Logics and categories for software engineering and artificial intelligence

Till Mossakowski, Lutz Schröder Summer Semester 2009 University of Bremen Department of Computer Science

Exercise Sheet 9

Due: July 6, 2009

Exercise 9.1 (Specification morphisms)

Let SP_1 , SP_2 be two specifications. Show that for any signature morphism $\sigma: Sig(SP_1) \to Sig(SP_2)$, the following are equivalent:

- (a) $\sigma: SP_1 \to SP_2$ is a specification morphism
- (b) $\operatorname{Mod}(\operatorname{SP}_2 \operatorname{hide} \sigma) \subseteq \operatorname{Mod}(\operatorname{SP}_1)$
- (c) $Mod(SP_2) \subseteq Mod(SP_1 \text{ with } \sigma)$

Exercise 9.2 (Models of specifications)

Show that the following statements are not equivalent. Provide counterexamples for both implications.

- (a) $Mod(SP_1) \subseteq Mod(SP_2 \text{ hide } \sigma)$
- (b) $\operatorname{Mod}(\operatorname{SP}_1 \text{ with } \sigma) \subseteq \operatorname{Mod}(\operatorname{SP}_2)$

Exercise 9.3 (Algebraic laws for specifications)

Check which of the following algebraic laws hold:

- (a) SP and SP \equiv SP
- (b) SP_1 and $SP_2 \equiv SP_2$ and SP_1
- (c) (SP with σ_1) with $\sigma_2 \equiv SP$ with $\sigma_2 \circ \sigma_1$
- (d) (SP₁ and SP₂) with $\sigma \equiv (SP_1 \text{ with } \sigma)$ and (SP₂ with σ)
- (e) (SP hide σ_2) hide $\sigma_1 \equiv SP$ hide $\sigma_2 \circ \sigma_1$
- (f) (SP₁ and SP₂) hide $\sigma \equiv (SP_1 \text{ hide } \sigma)$ and (SP₂ hide σ)
- (g) (SP with σ) hide $\sigma \equiv SP$
- (h) (SP hide σ) with $\sigma \equiv SP$

The exercise sheets may and should be worked on in groups of two (2) students. Please write both names on your solution.