o CHAPTER TWO

o Language Processors

I i i 1y important kinds of language proc.:ess,lor:
AR In this book we shall study.two partllcular y 1mpI e o e sat by reviewing
. translators (particularly compilers) and mtergreters.h.nh e e to ot

. | ic i lation and interpretation, which Wi fa :
the basic ideas of transla : s 10

i ic ideas to explore the more sop
ders. Then we build on these basic 1 e "
I rﬁii:ﬁslanguage processors can be used. A 1anguage processor 18 itself a ;:r(zlgi:flz;r:y ;ro-
i thus can be processed (translated or interpreted) in just the same way gs ank:m e
I gram. The ultimate development of this idea is bootstrapping, whereby a languag

cessor is used to Process itself!

| - In this chapter we view translators anq interpreters as tlz
Ix on what they do rather than how they do it. In subsequen
i them to see how they work.

lack boxes’; we concenirate
hapters we shall look inside

2.1 Translators and compilers

sed in one language (the trans-

i any text expres _
A translator is a program that accepts any P T ealont toxt el o in -

lator’s source language), and generates a semantically-
other language (its target language).

Example 2.1 Translators

Here are some diverse examples of translators:
s a program that translates Chinese texis

(a) A Chinese-into-English translator: This i e O ane boh o et

into English. The source and target languages O
languages.

Natural-language translation is an advanced topic, related.to artificial }nteltlégt‘::rcl:j
and well beyond the scope of this textbook. We shall re-stnct our atiention
lators whose source and target languages are programming 1anguages.

into C.
{6) A Java-into-C translator; This is a program that trapslates Java programs 10
The source language is Java, and the target language is C.

Language Processors 27

(c) A Java-into-x86' compiler: This is a program that translates Java programs into
x86 machine code. The source langnage is Java, and the target language is x86
machine code. :

{d) An x86 assembler: This is a program that translates x86 assembly-language pro-
grams into x86 machine code. The source language is x86 assembly language, and
the target langurage is x86 machine code.

O

An assembler translates from an assembly language into the corresponding machine
code. An example is the x86 assembler of Example 2.1(d). Typically, an assembler gen-
erates one machine-code instruction per source instruction.

A compiler translates from a high-level language into a low-level language. An
example is the Java-into-x86 compiler of Example 2.1(c). Typically, a compiler gener-
ates several machine-code instructions per source command.

Assemblers and compilers are the most important kinds of programming language
translator, but not the only kinds. We sometimes come across high-level translators
whose source and target languages are both high-level languages, such as the Java-into-
C translator of Example 2.1(b). A disassembler translates a machine code into the corre-
sponding assembly language. A decompiler translates a low-level language into a high-
level language. (See Exercise 2.1.)

Here the translated texts are themselves programs. The source language text is called
the source program, and the target language text is called the object program.

Before performing any translation, a compiler checks that the source text really is a
well-formed program of the source language. (Otherwise it generates error reports.)
These checks take into account the syntax and the corntextual constraints of the source
language. Assuming that the source program is indeed well-formed, the compiler goes
on to generate an object program that is semantically equivalent to the source progratn,
i.e., that will have exactly the desired effect when run. Generation of the object program
takes into account the semantics of the source and target languages.

Translators, and other langnage processors, are programs that manipulate programs.
Several languages are involved: not only the source language and the target language,
but also the language in which the translator is itself expressed! The latter is called the
implementation language. '

To help avoid confusion, we shall use tombstone diagrams to represent ordinary
programs and language processors, and to express manipulations of programs by
langnage processors. We shall use one form of tombstone to represent an ordinary
program, and distinctive forms of tombstone to represent translators and interpreters.

' We use the term x86 to refer to the family of processors represented by the Intel 80386
processor and its successors.

28 Programming Language Processors in Java

a round-topped tombstone, as shown in
the program P. The base of the tombstone
the language in which the program is

An ordinary program is represented by
Figure 2.1. The head of the tombstone names
names the. implementation language L, ie.,
expressed.

Figure 2.1 Tombstone representing a program P expressed in language L.

Example 2.2 Tombstone diagrams representing programs

The following diagrams show how we represent:

(a) A program named sort expressed in Java.

{b) A program named sort expressed in x86 machine code. (By convention, we ab-

breviate ‘x86 machine code’ to *x86’.)

(cy A program pamed graph expressed in Basic.
sort graph
x86 Basic
(@)) (©)

Programs run on machines. A machine that executes machine code M is represented

by a pentagon inside which M is named, as shown in Figure 2.2.

)

Figure 2.2 Tombstone representing a machine M.

