specify their trans-
formation in a concise way. In Section 3, we define adaptive star grammars and
show as an example how they can be used to define the shape of method bodies,
a part of program graphs. Section 4 constitutes the main part of this paper. Here
we introduce generic rules, and define how placeholders are expanded by shaped
graphs, before the resulting rule is applied. We also sketch how expansion and
cloning can be done by incrementally matching of a generic rule to a host graph.
Section 5 discusses related work. Finally, we summarize our results, and indicate
future work in Section 6.

2 Graph Transformation

In this section, we recall standard notions of graphs and graph transformation,
and check how useful they are for model transformation, by discussing a case
study on refactoring.

Shaped Generic Graph Transformation 203

Graphs. Graph-like diagrams have become very popular for representing arte-
facts that describe software in all its development phases, especially after the
Unified Modeling Language (Uml) emerged. We recall a general notion of graphs,
and show how it is used for a language-independent representation of object-
oriented programs, called program graphs.

Throughout the paper, we let S be our universe of symbols to be used as
labels. It is the union of two disjoint infinite sets Ṡ and S̄ of node and edge
labels, resp. For S ⊆ S, we let Ṡ = S ∩ Ṡ and S̄ = S ∩ S̄.

Definition (Graph). A graph G = 〈Ġ, Ḡ, sG, tG, �̇G, �̄G〉 consists of disjoint
finite sets Ġ of nodes and Ḡ of edges, of two functions sG, tG : Ḡ → Ġ defining
the source and target nodes of its edges, and of two functions �̇G : Ġ → Ṡ and
�̄G : Ḡ → S̄ that assign labels to its nodes and edges.

If all labels of nodes and edges in G are in S ⊆ S, then G is a graph over S.
Let GS denote the set of all graphs over S.

We use common terminology regarding graphs. For instance, an edge is said to
be incident with its source and target nodes, and makes these nodes adjacent to
each other. G ⊆ H denotes that G is a subgraph of H , and G�H is the disjoint
union of G and H . If a graph G contains a node y, the subgraph G(y) consisting
of y, all its incident edges, and all its adjacent nodes is called the neighborhood
of y. Finally, G \ {y} denotes G without the node y, and without the edges of
G(y). A pair g = 〈ġ, ḡ〉 of bijective functions ġ : Ġ → Ḣ and ḡ : Ḡ → H̄ that
preserve sources, targets and labels is called an isomorphism; it makes the graphs
G and H isomorphic, written G ∼=g H .

Example 1 (Program Graphs). In the case study [21] of refactoring, program
graphs have been proposed as a language-independent representation of object-
oriented programs. Fig. 1 shows two subgraphs of a class of program graphs.

The labels {B, C, E, M, V} classify nodes as program entities: bodies of meth-
ods, classes, expressions, method signatures, and variables, respectively. The la-
bels {a, ap, c, e, fp, i, l, m, u, val} represent relations between entities: access, actual
parameter, call, element, formal parameter, inheritance, lookup, membership, up-
date, and value.

A graph must satisfy certain constraints in order to be a valid program graph.
The following are typical examples of constraints:

– Incidence: An i-edge (modeling inheritance) must be incident with C-nodes
(representing classes) only.

– Cardinality: An E-node (representing an expression) may have at most one
outgoing edge labeled a or u (modeling access resp. update).

– Structure: The i-edges must induce a partial order on classes.
– Context : An E-node may access a variable (via an a-edge) only if that variable

is visible in the context to which the E-node belongs.

In Section 3, we propose graph grammars for specifying the shape of graphs,
which comprises structural and contextual constraints, e.g., of program graphs,

204 F. Drewes et al.

in an intuitive way. Incidence or cardinality constraints can be inferred automat-
ically from the definition of such a grammar. Note also that such constraints can
be specified by meta-models (like Uml class diagrams or type graphs [4]) along
with certain well-formedness constraints (expressed, e.g., by Ocl formulas), too.
However, we prefer graph grammars for the following reasons:

– Using graph grammars is not only elegant, but also provides a sound foun-
dation for parsing and analysis, as witnessed by the well-developed theory
of graph transformation.

– We aim at graph languages like the language of program graphs. Graph gram-
mars are particularly well suited for specifying such recursive (graph) lan-
guages which are not that easily specified by meta-models with constraints.

Graph transformation. Since software models can be represented as graphs,
graph transformation is a natural candidate for specifying the evolution of mod-
els. We use a simple form of DPO graph transformation with injective occur-
rences. [10].

Definition (Graph Transformation). A (graph transformation) rule r =
L/R consists of two graphs L and R so that the nodes İ = L̇ ∩ Ṙ define a
discrete interface graph L ⊇ I ⊆ R.

