xvi Programming Language Processors in Java

corners!) The reader of this textbook will need a good knowledge of syntax, and ideally
some knowledge of semantics; these topics are briefly reviewed in Chapter 1 for the
benefit of readers who might lack such knowledge. Familiarity with BNF and EBNF
(which are commonly used in language specifications) is essential, because in Chapter 4
we show how to exploit ther in syntactic analysis. No knowledge of formal semantics

is assumed.

The reader should be comfortable with some elementary concepts from discrete
mathematics — sets and recursive functions — as these help to sharpen understanding of,
for example, parsing algorithms. Discrete mathematics is essential for a deeper under-
standing of compiler theory; however, only a minimum of compiler theory is presented

in this book.

This book and its companions attempt to COVer all the most important aspects of a
large subject. Where necessary, depih has been sacrificed for breadth. Thus the really
serious student will need to follow up with more advanced studies. Each book has an
extensive bibliography, and each chapter closes with pointers to further reading on the
topics covered by the chapter.

Acknowledgments

Most of the methods described in this textbook have long since passed into compiler
folklore, and are almost impossible to attribute to individuals. Instead, we shall mention

people who have particularly influenced us personally.

For providing a stimulating environment in which to think about pro gramming lan-
guage issues, we are grateful to colleagues in the Department of Computing Science at
the University of Glasgow, in particular Malcolm Atkinson, Muffy Calder, Quintin
Cutts, Peter Dickman, Bill Findlay, John Hughes, john Launchbury, Hermano Moura,
John Patterson, Simon Peyton Jones, Fermin Reig, Phil Trinder, and Phil Wadler, We
have also been strongly influenced, in many different ways, by the work of Peter
Buneman, Luca Cardelli, Edsger Dijkstra, Jim Gosling, Susan Graham, Tony Hoare,
Tean Ichbiah, Mehdi J azayeri, Robin Milner, Peter Mosses, Atsushi Ohori, Bob Tennent,
Jim Welsh, and Niklaus Wirth.

We wish to thank the reviewets for reading and providing valuable comments on an
earlier draft of this book. Numerous cohorts of undergraduate students taking the
Programming Languages 2 module at the University of Glasgow made an involuntary
but essential contribution by class-testing the Triangle language processor, as have three
cohorts of students taking the Compilers module at the Robert Gordon University.

We are particularly grateful to Tony Hoare, editor of the Prentice Hall International
Series in Computer Science, for his encouragement and advice, freely and generously
offered when these books were still at the planning stage. If this book is more than just
another compiler textbook, that is partly due to his suggestion to emphasize the connec-
tions between compilation, interpretation, and semantics.

Glasgow and Aberdeen DAW.

July, 1999 D.EB.

CHAPTER ONE

Introduction

In this i N
hrilgt}llnlsei{l:lr(l))crlggiory cpaptler we start by reviewing the distinction between low-level and
- amming languages. We then see what is meant b i
a programmi -
ﬁll.l;gse pr%cess.or, and look at examples from different programminjé sy];;terirs We I;Evlian
pecification of the syntax and semantics of programming languages. .Finally ;‘Z

look at Triangle, a pro i .
his book. gle, a programming language that will be used as a case study throughout

1.1 Levels of programming language

p . .
g:;c;ggal.nm?g la;lguages are the basic tools of all programmers. A programming la
is a formal notation for expressin i - o
ssing algorithms. Now, an algorithm i
gua : ‘ , gorithm is an abstra
e ::g:,esa;réfl h‘a;;'tahn existence independent of any particular notation in which it mlgli
. Without a notation, however, we ¢
. sed. n, s annot express an algori ‘
municate it to others, nor reason about its correctness. ’ goridim, for cor-

Practici
vz thlcgn% hIIJ;ogrammers, fJf course, are concerned not only with expressing and ana-
usefugi ta§kr1 F s,tllla}lt also with constructing software that instructs machines to perform
s. For this purpose programmers need facilities to enter, edit, translate, and
.1 »

interpret programs on machines. Tools th.
. at perform these t j
language processors, and are the subject of glis book s tasks are called programming

Machi i i
vager & ;zsc hairlfe (il;g:n by programs expressed in machine code (or machine lang-
‘ . - program is a sequence of instructio h i ton i
just & bit string that is inte i e oo oo
rpreted by the machine to perf i
s '8 . ‘ o perform some defined operati
ypical machine-code instructions pe;'form primitive operations like the followiﬁg' o

* Load an item of data from memory address 366.
* Add two numbers held in registers 1 and 2.