O

Example 2.3 Tombstone diagrams representing machines

The following diagrams show how we represent:

{(2) Anx86 machine.

Language Processors 29

{(b) A Power PC (PPC) machine.
(¢} A SPARC machine. .

(@) ®) ©
0

codeA (p:rogr_a:im can run on a machine only if it is expressed in the appropriate machine

repre.se rtlzutnts;. ell; runming a program P (expressed in machine code M) on machine M. We
is utting th ‘

repres Y p g the P tombstone on top of the M pentagon, as shown in Fig-

must match

Figure 2.3 Running program P on machine .

Example 2.4 Tombstone diagrams representing program execution

The following diagrams show how we represent:
(a) Running program sort (expressed in x86 machine code) on an x86 machine
{b) Running program sort (expressed in PPC machine code) on a PPC machine

(c) Attetrlr.lpting to run program sort (expressed in PPC machine code) on an x86
ma(t;: ine. O.f course, this will not work; the diagram clearly shows that the machine
code in wh.lch the program is expressed does not match the machine on which
are attempting to run the program. "

d i P

(d) At:emping. to run program sort {expressed in Java) on an x86 machine, This will
nolwor either; a program expressed in a high-level language cannot run immedi-
ately on any machine. (It must first be translated into machine code.)

‘ !' sort sort
‘|‘_l" 0 <86 PRC
T
) b
i
B (a) (b)

[. We have now introduced the eleme.ntary forr‘ns of tombstone. There aglf.: ai_sz f;:i:tf;
“\ tive forms of tombstone to represent different kinds of ‘Iang‘uage processor. e
1 ”1 ; is represented by a T-shaped tombstone, as shown in Figure 2.4. The head © o
] ‘|\ - tornbstone names the translator’s source language §and target 1anguage. T, lseparate Lgf
It an arrow. The base of the tombstone names the translator’s implementation language L.

”_‘_. s > T
|
\”' L

» Figure 2.4 Tombstone representing an S-into-T translator expressed in langvage L.
il

i Example 2.5 Tombstones representing translators

The following diagrams show how we represent:
"‘l ‘ (@) A Java-into-x86 compilet, expressed in C.
y | (b) A Java-into-x86 compiler, expressed in x86 machine code.]
I (¢) A Java-into-C translator, expressed in C++.

(d) An x86 assembler, which transiates from x86 assembly language into x8G machine
code, and is itself expressed in x86 machine code.

Java — x86 Java -—> x86 Java — C %86 ass. — x86
C x86 G4+ x86
{a))] (©))

O

i i rs, and
* Although we use tombstones of different shapes to represen‘t ordinary pr.ograms, transla(tjc; >
interpreters, the base of a tombstone always names the implementation language. p

Figures 2.1, 2.4, and 2.6.

Language Processors 31

An S-into-T translator is itself a program, and can run on machine M only if it is ex-
pressed in machine code M. When the translator runs, it franslates a source program P,
expressed in the source language S, to an equivalent object program P, expressed in the
target language 7. This is shown in Figure 2.5. (The object program is shaded gray, to

emphasize that it is newly generated, unlike the translator and source program, which
must be given at the start.)

- must match

Figure 2.5 Translating a source program P expressed in language S to an object program
expressed in language T, using an S-into-7 translator running on machine M.

Example 2.6 Compilation

The following diagram represents compilation of a Java program on an x86 machine.
Using the Java-into-x86 compiler, we translate the source program sort to an equiva-
lent object program, expressed in x86 machine code. Since the compiler is itself ex-
pressed in x86 machine code, the compiler will run on an x86 machine.

t
I sor

x86

Java Java — x86

The second stage of the diagram shows the object program being run, also on an x86
machine.

|

A cross-compiler is a compiler that runs on one machine (the host machine) but gen-
erates code for a dissimilar machine (the rarger machine). The object program must be
generated on the host machine but downloaded to the target machine to be run. A cross-
compiler is a useful tool if the target machine has too little memory to accommodate the
compiler, or if the target machine is ill-equipped with program development aids. {Com-

pilers tend to be large programs, needing a good programming environment to develop,
and needing ample memory to run.),

32 Programming Language Processors in Java

Example 2.7 Cross-compilation

compilation of a Java program to enable it to

run on a Power PC microprocessor. Using a Java-into-PPC cross-compiler, we translate

the source program sort to an equivalent object program, expressed in PPC machine

code. Since the compiler is itself expressed in x86 machine code, the compiler rans on

an x86 machine.

The following diagram represents cross-

Java — PPC download

s o

x86

rogram being run on a PPC

O

The second stage of the diagram shows the object p
machine, having been downloaded from the x86.