Consider a graph G and a rule r = L/R. A subgraph O ⊆ G is an occurrence
of r in G if O ∼=g L for some isomorphism g so that no node in Ȯ\g(İ) is incident
with an edge in Ḡ \ Ō. Then r transforms G (via the isomorphism g) to a graph
that is denoted as G[L /g R] and is obtained from the disjoint union G�R by (i)
removing Ō and Ȯ \ ġ(İ) from G, and (ii) identifying every interface node x ∈ İ
with ġ(x) ∈ Ġ.

Example 2 (Pull-Up-Method). Pull-Up-Method is a refactoring used when each
subclass of a class A defines a method with the same signature and behavior.
These methods are then removed from each subclass of A and replaced by a
single, equivalent method in A. In the following, we assume that equivalence of
different methods has been checked before Pull-Up-Method is applied.

C
1

V

m

B

M

i

fp

2 3 45
C

i

l l
m

7

C

m

C

i

V
9

EapE

 E

a

e

e

a

a

u

c

M

E

l

e

a E

ap

C

V

B

M

i

fp

C

i

l

mCC

i

V

8

M

B B
6

1

2 3 45

7

9

8

6

c

Fig. 1. A concrete rule for Pull-Up-Method

void m5(v7) {
v9 := v7;
m8(v9);

}

void m5(v7) {
m8(v7);

}

Fig. 2. Pseudo code for
the method bodies in
Fig. 1

Shaped Generic Graph Transformation 205

Fig. 1 shows a rule implementing a specific case of a Pull-Up-Method refac-
toring for program graphs. The interface nodes of the rule are specified by an-
notating them with the same number in L and R.

The C-nodes represent a class (4) with its superclass (1) and two sibling
classes (2, 3). A method signature (5) with one parameter (7) has overloaded
bodies (B-nodes) in the sibling classes (2, 3); both implementations make a call
to another method (8). The one of class (3) uses the formal parameter (7) as
its actual parameter, whereas the other assigns this parameter to a variable (9)
first, and calls method (8) with this variable afterward (cf. Fig. 2). Obviously,
these implementations have the same semantics but differ syntactically.

The implementations of method (5) in the sibling classes (2, 3), which are
emphasized in gray, are removed on the right-hand side of the rule, and its
body (6) is moved to the superclass (1). The expressions defining the body (6)
need not be mentioned in the rule as they are not changed by the refactoring.

This rule does not define Pull-Up-Method in general, however, as it only applies
to particular situations:

– Here the class (4) has two sibling classes (2, 3); the method (5) has one
parameter, and its bodies in the sibling classes use two and three visible
names, respectively. In general, there can be any number of sibling classes,
parameters, and names.

– The syntactic structure of the method bodies in this example is fixed, but a
general rule should be applicable to bodies of different forms. However, the
graph of a method body is not just an arbitrary graph, but must have the
shape of a method body.

Note that several transformation rules would be needed in order to express the
general Pull-Up-Method refactoring in the usual graph transformation systems:
some for checking that the method is implemented in all sibling classes, others
for removing all but one of its implementations, and finally a rule pulling up
the remaining implementation. The applications of these rules would have to be
controlled in a non-trivial way, and it might not be easy to see that they do what
they should, let alone to prove it. As an alternative, we propose to define this
refactoring by a single generic rule that is expanded w.r.t. the form of certain
subgraphs. Section 4 describes this generic graph transformation approach.

Example 3. As a running example – besides Pull-Up-Method in Example 2 –
let us consider a graph transformation as shown in Fig. 3: An S-node is con-
nected to several M-nodes that point to linear lists of Q-nodes being connected
by next-edges. Each Q-node is connected to each V-node by a var-edge. The
transformation removes one of the M-nodes and its list of Q-nodes, and “bends”
the m-edge to the remaining M-node. Fig. 3 shows the case where a list of two
Q-nodes is removed. The following sections introduce the concepts of shaped
graphs and generic rules which allow to specify this transformation for Q-node
lists of arbitrary length.

206 F. Drewes et al.

m

var

var

next

m

next

next

var

var
var

var

var

var

mm

next

S

V

M

Q

V

V

M

Q

Q

M

Q

S

V

Fig. 3. A sample transformation

3 Shapes

The shape of (a class of) graphs, i.e., their structural and contextual constraints
can be specified by graph grammars, like Chomsky grammars specify languages
of strings. For describing software models like the program graphs of Example 1,
we propose adaptive star grammars [9], which combine star replacement, a very
simple way of graph transformation, with an operation called cloning.

Star Replacement. A star replacement replaces a node with its incident edges
and adjacent nodes by a graph. Later on, the replaced nodes will be considered
to be nonterminals.