. . . ;
ump to instruction 13 if the result of the previous operation was zero

In the very early d ;
y days of computing, program . . .
code. i - col %) grams were written directly in i
e. The above instructions might be written, respectively, as follows: y in machine

* 00600 0001 0110 1110

‘|‘ I 2 Programming Language Processors in Java
| Introduction 3

LOAD R3 R1; SUB R3 c¢; MULT R2 R3;

I + 0100 0000 0001 0010
LOAD RO R2; CALL sgrt

« 1100 0000 0000 1101

Once written, a program could simply be loaded into the machine and run.

g g

| : Clearly, machine-code programs are extremely difficult to read, write, and edit. The
E programmer must keep track of the exact address of each item of data and each instruc- Ilet s = (a+b+c)/2
tion in storage, and must encode every single instruction as a bit string. For small pro- in sqgrt{s*(s-a)*(s-b)*{s-c})

| i grams (consisting of thousands of instructions) this task is onerous; for larger programs
e the task is practically infeasible.

kingogﬁzsghir Zas;l ;n:j(;lr‘it),; (;f programs ate written in programming languages of this
. called high-level languages, by contrast with hi
assembly languages, which are low-level Ian, A
R - guages. Low-level language
because they force algorithms to be ex i e etions, of b
‘ : pressed in terms of primitive instructions, of th
‘| ! s v lglallllci éh;;:;lns :(:hpezrf;?ned lcilref;t;lly by electronic hardware. High-level language; are sz
. ow algorithms to be ex d i
1 : : . pressed in terms that are closer to th
‘ | e in which we conceptualize these algorithms in our heads. The following are ?y iza\;valg
| concepts that are supported by high-level languages, but are supported oni inp cfi
mentary form or not at all by low-level languages: YA

I I H
| I‘ll Programmers soon began (0 invent symbolic notations to make programs easier to
| "‘ ; read, write, and edit. The above instructions might be written, respectively, as follows:

« JUMPZ h

| I where LOAD, ADD, and JUMPZ are symbolic names for operations, R1 and RZ2 are sym-

It * Expressions: An expression is a i i
& i 0,10, 90 s sy e o perions, 1 and 2 ar - p rule for computing a value. The high-level language

\
programmer can write expressions similar to ordinary mathematical notation, using
il

e) e it

data, andhis a symbolic name for the address of a particular instruction. Having written
a program like this on paper, the programmer would prepare it to be run by manually
translating each instruction into machine code. This process was called assembling the
program.

“The obvious next step was to make the machine itself assemble the program. For this
process to work, it is necessary to standardize the symbolic names for operatiohs and
registers, (However, the programrmer should still be free to choose symbolic names for
data and instruction addresses.) Thus the symbolic notation is formalized, and can now
be termed an assembly language.

Even when writing programs in an assembly language, the programmer is still work-
ing in terms of the machine’s instruction set. A program consists of a large number of
very primitive instructions. The instructions must be written individually, and put to-
gether in the correct sequence. The algorithm in the mind of the programmer tends to be
swamped by details of registcrs, jumps, and so on. To take a very simple example, con-
sider computing the area of a triangle with sides a, b, and ¢, using the formula:,

V(s X (s —a)yx (s—bB)x (s =)
wheres=(a+b+¢c)/2

Written in assembly language, the program must be expressed in terms of individual
arithmetic operations, and in terms of the registers that contain intermediate results:

LOAD Rl a; ADD Rl b; ADD Rl ¢; DIV R1 #2;
LOAD RZ R1;

LOAD R3 R1l; SUB R3 a; MULT k2 R3;

LOAD R3 Ri; SUB R3 b; MULT R2 R3;

operators such as ‘+’, ‘-, “*’ and */’.

J‘?{);ﬁze Sty;;;:.r Pi'ograms r‘nampulate data of many types: primitive types such as truth
high_lével 1 :; ers, and integers, and composite types such as records and arrays. The

language programmer can explicitly define such types, and decl -
stants, variables, functions, and parameters of these types. ’ e

» Control structures: Control structures allow the high-level language programmer to

program selective computation (e i
: .g., by if- and case-comm iterati
tation (e.g., by while- and for-commands). ancl) and erative compu-