The behavior of a translator can be summarized by a few simple rules, which are

clearly evident in Figure 2.5:

+ A translator (like any other program) can run on a machine M only if it is expressed in

machine code M.

+ The source program must be expressed in the trapslator’s source language S.

+ The object program is expressed in the iranslator’s target language T.

» The object program is semantically equivalent to the source program. (We emphasize
this by giving the source and object programs the same name.)

Example 2.8 Illegal translator interactions

The following tombstone diagrams illustrate what we cannot do with a translatot:

(a) A C compiler cannot translate a Java source prograrm.

(b) A translator expressed in x86 machine code cannot run on a PPC machine.

Java — x86

x86 ¥
PPC ‘r<
(b)

Language Processors 33

:;““] ar y, ShOll d be C]. ar p

[

tramAl ttwo-stgge tr_anslator is a composition of two translators. If we have an S-into-T
slator and a T-into-UJ translator, we can compose them to make a two-stage S-into-I/

translator. The source langnage § is fr
i . anslated to th i
via an intermediate language 7 ° trget language O ot direety. b

We can easily generalize this idea to multiple stages. An r-stage translator is a
composition of » translators, and involves n—1 intermediate languages

x

Example 2.9 Two-stage compilation

1(312;:21 at Javat-intoic translator and a C-into-x86 compiler, we can compose them to
a two-stage Java-into-x86 compiler, as shown b

. va-it , elow. The Java source pro i
translated into C, which is then compiled into x86 machine code. PR E

The two-stage compiler is functionally equivalent to a Java-into-x86 compiler

[]

A translator is itself a i
| program, expressed in some | i
translated into another language. rngunge: As such. 1t can be

Example 2.10 Compiling a compiler

Stugﬁosbee(\:ve ha_z;a_a Java-into-x86 compiler expressed in C. We cannot run this compiler
, because it is not expressed in machine code. But i

. we can treat it as i
source program to be translated by a C-into-x86 compiler: o ordinary

Java — x86
C

34 Programming Language Processors in Java

The object program is a Java-into-x86 compiler expressed in x86 machine code (shaded
gray). We can now use this to compile Java programs, as illustrated in Example 2.6.
]

More generally, all language processors are themselves programs, and as such can
be manipulated by other language processors. For example, language processors can be
translated (as in Example 2.10) or interpreted. We shall see the importance of this later

in the chapter.

2.2 Interpreters

A compiler allows us to prepare a program to be run on a machine, by first translating
the program into machine code. The program will then run at full machine speed. This
method of working is not without disadvantages, however: the entire program must be
translated before it can even start to run and produce results. In an interactive environ-
ment, interpretation is often a more attractive method of working. Thus we come (o a
new kind of language processor, an interpreter, that also allows us to run programs.

An interpreter is a program that accepts any program (the source program)
expressed in a particular language (the source language), and runs that source program
immediately.

An interpreter works by fetching, analyzing, and executing the source program

instructions, one at a time. The source program starts (o run and produce results as soon
as the first instruction has been analyzed. The interpreter does not translate the source

program into object code prior to execution.
Interpretation is sensible when most of the following circumstances exist:

» The programmer is working in interactive mode, and wishes to see the results of each
instruction before entering the next instruction.

« The program is to be used once and then discarded (ie., it is a ‘throw-away’
program), and therefore running speed is not very important.

« Each instruction is expected to be executed only once (or at least not very frequently).
+ The instructions have simple formats, and thus can be analyzed easily and efficiently.

Interpretation is very slow. Interpretation of a source programi, in a high-level
language, can be up to 100 times slower than running an equivalent machine-code
program. Therefore interpretation is not sensible when:

« The program is to be run in production mode, and therefore speed is Important.

« The instructions are expected to be executed frequently.

Language Processors 35

* The mstruct'iops have complicated formats, and are therefore time-consuming to
analyze. (This is the case in most high-level languages.) '

Example 2.11 Interpreters

Here are some well-known examples of interpreters:

(a) A Basic interpreter: Basic has expressions and assignment commands like other
high-level languages. But its control structures are low-level: a program is just a
sequence of commands linked by conditional and unconditional jumps. A Basic in-
terpreter fetches, analyzes, and executes one command at a time, .

*

(b) A Lisp interpreter: Lisp is a very unusual language in that it assumes a common
data structure (trees) for both code and data. Indeed, a Lisp program can manufac-

ture new code at run-time! The Lisp pro ' i i
! gram structure lends itself to i
(See also Exercise 2.10.) ierpretation

{(¢) The UMX command language interpreter (shell): A UNIX user instructs the
operating system by entering textnal commands. The shell program reads each
command, analyzes it to extract a command-name together with some arguments
and executes the command by means of a system call. The user can see the results’
of a command before entering the next one. The commands constitute a command
language, and the shell is an interpreter for that command language.