A star X is a graph that consists of a center node y, n � 0 border nodes, and
n edges making y adjacent to all border nodes.

A rule X/P is a star rule if X is a star and the interface graph I consists
of the border nodes of X ; star rules are denoted as X ::= P to emphasize that
they are used to generate languages, like context-free Chomsky rules.

According to the definition of graph transformation, a star X̃ ⊆ G is an
occurrence of a star rule X ::= P if X̃ ∼=g X and X̃ is the neighborhood of its
center node in G. Then star replacement via g yields the graph G[X /g P].

Cloning. Star replacement is closely related to hyperedge replacement [14,8].
For grammars based on star replacement, this implies certain limitations. For
instance, the maximal number of border nodes in the left-hand sides of a gram-
mar restricts the connectivity of the generated graphs, so that star replacement
cannot generate the class of all graphs, or the class of all complete graphs, over
any set S of labels (provided that Ṡ �= ∅ �= S̄).

To overcome these limitations, we introduce multiple nodes that are place-
holders for any number of nodes. The latter are called clones because each of
them has the same incident edges, and is adjacent to the same nodes as the
multiple node.1

1 Note that cloning is not “deep copying” of subgraphs; it just copies a single node
with its incident edges. Deep copying can be achieved by cloning placeholders of
subgraphs (see Section 4).

Shaped Generic Graph Transformation 207

We designate multiple nodes by a special set of multiple node labels S̈ ⊂ Ṡ.
The remaining node labels Ṡ \ S̈ are called singular. We further assume that
there is a bijection :̈ Ṡ \ S̈ → S̈ that maps every singular label s to its multiple
counterpart s̈. A node is called singular or multiple depending on its label. The
set of multiple nodes in a graph G is denoted by G̈. In figures, we draw multiple
nodes as circles or boxes with a “shadow”, e.g., the V-nodes in Fig. 4.

The cloning operation turns a multiple node into any number of singular
and multiple clones: we define G x

(m,k) to be obtained from G by replacing the
multiple node x with m + k clones whereof m are multiple, and k are singular.

Formally, for a graph G with a multiple node x ∈ G̈, and m, k ≥ 0, the graph
G x

(m,k) is constructed as follows. Let G′(x) be obtained from the neighborhood
G(x) by replacing the label s̈ of x by the singular label s. Then take the disjoint
union of the graph G \ {x} with m copies of G(x) and k copies of G′(x). Finally,
identify the m + k + 1 copies of each node in Ġ(x) \ {x} with each other.

As an example, consider Fig. 10 with its multiple V-node in the left-hand
side G. The left-hand side of the rule shown in Fig. 11 is G 3

(0,2) , i.e., the multiple
node 3 is turned into two singular nodes and no multiple node.

Obviously, G x
(m,k) is defined only up to isomorphism. Note that cloning is

closely related to node replacement. It cannot be specified by finitely many
graph transformation rules in the sense of Definition 2, because a multiple node
x may have a neighborhood G(x) of arbitrary size.

Although distinct multiple nodes may be adjacent to each other, cloning
is commutative: For a graph with distinct multiple nodes x, x′, and numbers
m, k, m′, k′ � 0,

(
G x

(m,k)

)
x′

(m′,k′)
∼=

(
G x′

(m′,k′)

)
x

(m,k) . We can thus define an
operation that clones all multiple nodes in a graph G. The number of de-
sired clones is indicated by a so-called multiplicity function μ : G̈ → N

2. If
G̈ contains n multiple nodes x1, . . . , xk, the μ-clone of G is defined as Gμ =(
· · ·

(
G x1

μ(x1)

)
· · · xk

μ(xk)

)
.

Adaptive Star Replacement. Star replacement is made adaptive by cloning the
star rule and the graph to be transformed before performing the replacement.
Let G be a graph containing a star X̃ , and consider a star rule X ::= P . We
assume without loss of generality that the nodes of G and P are disjoint.

A multiplicity function μ : G̈∪ P̈ → N
2 is an adapter of X/P and X̃ if Xμ ∼=g

X̃μ for some isomorphism g. Then, the adaptive replacement of X̃ by P using μ
is defined as G[X μ/g P] = Gμ[Xμ /g Pμ].