* Declarations: Declarations allow the high-level language programmer to introduce

identifiers to denote entities su
ch as con i .
and types. stant values, variables, procedures, functions,

zggzz’zg;in: An essel:ntiaglh mental tool of the programmer is abstraction, or separation
s: separating the notion of what computation i :
o, separanne | putation is to be performed from the
/ performed. The programmer can hasi i i
s ot e ‘ emphasize this separation
procedures and functions. Moreover, the i
/ 8 . . se can be
with respect to the entities on which they operate, prrameterized

* Encapsulation (or data abstraction): Packages and classes allow the programmer to
ig;rc;up tog&e:ther related declarations, and selectively to hide some of them. A particu
v important usage of this concept is to i i : i

. : con group hidden variables together with oper-
ations on these variables, which is the essence of object-oriented proggramming o

Section 1.5 suggests furth ing ¢ i
. er reac}lng on the concepts of high-level programming lan-

4 Programming Language Processors in Java

1.2 Programming language processors

A programming language processor is any system that manipulates progréms
expressed in some particular programming Janguage. With the belp of language

Processors we can rull Programs, of prepare them io be run.

This definition of language processors is very general. [t encompasses a variety of
systems, including the following:
« Editors. An editor allows a program text to be entered, modified, and saved in a file.

An ordinary text editor lets us edit any textual document (not necessarily a program
text). A more sophisticated kind of editor is one tailored to edit programs expressed in
a particular langnage.

« Translators and compilers. A translator translates a text from one language to
another. In particular, a compiler translates a program from a high-level language to a
low-level language, thus preparing it to be run on a machine. Prior to performing this
translation, a compiler checks the program for syntactic and contextual errors.

e Interpreters. An interpreter takes a program expressed in a particular language, and
runs it immediately. This mode of execution, omitting a compilation stage in favor of
immediate response, is preferred in an interactive environment. Command languages

and database query languages are usually interpreted.

In practice, we use all the above kinds of language processot in program develop-
ment. In a conventional programming system, these language processors are usually
separate tools; this is the ‘software tools’ philosophy. However, most systems now offer
integrated language processors, in which editing, compilation, and interpretation are just
options within a single system. The following examples contrasi these two approaches.

Example 1.1 Language processors as software tools

The ‘software tools’ philosophy is well exemplified by the UNIX operating system. In-
deed, this philosophy was fundamental to the sysiem’s design.

Consider a UNIX user developing a chess-playing application. in Java, using the Sun
Java Development Kit (JDK). The user invokes an editor, such as the screen editor v1i,
to enter and store the program text in a file named (say) Chess . java:

vi Chess.java
Then the user invokes the Java compiler, javac:
javac Chess.java

This translates the stored program into object code, which it stores in a file named
Chess.class. The user can now tesi the object-code program by running it using the

interpreter, java:

java Chess

Introduction 5

dthf the program fails to compile, or misbehaves when mn, the user reinvokes the
editor to moc'!u“y the_program; then reinvokes the compiler; and so on. Thus program
development is an edit-compile-run cycle. ¢

failT]tlere is no direct comn.lunica.tion between these language processors. If the program
s o.ciompﬂe, the compiler will generate one or more error reports, each indicatin

thf:‘ position (.)f the error. The user must note these error reports, and 0;1 reinvokin thg
editor must find the errors and correct them. This is very inconvenient, especiall . the
early stages of program development when errors might be numerous. P YR

O

The essence of the ‘software tools’ philosophy is to provide a small number of co
mo‘n and simpie tools, which can be used in various combinations to perform a la.rm_
variety of _tasks. Thus only a single editor need be provided, one that can be used to eg'i
programs in a variety of languages, and indeed other textual documents too. 1

What we ha.lve described is the ‘software tools’ philosophy in its purest form. In
pracucc'a, the Phllosophy is compromised in order to make program development eas;ier
The editor might have a facility that allows the user to compile the program (or indeeci
issue any system command) without leaving the editor. Some compilers go further: if

the program fails to compile, the editor i ‘ : =,
first error. pile, editor is automatically reinvoked and positioned at the

These are ad hoc solutions. A fresh a
: . pproach seems preferable: a fully integrat
language processor, designed specifically to support the edit—compile—run cyile Braed

Example 1.2 Integrated language processor

Bc;){land JBml.der is a fully intfegrated language processor for Java, consisting of an
editor, a compiler, and other facilities. The nser issues commands to open, edit, compile

ang run the program. T
e keyboanli)_ g hese commands may be selected from puli-down menus, or from

. d'l“.hedi.:d.}tor '%s tailored to Java. Tt assists with the program layout using indentation
g. 1t‘ lstmgulshe‘s between Java keywords, literals and comments using color ThE;
editor is also fully integrated with the visual interface construction facilities of JBuilder