(d) Ap SQL interpreter: SQL is a database query language. The user extracts inform-
ation from the database by entering an SQL query, which is analyzed and executed

;m?ediately. This is done by an SQL interpreter within the database management
ystem. : '

O

- A}I: interpreter is represented by a rectangular tombstone, as shown in Figure 2.6
e head of the tombstone names the interpreter’s source language. The base of the
tombstone {as usual) names the implementation language.

M

L

Figure 2.6 Tombstone representing an S interpreter expressed in language L.

Example 2.12 Tombstones representing interpreters

The following diagrams show how we represent:

() A Basic interpreter, expressed in x86 machine code.

36 Programming Language Processors in Java

{b) An SQL interpreter, expressed in x86 machine code.
(¢) The UNIX shell {command language interpreter), expressed in C.
(d) The UNIX shell, expressed in SPARC machine code.

. shell shell
Basic SQL language! Janguage
%86 x86 C SPARC

(a)) © G))

O

An S interpreter is itself a program, and can run on machine M only if it i8 E}_cp;esss:i
in machine code M. When the interpreter runs, it runs a source program P, w 1cT }tln iy
be expressed in source Janguage 5. We say that P runs on fop of the § interpreter. 1his
shown in Figure 2.7.

P
§ ~-.. yust match
A}
M

Figure 2.7 Interpreting a program P expressed‘in language S,
using an § interpreter running on machine M,

. must match

Example 2.13

The following diagrams show how we represent:

(a) Running program graph (expressed in Basic) on top of a Basic interpreter, which
itself runs on an x86 machine.

(b) Running program chess (expressed in Lisp) on fop of a Lisp interpreter, which
itself runs on an x86 machine.
(c) Attempting to run program chess (expressed in Lisp) on top of a Basic

interpreter. Of course, this will not work; the diagram cleal:ly shows ’that the
language in which the program is expressed does not match the interpreter's source

language.

Language Processors 37

(graph) (chessz)

Basic Lisp
Basic Lisp
x86 x86
x86 x86
S~ ~
(a))

2.3 Real and abstract machines

The interpreters mentioned in Example 2.12 were all for (relatively) high-level lan-
guages. But interpreters for low-level languages are also useful.

Example 2.14 Hardware emulation

Suppose that a computer engineer has designed the architecture and instruction set of a
radical new machine, Ultima. Now, actually constructing Ultima as a piece of hardware
will be an expensive and time-consuming job. Modifying the hardware to implement
design changes will likewise be costly. It would be wise to defer hardware construction
until the engineer has somehow tested the design. But how can a paper design be tested?

There is a remarkably simple method that is both cheap and fast: we write an
interpreter for Ultima machine code. E.g., we could write the interpreter in C:

Ultima

C

We can now translate the interpreter into some machine code, say M, using the C
compiler:

Ultima
C

| Language Processors 39
38 Programming Language Processors in Java

ter expressed in M machine code (shaded gray above).

his gives us an Ultima interpre . / abe
'IT‘IOW gwe can run Ultima machipe-code programs on top of the interpreter, which itself

runs on M, as shown below left: @

{ P) . ‘

Figure 2.8 An abstract machine is functionally equivalent to a real machine.
- | Ultima
Ultima w

M .
U/ | 2.4 Interpretive compilers :

mn

<§§r~

d. the effect is the same as running the programs on Ultima A compiler may take quite a long time to translate a source program into machine code,
t speed, the ¢l

In all respects except S| but then the object program will run at full machine speed. An interpreter allows the
itself, as shown above right. | he program to start ranning immediately, but it will run very slowly (up to 100 times more
) . It cannot be used to measure lowly than th hine-cod
is ki interpreter is often called an emulator. _ slowly than the machine-code program).

ThiS K e’ I’Pb Jute speed, because interpretation slows everything down. But . . N e : . .
emulated machm_e $ abso pb N seful quantitative information: counting memory An interpretive compiler is a combination of compiler and interpreter, giving some
emulation can fStlll be used to oftam llllelismq and so on, Tt can also be used fo obtain of the advantages of each. The key idea is to translate the source program into an
cycles, estimating the degree of pard T d instruction set meet the intermediate language, designed to the following requirements:
qualitative information about how well the architecture and 1
peeds of programmers. O * it is intermediate in level between the source language and ordinary machine code;

* its instructions have simple formats, and therefore can be analyzed easily and quickly;
of an interpreter is functi onally equivalent to running the * translation from the source language into the interimediate language is easy and fast.