It is straightforward to show that adaptive star replacement is commutative
and associative. We note this result, but leave out the proof:

Lemma 1 (Commutativity and Associativity). If H = G[X μ/g P][X̃ μ̃/̃g P̃]
for some graph G, star rules X/P , X̃/P̃ , adapters μ, μ̃, and isomorphisms g, g̃,
then, for suitable adapters μ′, μ̃′ and isomorphisms g′, g̃′,

1. H = G[X̃ μ̃′
/̃g′ P̃][X μ′

/g′ P] if the center of the occurrence g̃(X̃ μ̃) is in G
(commutativity), and

208 F. Drewes et al.

2

head

var

next

var

1

2

var

head

::=
var

next

11

2V

MM

Q

V

L L

M

Q

V

Fig. 4. Adaptive star rules gener-
ating linear Q-node lists of arbi-
trary length

var

next

var

head
head

next

var

next

varvar

Q

M

L

M M

V

LQ Q

VV

Fig. 5. A derivation of a list of two Q nodes
using the adaptive star rules in Fig. 4

2. H = G[X μ̃′
/̃g′ P [X̃ μ′

/g′ P̃]] if the center of the occurrence g̃(X̃ μ̃) is in P
(associativity).

We can now define adaptive star grammars and the graph languages they
generate. We write G⇒P H if H ∼= G[X μ/g P] for some adapter μ, isomor-
phism g, and rule p = X ::= P from a set P of star rules, and G⇒∗

P H if
G ∼= G0 ⇒P · · ·⇒P Gn

∼= H for n � 0; thus ⇒∗
P is the transitive-reflexive clo-

sure of ⇒P .

Definition. An adaptive star grammar is a tuple Γ = 〈S, N, P , Z〉 consisting of
a finite set S ⊆ S of terminal labels, a finite N ⊆ Ṡ \ Ṡ of singular nonterminal
labels, a finite set P of star rules X ::= P , where X and P are graphs over S∪N ,
and an initial star Z over S ∪ N .

For Z as well as the left- and right-hand sides of rules in P , we require that
the neighborhoods of all nonterminal nodes are stars with terminal border nodes
(where a node is called terminal or nonterminal according to its label). Moreover,
the center nodes of Z and all left-hand sides are required to be nonterminal. Stars
of this kind are called N -stars.

The language generated by Γ is defined as

L(Γ) = {G ∈ GS\S̈ | Z
∗⇒
P

G}.

Note that, in an adaptive star grammar (and in the graphs they generate),
nonterminal nodes cannot be adjacent to each other.

As an example, consider the language introduced in Example 3. Fig. 4 shows
the adaptive star rules of the adaptive star grammar that generates this lan-
guage. L is the only nonterminal label (note that nonterminal nodes are drawn
as rectangles whereas terminal nodes are drawn with round corners). The com-
mon left-hand side of both rules is the initial star Z. Fig. 5 shows a derivation
of a graph consisting of a Q-node list of length two. Note that the derived graph
does not belong to the generated language, because it still contains a multiple
V-node that has to be turned into an arbitrary number of singular V-nodes.

Adaptive star grammars generate languages that cannot be generated by node
replacement [11], like the class of all graphs, or classes of graphs defined by
contextual constraints such as the program graphs from Example 1.

It should be mentioned that the variant of adaptive star grammars origi-
nally introduced in [9] is more general than the one considered here, because

Shaped Generic Graph Transformation 209

stars with parallel edges (being incident with the same border node) and rule
application using non-injective occurrences are considered. In [9], the resulting
type of adaptive star grammar is shown to generate all recursively enumerable
string languages (represented as chain graphs), whereas the one considered in
the present paper is shown to have a decidable membership problem.

Example 4 (Adaptive Star Rules for Method Bodies). The rules in Fig. 6 generate
simple method bodies for the program graphs discussed in Example 1 if the left-
hand side of the rule for the nonterminal ST* is the initial star. A method body
has a root labeled B pointing to E-nodes representing the assignments and calls
in the body; the right-hand sides of assignments, and the actual parameters of
calls may again be calls. All stars in these rules have a def-edge to a singular
node representing the subgraph generated by the star, and vis-edges to multiple
or singular nodes representing the methods (labeled M) and variables (labeled V)
that are visible in these subgraphs. A call to a method, or an access or update
of a variable within an expression is represented as an edge to one of these
nodes. The rules for ASS, CALL, and ACC introducing these edges apply only if
corresponding nodes are visible. Thus every entity used in the body is a clone
of the multiple border nodes of the initial star. This expresses the contextual
constraint that every used entity should have a declaration. In the complete
program graph grammar given in [27], these entities are generated as members
of the class hierarchy that are visible in the context of the method body. There,
method bodies may also contain control structures and local declarations.

