
Lutz Schröder und Till Mossakowski

Spezifikation und Verifikation von

Java-Programmen

Übungsblatt 4

Abgabe: zwei Werktage vor dem Fachgespräch

An integer queue is an abstract datatype Q with operations n, e, d, i, f
(nil, enqueue, dequeue, isnil, first) obeying the following laws, for q, q′ ∈
Q, j, j′ ∈ Z:

• n 6= e(j, q).

• e(j, q) = e(j′, q′) ⇒ j = j‘ ∧ q = q′.

• i(n) = >, i(e(j, q)) = ⊥.

• d(e(j, n)) = n, d(e(j, e(j′, q))) = e(j, d(e(j′, q))).

• f(e(j, n)) = j, f(e(j, e(j′, q))) = f(e(j′, q))

The file Queue.java contains a Java class that implements an integer
queue. Specify the private behavior of this class as strongly as possible; as
a minimum escjava2 shall not complain. Please note that Queue contains a
bug that has to be fixed for this purpose. Write a program Main that tests the
queue in a simple way. Compile the test program with the runtime assertion
checking tool jmlc and let it run with jmlrac. Then also specify the public
behavior of the class in a JML specification file Queue.jml using a model type
QueueModel.

As a result of this exercise, deliver

a) the source of Main.java and of the JML annotated (buggy)
Queue.java specifiying the private behavior;

b) the output of an execution of Main with the buggy class Queue using
jmlrac such that an assertion exception demonstrates the bug;

c) the output of escjava2 on Main and the buggy Queue;

d) the source of the JML annotated Queue.java after fixing the bug;

e) the output of a correct execution of Main with jmlrac;

f) the output of of escjava2 on Main and the correct Queue.

g) the source of the corrected Queue.java, Queue.jml and
QueueModel.java specifying the public behavior and the output
of escjava2 on these files.

class Queue

{

private int head = 0;

private int tail = 0;

private int count = 0;

private int N = 3;

public Queue()

{

a = new int[N];

}

public boolean isempty()

{

return count == 0;

}

public void enqueue(int value)

{

if (count == a.length) resize();

count = count+1;

a[tail] = value;

tail = tail+1;

if (tail == a.length) tail = 0;

}

public void dequeue()

{

count = count-1;

head = head+1;

}

public int first()

{

return a[head];

}

private void resize()

{

int b[] = new int[2*a.length+1];

for (int i=head; i<a.length; i++)

b[i-head] = a[i];

for (int i=0; i<head; i++)

b[i+a.length] = a[i];

head = 0;

tail = count;

a = b;

}

}