Running a program on top i . \ , . . . , \
same pmgfam directly on a machine, as illustrated in Example 2.14. The user sces the Thus an interpretive compiler combines fast compilation with tolerable running speed.

ior i '3 i outputs. The two processes are even
same hehavior in terms of the program’s inputs and outp

gimilar in detail: an interpreter works in a fetch—analyze—exec:}ltih cycle, ‘arid ar::z:};nz
i le. The only difference is that an interp ‘
works in a fetch-decode-execute cyC : | - ‘ | | | | |
software artifact, whereas a machine is a hardware artifact (and therefore much faster). E Sun Microsystems’ Java Development Kit UDK) is an implementaton ofan nterpretive
eter implemented in hardware. Con- ‘ compiler for Java. At its heart is the Java Virtual Machine (JVM), a powerful abstract

versely, an interpreter may be viewed as a machine implement.ed by software. We machine.
sometir,nes call an interpreter an abstract machine, as opposed to its hardware counter-

part, which is a real machine. An absiract machine is functionally equivalent to a real

machine if they both implement the same language L. This is summarized in Figure 2.8.

I A related observation is that there is no fundamental diff-erence between machlfne
codes and other low-level languages. By a machine code we just mean 2 language for

I which a hardware interpreter exists.

Ejample 2.15 Inrerpretive compilation

Thus a machine may be viewed as an 1nterpr

JVM-code is an intermediate language oriented to Java. It provides powerful
instructions that correspond directly to Java operations such as object creation, method
call, and array indexing. Thus translation from Java into JVM-code is easy and fast.
Although powerful, JVM-code instructions have simple formats like machine-code
instructions, with operation fields and operand fields, and so are easy to analyze. Thus
J¥M-code interpretation is relatively fast: ‘only’ about ten times slower than machine
code. ‘

JDK consists of a Java-into-JVM-code translator and a JVM-code interpreter, both
of which run on some machine M:

40 Programming Language Processors in Java

Java — VM VM
M M

A Java program P is first translated into FVM-code, and then the JVM-code object
program is interpreted:

P
VM
VM

M

N

Java — JVM |

O

Interpretive compilers are very useful language processors. In the early stages of
program development, the programmer might well spend more time compiling than
running the program, since he or she is repeatedly discovering and correcting simple
syntactic, contextual, and logical errors. At that stage fast compilation is more important
than fast running, so an interpretive compiler is ideal. (Later, and especially when the
program is put into production use, the program will be run many times but rarely
recompiled. At that stage fast running will assume paramount importance, 8o a compiler
that generates efficient machine code will be required. In Java, this problem is typically
addressed by a so-called jusi-in-time compiler. See Section 2.8 and Exercise 2.7.)

2.5 Portable compilers

A program is portable to the extent that it can be (compiled and) run on any machine,
without change. We can measure portability roughly by the proporiion of code that
remains unchanged when the program is moved to a dissimilar machine. Portability is
an economic issue: a portable program is more valuable than an unportable one, because

its development cost can be spread over more copies.

The language in which the program is expressed has a major impact on its
portability. At one extreme, a program expressed in assembly language cannot be
moved to a dissimilar machine unless it is completely rewritten, so its portability is 0%.
A program expressed in a high-leve! language is much more portable. Ideally, it only
needs to be recompiled when moved to a dissimilar machine, in which case its

portability is 100%. However, this ideal is often quite elusive. For example, a program’s
behavior might be altered (perhaps subtly) by moving it to a machine with a different

Language Processors 41

character s:et or different arithmetic. Written with care, however, application programs
expressed in high-level languages should achieve 95-99% portability,

. 'Snml:‘ir points apply to language processors, which are themselves programs. Indeed
it is Partlcularly important for language processors fo be portable because ;:hey are,
especially valuable and widely-used programs. For this reason language processors are
commonly written in high-level languages such as Pascal, C, and Java.

U.nfoﬂ_:unately, it is particularly hard to make compilers portable. A compiler’s
funcU'on is to generate machine code for a particular machine, a function that is
n}achme-dependent by its very nature. If we have a C-into-x86 conzlpiler expressed in a
higl%-lejvel language, we should be able to move this compiler quife easily to run on a
dissimilar machine, but it will still generate x86 machine code! To change the compiler
o gfenerate different machine code would require about half the compiler tc? be
rewritten, implying that the compiler is only about 50% portable.

‘ It mlg.ht seem that highly portable compilers are unattainable. However, the situation
is not quite so gloomy: a compiler that generates intermediate language is potentially
much more portable than a compiler that generates machine code.