In the rules for ST* and CALL, we introduce a useful shorthand for star rules,
somewhat similar to the use of the Kleene star in the right-hand side of a context-
free Chomsky rule. The shaded subgraphs on the right-hand sides of these rules
are called iterated subgraphs. As this name suggests, an iterated subgraph may
be copied any number of times, the copies sharing the nodes on its border. To
emphasize this, we draw the nodes to be copied similarly to multiple nodes and
annotate their “shades” with a common index (k and n, resp.). Iteration can

V

def

::=

a

visvis

1 1

def

vis

def

vis

1

def

vis

::=

1 1

def

vis

c

vis

def

::=

1

2 3

1

vis

::=

1

2 3

vis

def def

1

2

::=

def defdef

vis vis vis

1 1 1

def

vis

::=

u

vis

val

def

vis

1 1

vis

vis

eB B E E E E EE

EEEE

M

E

M

E VE V

V

M VM VM VM VM VM VM

VM VM VM VM VM

visvis vis vis vis

VM VM

ASS

ACC

CALL

EX

EX

CALL ACC

vis vis vis

ST*

vis

CALL

vis
3 32 32 32 32 32

2 3 2 32 3 2 3 2 3 2 3

4

VASS vis
4 4

4 4

ST

vis

E k

EX n

ST k

vis

E n
ap

Fig. 6. Adaptive star rules defining the structure of method bodies

210 F. Drewes et al.

ap

def

vis

::=

def def

vis vis

1 1 1
EEE

VM VM VM

 n n EX

vis vis vis

2 3 2 3 2 3

E

Fig. 7. Adaptive rules for Subgraph Iteration

obviously be implemented by adding a star rule that differs from the given one
in that its right-hand side contains an additional star, isomorphic to the left-
hand side and connected to the nodes on the border of the shaded part. The star
rules generating the iterated subgraph in the rule for CALL in Fig. 6 is shown in
Fig. 7.

4 Generic Transformation Rules

This section contains the main contribution of the paper. We extend the transfor-
mation rules of Section 2 so that they become generic: their graphs may contain
multiple nodes and nonterminal nodes. Multiple nodes are cloned, as in adaptive
star grammars, and nonterminal nodes are expanded to graphs before a generic
rule is applied.

Shaped Expansion. Shaped expansion allows for graphs (in transformation rules)
that contain N -stars as placeholders. These can be expanded to graphs generated
by an adaptive star grammar, where isomorphic stars are expanded to isomorphic
graphs. For this, and throughout the rest of this paper, let Γ = 〈S, N, P , Z〉 be
an adaptive star grammar. In the following, we will only consider graphs over
S ∪ N .

A set σ of star rules is a substitution if (i) the left-hand sides of rules in σ
are pairwise nonisomorphic N -stars, (ii) the right-hand sides of rules in σ are
terminal, and (iii) each rule X/P ∈ σ satisfies X ⇒∗

P P . A graph G is covered
by a substitution σ if, for every N -star G(x) in G, there is a star rule X/R ∈ σ
with G(x) ∼= X .

Intuitively, expanding a graph G means to apply the rules of a substitution
σ to all N -stars in G. To make this precise, consider a graph G whose (pairwise
distinct) N -stars are G(x1), . . . , G(xn), and let σ be a substitution that covers
G. A σ-expansion Gσ of G is a graph of the form

G[X1 /g1 P1] · · · [Xn /gn Pn] where Xi/Pi ∈ σ and G(xi) ∼=gi Xi, for 1 � i � n.

Since star replacement is commutative, the order of the replacement steps is
irrelevant. However, as the isomorphisms gi : Xi → X̃i need not be uniquely
determined, there may be several σ-expansions of G.

Shaped Generic Graph Transformation 211

head

m

1

2

m

1

2
mm

var

3
3

S

M

L

V

M

M

S

V

Fig. 8. The generic rule r used for
the transformation in Fig. 3

var

next

var

head
head

next

var

next

varvar

Q

M

L

M M

V

LQ Q

VV

Fig. 9. The derivation of Fig. 5, using the adap-
tive star rules in Fig. 4 for specifying a substi-
tution σ

next

var

1

2

3

m m

1

2
mm

next

3
var

M

M

V V

Q

S

Q

S

M

Fig. 10. σ-expansion Lσ/Rσ of r
in Fig. 8 using substitution σ in
Fig. 9

1

m m

3 4

2
mm

next
next

varvar
var var

3 4

1

2

Q

M

VV

S

M

V V

Q

S

M

Fig. 11. The ordinary transformation rule
(Lσ)μ /g(Rσ)μ obtained from Lσ/Rσ in Fig. 10
by multiplicity function μ : 3 �→ (0, 2)

Generic Transformation. Generic graph transformation is plain transformation
with transformation rules that have been expanded and cloned. More precisely,
let us call a transformation rule r = L/R generic if its interface nodes are
terminal. A multiplicity function μ : G̈ → N

2 is singular if μ(x) = (0, k) with
k � 0 for every x ∈ G̈.

Now, let G, H be graphs, r = L/R a generic rule, and σ a substitution covering
L ∪ R. Consider a σ-expansion Lσ/Rσ of r, consisting of σ-expansions Lσ and
Rσ of L and R, resp. Then r transforms G into H , written G=⇒r,σ,μ H , if
H = G[(Lσ)μ /g(Rσ)μ] for some singular multiplicity function μ : L̈σ ∪ R̈σ → N

2,
and an isomorphism g.

Fig. 8 shows the generic rule r = L/R that is used for the transformation
shown in Fig. 3, i.e., that removes an M-node together with its list of Q-nodes.
The contained L-star is the placeholder for an arbitrary list of Q-nodes pointing
to all V-nodes. This graph language is specified by the adaptive star rules in
Fig. 4. The transformation shown in Fig. 3 uses the ordinary transformation rule
shown in Fig. 11 that is generated by first substituting the L-node by substitution
σ specified in Fig. 9, yielding Lσ/Rσ (Fig. 10), and then choosing a multiplicity
function μ : 3 �→ (0, 2) for turning the multiple V-node into two singular V-nodes,
yielding (Lσ)μ /g(Rσ)μ (Fig. 11).

Example 5 (A Generic Rule for Refactoring). The general Pull-Up-Method rule
is specified in Figure 12. The rule applies to a class (3) with its superclass (1),
and a set of other subclasses (2); the method signature (5) has parameters (6),
and is implemented by bodies that may refer to variables (7) and methods (8).

212 F. Drewes et al.

kC

1

kB

m

B

i

fp

2 3

4

5 C

i

l l m

def

vis

6

7
vis vis

M

k ST*

C

kC

1

B

i

fp

2 3

4

5 C

i

l m

6

7

M

8 8vis

V

M

V V

M

V

C

Fig. 12. The generic rule for the Pull-Up-Method refactoring

The sibling classes (2) are represented by an iterated subgraph (designated
by the nodes with index k). The nonterminal ST* in the iterated subgraph is
a placeholder for the method bodies for the signature (5). These bodies are re-
moved by the transformation rule since they do not appear on its right-hand side.
The node (4) is the root of the method body that will be moved to its super-
class (1). No variable is needed for the body itself, because only its membership
(the m-edge) is changed.

The ST*-star is a placeholder for method bodies. Thus, the expansions of
these stars are shaped according to the method body grammar. Recall that the
iterated subgraph is a shorthand for a star which can be turned into any number
of copies of the given subgraph, using iteration rules added to Γ , as described in
Example 4. Here, a minor technical complication is caused by the fact that one
of the nodes (2) of the iterated subgraph is an interface node. The (intuitively
obvious) meaning of this is that all copies of this node are intended to belong to
the interface as well.

In a generic rule, all occurrences of a nonterminal n are expanded to isomorphic
subgraphs; having several occurrences ofnon the left-hand side thusallows to check
equality of subgraphs of the host graph, whereas having several occurrences of n
on the right-hand side allows one to make so-called deep copies of the expansions.

Goal-Oriented Matching. The definition of generic transformation is not oper-
ational: In order to transform a graph with a generic rule, we cannot generate
all its expansions, and choose one of them for application, because generic rules
usually have infinitely many expansions.

However, the instantiation of a rule (i.e. expansion and cloning) can be done
in a more goal-oriented fashion. In order to apply a generic rule r = L/R to a
graph G, one may proceed as follows:

– Find a kernel occurrence O of the constant subgraph L of L in G.
– Match the stars and multiple nodes in r one after another, by expanding and

cloning them, respectively, so that O is gradually extended to a complete
occurrence O of the instantiated left-hand side L.

Shaped Generic Graph Transformation 213

– Instantiate the right-hand side R according to the substitution and multi-
plicity function found in the matching process, and insert the instantiated
right-hand side for O. If, for every star X in R, there is an isomorphic star
X ′ in L, the instantiation is uniquely determined.

Moreover, the matching of a star can be done incrementally, applying one of the
star rules defining the shape of a star at a time.

Since adaptive star grammars are parseable, it is decidable whether an expan-
sion exists. Parsing may be complex in general. However, for grammars occurring
in practice, like those for method bodies, and for program graphs as a whole,
we expect parsing to be reasonably efficient. Experiments with an implementa-
tion of a star grammar parser suggest the parsing time for such grammars is
polynomial [22].

For the intended application area of software refactoring (and certainly many
other application areas as well), it must be pointed out that the matching process
sketched above should be coupled with user interaction to resolve the inherent
nondeterminism. Obviously, there may be many generic rules that can be applied,
at many different places in the host graph, and with many different expansions.
Thus, a reasonable implementation must present the different possibilities to the
user, and let her choose the one that reflects her refactoring intentions.