Example 2.16 A portable compiler kit

Consficler the poss.ibility of producing a portable Java compiler kit. Such a kit would
consist of a Java-into-JVM-code translator, expressed both in Java and in JVM-code
and a JVM-code interpreter, expressed in Java; ,

Java —» JVM Java — JTVM VM

Java VM : Java

50\# can we make th}s work? It seems that we cannot compile Java programs until
Zv;:tﬂ ave an 1mp13r};entat10n of JVM-code, and we cannot use the JVM-code interpreter
we can compile Java programs! Fortunately, a small amou
wec ! , nt of work
of this chicken-and-egg situation. cn getusont

Suppose that we want to get the s i i
\ ystem running on machine M, and suppose that we
already have a compiler for a suitable high-level language, such as C, on this machine.

Then we rewrite the interpreter in C:

JIVM

and then compile it:

VM

similar to the one described in Example 2.15.

Now we have an interpretive compiler,
d in JVM-code, has to run on

There is one difference: the compiler itself, being expresse

top of the JVM-code interpreter:
: P :

Java — JVM | VM
VM JVM
VM ‘ M

” N

N>
The JVM-code interpreter is much smaller and simpler than the compiler, so
rewriting the interpreter is an easy job (a few days’ work for an experienced program-

mer). Consequently, our example compiler kit as a whole would be about 95% portable.
If no suitable high-level language is available, it is even feasible to rewrite the

interpreter in assembly language.

Notice that the compiler expressed in Java is not actually needed to bootstrap the
portable compiler. It would, however, be used to generate the compiler expressed in
JTVM-code. Tt would also prove to be useful in later development of the compiler after

the initial move to machine M.
' |

The Java compiler in Example 2.16 must be interpreted, so compilation of a Java
source program will be slow. However, the compiler can be improved by bootstrapping,

as we shall see in Section 2.6.1.

2.6 Bootstrapping

A language processor, such as a translator or interpreter, is a program that processes
programs expressed in a particular language (the source language). The language
processor is expressed in some implementation langnage. '

Language Processors 43

Now suppose that the implementation language is the source language: the language
processor can be used to process itself! This process is called boofstrapping. The idea
seems at first to be paradoxical, but it can be made to work. Indeed, it turns out to be
extremely useful. In this section we study several kinds of bootstrappi’ng.

2.6.1 Bootstrapping a portable compiler

In Selctti_onsf2.4 art;(l:l 2.5 we looked at interpretive and poi:table compilers. These work by
ranslating from. the high-level source language into an intermediate 1
interpreting the latter. edlae langusge, and then

X

A portable compiler can be bootstrapped to make a true compiler — one thai
generates machine code — by writing an intermedi i i
iate-language-into- -
generaies guage-into-machine-code

Example 2.17 Bootstrapping an interpretive compiler to generate
machine code

Supgose that we fflave made a portable Java compiler kit into an interpretive compiler
running on machine M, as described in Example 2.16. We can use this to build an
efficient Java-into-M compiler, as follows.

First, we write a JVM-code-into-M translator, in Java:

VM — M

Java

.(’I‘thisMi[s a subsltantial job, but only about half as much work as writing a complete Java-
into-M compiler.) Next, we compile this translator uvsing th isting i i

' , e e

i g xisting interpretive

VM - M

Java | Java — JVM
VM
VM
M

M
S~

This gives a JVM-code-into-M translator expressed in JVM-code itself.

Next, we use this translator to translate irself

44 Programming Langnage Processors in Java

VM - M
JVM
VM
VM
M

D
This, the actual bootstrap, gives a JVM-code-into

code M.
Finally, we translate the J ava-into-JVM-code translator into machine code:

Java —» VM

VM VM

-M translator expressed in machine

Moreover, the compiler is expressed in machine code, so compilation of a Java source
program is much faster than in Example 2.16. -

2.6.2 Full bootstrap

We have seen that a program, if it is to be portable, should be written in a suitable high-
level language, L. That implies a commitment to the language L throughout the pro-
gram’s lifetime. If we wish to make a new version of t.he program (e.g., to remove
known bugs, or Lo make it more efficient), we must edit the L source program a}nd
recompile it. In other words, the program is maintainable only as long as an L cqmpﬂer

is available.

e e

Language Processors 45

Exactly the same point applies to a language processor expressed in L. In Exam-
ple 2.10, we saw how a Java compiler, expressed in C, could be translated into machine
code by a C compiler (and thus enabled to run). However, this Java compiler can be
maintained only as long as a C compiler is available. If we wish to make a new version
of the Java compiler (e.g., to remove known bugs, or to generate better-quality machine
code), we will need a C compiler to recompile the Java compiler.

In general, a compiler whose source language is S, expressed in a different high-
level language I, can be maintained only as long as a compiler for L is available. This
problem can be avoided by writing the § compiler in § itself! Whenever we make a new
version of the S compiler, we use the old version to compile the new version. The only
difficulty is how to get started: how can we compile the first version of the § cothpiler?
The key idea is to start with a subset of § — a subset just large enough to be suitable for
writing the compiler. The method is called full bootstrap — since a whole compiler is to
be written from scratch.

Example 2.18 Full bootstrap

Suppose that we wish to build an Ada compiler for machine M. Now Ada is a very large
language, so it makes sense to build the compiler incrementally. We start by selecting a
small subset of Ada that will be adequate for compiler writing. (The Pascal-like subset
of Ada would be suitable.) Call this subset Ada-S.

We write version 1 of our Ada-S compiler in C (or-any suitable language for which a
compiler is currently available):

vl
AdaS - M

C

We corpile version 1 using the C compiler;

This gives an Ada-S compiler for machine M. We can test it by using it to compile and
run Ada-S test programs.

But we prefer not to rely permanently on version 1 of the Ada-S compiler, because it
is expressed in C, and therefore is maintainable only as long as a C compiler is
available, Instead, we make version 2 of the Ada-S compiler, expressed in Ada-S itself:

i : Language Processors 47
46 Programming Language Processors in Java

) . 2.6.3 Half bootstrap
AdaS — M

Suppose that we have a compiler that runs on a machine HM, and generates HM’s
Ada-S machine code; now we wish to move the compiler to run on a dissimilar machine 7. In
this transaction HM is called the host machine, and TM is called the target maching.

) . P iob. b all the algorithms and data)
This rewriting of the compiler i not a bard jab, becauss agct, we could have If the compiler is expressed in a high-level language for which we have a compiler

d in version 1. (In f; . :) . ; .
structurcs have already been developed and ester 10 (res with no direct on TM, just getting the compiler to run on TM is straightforward, but we would still

: o iti ining from using C featu 4 ; ’
wisely ant1c1pated the rewriting, by refraining g have a compiler that generates HM’s machine code. It would, in fact, be a cross-
counterparts in Ada-S.) compiler.

i mpile version 2: . . .
Now we use version 1 to comp To make our compiler generate 7M’s machine code, we have no choice but to

rewrite part of the compiler. As we shall see in Chapter 3, one of the major parts of a

A da-SV2—> M compiler is the code gemerator, which does the actual translation into the target
language. Typically the code generator is about half of the compiler. If our compiler has
Ada-S been constructed in a modular fashion, it is not too difficult to strip out the old code
generator, which generated HM's machine code; then we can substitute the new code
generator, which will generate TA’s machine code.
If the compiler is expressed in its own source language, this process is called a half
) booistrap — since roughly half the compiler must be modified. It does not depend on any
As usual, we can test version 2 of the Ada-S compiler by using it to compile ant.:l run compiler or assembler being already available on the target machine — indeed, it
Ada-S test programs. We have now broken our dependency on C, because the .Ver510n—2 depends only on the host machine compiler! -
Ada-S compiler is expressed in Ada-S itself,
Finally, we extend the Ada-S compiler to a (full) Ada compiler, giving version 3: Example 2.19 Half bootstrap

Suppose that we have a Ada compiler that generates machine code for machine HM.

Ada — M : : The compiler is expressed in Ada itself, and in HM’s machine code:
o Ada — HM Ada —» HM
and compile it using version 2: Ada iy

A o

v3
Ada - M

Ada-8

We wish to bootstrap this compiler to machine 7M. To be precise, we want a compiler
that runs on TM and generates TAM’s machine code.

First, we modify the compiler’s code generator to generate TM’s machine code:

Ada — T™M
Ada

We compile the modified compiler, using the original compiler, to obtain a cross-
compiler;

This gives us an Ada compiler expressed in Ada itself. (Actually it is (?xplfes‘sed ina
| : subset of Ada, but that does not matter.) This compiler can be used to maintain itself by

"l using version 3 to compile version 4, and so on. -

48 Programming Language Processors in Java

Ada — T™M
Ada

How do we test the cross-compiler? We can run it on HM to compile Ada test
programs into TM’s machine code, and then download the object programs to TM to be

rumn:

download

(Visual inspection of the object code is also a good idea, but practicable only for small
test programs.)