5 Related Work

Generic rules have been proposed quite early for string languages, e.g., Van Wijn-
gaarden grammars [28]. A precursor of the generic graph transformation rules
described in this paper has been investigated in [23], where the placeholders
are stars with a fixed number of adjacent nodes (called hyperedges). Substitu-
tions shaped according to hyperedge replacement grammars have been proposed
in [16]. Path expressions specifying implicit edges, as known in programmed
graph transformation [26], can be considered as a special case of substitutions
shaped according to the path expression. The set nodes in that work have been
the model for our multiple nodes. In fact, cloning concepts have become quite
popular. Apparently, sesqui-pushout rewriting [6] and Kahl’s approach [18] sup-
port cloning as well. In a recent paper, Lindqvist et al. have proposed the star
operator that is motivated by the Kleene star [20]. Patterns are generated from
generic patterns by deep copying and chaining of so-called star regions.The graph
transformation language GReAT used for model transformation also allows to
specify patterns containing multiple objects that can be single nodes or compound
patterns containing subgraphs [1]. Several graph transformation tools have been
further extended by “set” operators: Viatra2 allows to match graph patterns
recursively, which allows for dealing with set-valued patterns [29]. A grouping op-
erator has been introduced to GReAT [2]. This operator allows to simultaneously
operate on the set of all isomorphic matches of a single pattern. And Progres has
been extended by two such operators: A new language construct has been intro-
duced to specify and operate on successively connected repetitive subgraphs [19],
and the extension for set-valued transformations [13] is very similar to [17].

214 F. Drewes et al.

Finally, amalgamated graph transformations (e.g., [3]) are related to set nodes.
This approach does not introduce multiple objects, but it provides a formalism
to generate ordinary transformation rules from rule templates by applying these
templates in parallel. This allows to specify the cloning of set nodes presented
in this paper or in previous papers [9,17].

However, apart from our previous work [17], we are not aware of any kind
of graph transformation that combines cloning with expansion, i.e., with the
instantiation of placeholders by subgraphs that are shaped according to graph
grammars.

6 Conclusions

Being a formalism that allows a direct manipulation of the diagrammatic repre-
sentations of programs, graph transformation is a natural candidate to be used
as the formal foundation for tools supporting program transformations. Such
transformations are at the heart of the model-driven approach to software de-
velopment, and also of so-called refactoring techniques, where the structure of
existing software is improved through the application of certain precisely speci-
fied operations. Modeling such operations by graph transformation rules requires,
however, that these rules are sufficiently expressive, so that they can be consid-
ered to be at the same level of abstraction as the operations one wants to model.
If the rules lack expressive power, one is forced to govern their application by
more complicated control programs, and the result may be that much of the
inherent complexity of the operations to be modeled is reflected in this control
structure rather than in the graph rewriting.

In order to improve the expressive power of graph rewriting rules so that
the complexity of control programs is reduced, we have proposed generic graph
transformation rules wherein placeholders are expanded to graphs, and multiple
nodes are cloned as often as necessary. Expansions of placeholders are shaped,
i.e., the placeholders are nonterminal stars whose possible expansions are de-
fined by an adaptive star grammar. This allows for structural and contextual
constraints on graphs to be described. The concept makes it possible to specify
complex transformations, e.g., the Pull-Up-Method refactoring [12], by a single
generic rule in an intuitive manner. The parsing algorithm for adaptive star
grammars opens the door to a goal-oriented matching algorithm that will be an
essential part of a forthcoming implementation of generic rules.

The work on shaped generic graph transformation rules and their properties
is not finished. As a first step toward extending the results for DPO graph
transformation to generic rules, a parallel independence theorem has been shown
in [15], for generic rules wherein stars have a fixed rank, unshaped substitutions,
and are not cloned. This work shall be extended to the study of critical pairs,
for the generic rules defined here.

For practical use, we need graphs with attribute values, and rules that specify
attribute evaluation. For instance, signature nodes in program graphs could have
an attribute counting its parameters, and transformation rules would update this

Shaped Generic Graph Transformation 215

value when necessary. In [24], attribute values are (additional) labels, and rules
are labeled with expressions specifying computations on these values. This fits
well with the variable concept in generic rules. The values and expressions could
be taken from some host language, but they could also be defined by (nested)
graphs and transformations, as in [16].

Adaptive star grammars fail to describe some contextual constraints of pro-
gram graphs, like the correspondence of formal to actual parameters of a method.
However, these properties can be specified with pre- or post-conditions of the
star rules, sacrificing neither commutativity nor associativity. For practical ap-
plications, like the definition of software models, one should focus on grammars
generating connected, or tree-like graphs with “cross-links” (like the program
graphs). This will not only make parsing more efficient, but is also supposed to
be useful in order to establish a static type discipline as in [16]: If the rules, and
the contexts of their application are “shaped” like the substitutions, it can be
shown that transformations preserve the shape of the graphs being transformed.
In other words: such transformation rules can be guaranteed to preserve the
integrity of a model.