Once we are satisfied that the cross-compiler is correct, we can use it to compile
itself into TM’s machine code (the actual bootstrap):

Ada — TM
Ada Ada — TM
HM
HM
~—_

Finally, we download the Ada-into-TM compiler {expressed in both Ada and T™’s
machine code) to the target machine TM, and subsequently maintain it there.
O

2.6.4 Bootstrapping to improve efficiency

The efficiency of an ordinary program can be measured with respect to either time or
space: how fast does it run, and how much storage space does it require?

When we discuss the efficiency of a compiler, the situation is more complicated. We
can measure the efficiency of the compiler itself, and we can measure the efficiency of

the object programs it generates.

Language Processors 49

In this chapter, we are not concerned with techniques for generating efficient object
programs. But we can show that bootstrapping is a useful straregy for taking a simple
compiler and upgrading it to generate more efficient object programs. The basic idea is
to use the existing version of the compiler to compile the new version, and to do this
repeatedly to make beiter and better versions.

Example 2.20 Bootstrapping to improve object code

Suppose that we have an Ada compiler, version 1, that generates slow machine code.
Version 1 is expressed in slow machine code, as well as in Ada:

vl v]
Ada — Mow Ada — Mgow

Ada Mgow

In the diagrams we will use notation like My and Moy to indicate fast and slow
machine code, respectively. (Note that Mg, and Mg,y are the same language, the
machine code M; the subscripts are merely indications of code guality.)

When we compile Ada programs, both the version-1 compiler and its object
programs will be slow. (Why?) Our objective is to make a fast compiler that generates
fast object programs.

First, we modify version 1 to make a version-2 compiler that generates faster
machine code:

v2
Ada - M, fast

Ada

We can use version 1 to compile version 2:

v2
Ada — Mfast

Ada | Ada — Myew

This gives us a better compiler, which we can use to compile Ada programs:

50 Programming Language Processors in Java

Ada — Mg

Compilation will still be slow (since the compiler is expressed in slc?w machine code),
but the object program will be fast (since the generated machine code is fast).

The final stage of bootstrapping is to use version 2 to compile itself:

v2
Ada — Mpg
Ada Ad

This gives us version 3, a fast compiler that generates fast object programs:

Ada — Mfast

O

In practice, the bootstrapping steps illustrated in Example 2.20 would bfa used many
times, as the compiler is gradually improved to generate better and better object code.

2.7 Case study: the Triangle language
processor

The Triangle language processor will be used as a case study throughout this book. It
consists of a compiler, an interpreter, and a disassembler. We will study how they work
in the following chapters. Here we examine the Triangle language processor’s overall
structure. (See Figure 2.9.)

Language Processors 51

The compiier translates Triangle source programs into TAM code. TAM (Triangle
Abstract Machine) is an abstract machine, implemented by an interpreter. TAM has
been designed to facilitate the implementation of Triangle — although it would be
equally suitable for implementing Algol, Pascal, and similar languages. Like JTVM-code
(Example 2.15), TAM’s primitive operations are more similar to the operations of a
high-level language than to the very primitive operations of a typical real machine. As a
consequence, the translation from Triangle into TAM code is straightforward and fast.

The Triangle-into-TAM compiler and the TAM interpreter together constitute an
interpretive compiler, much like the one described in Example 2.15. (See Exercise 2.2.)
The TAM disassembler translates a TAM machine code program into TAL (Triangle
Assembly Language). It is used to inspect the object programs produced by the
Triangle-into-TAM compiler.

Triangle — TAM TAM TAM — TAL

Java Java Java

Figure 2.9 The compiler, interpreter, and disassembler components
of the Triangle language processor.

2.8 Further reading

A pumber of authors have used tombstone diagrams to represent language processors
and their interactions. The formalism was fully developed, complete with mathematical
underpinnings, by Earley and Sturgis (1970). Their paper also presents an algorithm that
systematically determines all the tombstones that can be generated from a given initial
set of tombstones.

A case study of compiler development by full bootstrap may be found in Wirth
(1971). A case study of compiler development by half bootstrap may be found in Welsh
and Quinn (1972). Finally, a case study of compiler improvement by bootstrapping may
be found in Ammann (1981). Interestingly, all these three case studies are interlinked:
Wirth’s Pascal compiler was the starting point for the other two developments.

Bootstrapping has a longer history, the basic idea being described by several authors
in the 1950s. (At that time compiler development itself was still in its infancy!) The first
well-known application of the idea seems to have been a program called eval, which
was a Lisp interpreter expressed in Lisp itself (McCarthy ef al. 1965).

Sun Microsystems’ Java Dev'elobment Kit (JOK) consists of a compiler that trans-
lates Java code to JVM code, a JVM interpreter, and a number of other tools. The
compiler (javac) is written in Java itself, having been bootstrapped from an initial