References

1. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The design of a language
for model transformations. J. Software and System Modeling 5(3), 261–288 (2006)

2. Balasubramanian, D., Narayanan, A., Neema, S., Ness, B., Shi, F., Thibodeaux, R.,
Karsai, G.: Applying a grouping operator in model transformations. In: Schürr, A.,
Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Heidelberg
(2008)

3. Boehm, P., Fonio, H.-R., Habel, A.: Amalgamation of graph transformations: A
synchronization mechanism. J. Computer and System Sciences 34, 377–408 (1987)

4. Corradini, A., Ehrig, H., Montanari, U., Padberg, J.: The category of typed graph
grammars and its adjunction with categories of derivations. In: [7], pp. 56–74

5. Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.): 3rd
Int. Conf. on Graph Transformation (ICGT 2006). LNCS, vol. 4178. Springer,
Heidelberg (2006)

6. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
[5], pp. 30–45

7. Cuny, J.E., Ehrig, H., Engels, G., Rozenberg, G. (eds.): Graph Grammars 1994.
LNCS, vol. 1073. Springer, Heidelberg (1996)

8. Drewes, F., Habel, A., Kreowski, H.-J.: Hyperedge replacement graph grammars.
In: [25], pp. 95–162

9. Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Van Eetvelde, N.: Adaptive
star grammars. In: [5], pp. 77–91

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. In: EATCS Monographs on Theoretical Computer Science.
Springer, Heidelberg (2006)

11. Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: [25], ch. 1,
pp. 1–94

12. Fowler, M.: Refactoring—Improving the Design of Existing Code. Object Technol-
ogy Series. Addison-Wesley, Reading (1999)

216 F. Drewes et al.

13. Fuss, C., Tuttlies, V.E.: Simulating set-valued transformations with algorithmic
graph transformation languages. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AG-
TIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)

14. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992)

15. Habel, A., Hoffmann, B.: Parallel independence in hierarchical graph transforma-
tion. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004.
LNCS, vol. 3256, pp. 178–193. Springer, Heidelberg (2004)

16. Hoffmann, B.: Shapely hierarchical graph transformation. In: Proc. IEEE Symposia
on Human-Centric Computing Languages and Environments, pp. 30–37 (2001)

17. Hoffmann, B., Janssens, D., Van Eetvelde, N.: Cloning and expanding graph trans-
formation rules for refactoring. Electronic Notes in Theoretical Computer Sci-
ence 152(4), 53–67 (2006); Proc. GraMoT 2005

18. Kahl, W.: A relation-algebraic approach to graph structure transformation, 2001.
Habil. Thesis, Fak.für Informatik, Univ. der Bundeswehr München, TR 2002-03

19. Körtgen, A.-T.: Modeling successively connected repetitive subgraphs. In: Schürr,
A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Hei-
delberg (2008)

20. Lindqvist, J., Lundkvist, T., Porres, I.: A query language with the star operator. In:
Proc. 6th Int. Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007). Electronic Comm. of the EASST, vol. 6 (2007)

21. Mens, T., Demeyer, S., Janssens, D.: Formalising behaviour-preserving transfor-
mation. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT
2002. LNCS, vol. 2505, pp. 286–301. Springer, Heidelberg (2002)

22. Minas, M.: Parsing of adaptive star grammars. In: Proc. GraMoT 2006. Electronic
Comm. of the EASST, vol. 4 (2006)

23. Plump, D., Habel, A.: Graph unification and matching. In: [7], pp. 75–89
24. Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig,

H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS,
vol. 3256, pp. 128–143. Springer, Heidelberg (2004)

25. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. I. World Scientific, Singapore (1997)

26. Schürr, A.: Introduction to the specification language PROGRES. In: Nagl, M.
(ed.) IPSEN 1996. LNCS, vol. 1170, pp. 248–279. Springer, Heidelberg (1996)

27. Van Eetvelde, N.: A Graph Transformation Approach to Refactoring. Doctoral
thesis, Universiteit Antwerpen (May 2007)

28. van Wijngaarden, A., Mailloux, B.J., Peck, J.E.L., Koster, C.H.A., Sintzoff, M.,
Lindsey, C.H., Meertens, L.G.L.T., Fisker, R.G.: Revised report on the algorithmic
language ALGOL 68. Acta Informatica 5, 1–236 (1975)

29. Varró, G., Horváth, A., Varró, D.: Recursive graph pattern matching with magic
sets and global search plans. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE
2007. LNCS, vol. 5088. Springer, Heidelberg (2008)

	Introduction
	Graph Transformation
	Shapes
	Generic Transformation Rules
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