'[;lhe compiler is integrated with the editor. When the user issues the ‘compile’ com-
Lr‘la;ll] . ind the program is found to contain a compile-time error, the erroneous phrase is
ighlighted, ready for immediate editing. If the program contains several errors, then the

y 1] 18] c \'d
4) W i .0 ; e .] clecl a pa ICulaI‘ €ITOr 1M Ssa_.ge al‘ld ha e

tim;fht;:leo?pl(.:t prc])]grramlls e.llso'integrated with the editor, If the program fails at run-

Lo , ailing phrase is hlghllghteq. (Of course, this phrase is not necessarily the one
contains the logical error. But it would be unreasonable to expect the la

processor to debug the program automatically !} e

O

6 Programming Language Processors in Java

1.3 Specification of programming languages

Several groups of people have a direct interest in a programming language: the designer
who invented the language in the first place; the implementors, whose task it is to write
language processors; and the much larger community of ordinary programmers. All of
these people must rely on a common understanding of the language, for which they
must refer to an agreed specification of the language.

Several aspects of a programming language need to be specified:

« Syntax is concerned with the form of programs. A language’s syntax defines what
tokens (symbols) are used in programs, and how phrases are composed from tokens
and subphrases. Examples of phrases are commands, expressions, declarations, and
complete programs.

« Contextual constraints (sometimes called static semantics) are rules such as the
following. Scope rules determine the scope of each declaration, and allow us to locate
the declaration of each identifier. Type rules allow us to infer the type of each expres-
sion, and to ensure that each operation is supplied with operands of the correct types.
Contextual constraints are so called because whether a phrase such as an expression is
well-formed depends on its context.

« Semantics is concerned with the meanings of programs. There are various points of
view on how we should specify semantics. From one point of view, we can take the
" meaning of a program to be a mathematical function, mapping the program’s inputs to
its outputs. (This is the basis of denotational semantics.) From another point of view,
we can take the meaning of a program to be its behavior when it is run on a machine.
(This is the basis of operational semantics.) Since this book is about langnage proces-
sors, i.e., systems that run programs Or prepare them to be run, we shall prefer the
operational point of view.

When a programming language 18 specified, there is a choice between formal and
informal specitication:

« An informal specification is one written in English or some other natural language.
Such a specification can be readily understood by any user of the programming lan-
guage, if it is well-written. Experience shows, however, that it is very hard to make an
informal specification sufficiently precise for all the needs of implementors and pro-
grammers; misinterpretations are common. Even for the language designer, an infor-
mal specification is unsatisfactory because it can too easily be inconsistent or
incomplete.

« A formal specification is one written in a precise notation. Such a specification is
more likely to be unambiguous, consistent, and complete, and less likely to be misin-
terpreted. However, a formal specification will be intelligible only to people who un-
derstand the notation in which the specification is written.

In practice, most programming language specifications are hybrids. Syntax is usually
specified formally, using BNF or one of its variants, because this notation is easy and

Introduction 7

widely understood.'But contextual constraints and semantics are usuaily specified infor-
mally, because their formal specification is more difficult, and the available notations

are not. yet‘ widely understood. A typical language specification, with formal syntax but
ctherwise informal, may be found in Appendix B.

1.3.1 Syntax

Syntax is concerned with the form of programs. We can specify the syntax of a pro-

gram@ng language formally by means of a confext-free grammar. This consists of the
following elements:

» A finite set of terminal symbols (or just rerminals). These are atomic synibols the
ones we actually enter at the keyboard when composing a program in the langu,age
Typical examples of terminals in a programming language’s grammar are ‘>=’.
‘while’, and °;’. ,

* A finite set of nonterminal symbols {or just nonterminals). A nonterminal symbol
represents a particular class of phrases in the language. Typical examples of

nontemllmals in a programming language’s grammar are Program, Command
Expression, and Declarafion. ’

. A‘stajrt symbol, which is one of the nonterminals. The start symbol represents the
principal _class of phrases in the language. Typically the start symbol in a
programming language’s grammar is Program.

* A finite set of production rules. These define how phr.
. ases are composed i-
nals and subphrases, k posed from e

Gramms are usu.ally written in the notation BNF (Backus-Naur Form). In BNF, a
production rule is written in the form N ::= ¢, where N is a nonterminal symbol, and

where o is a (poss_,ibly empty) string of terminal and/or nonterminal symbols. Several
production rules with a common nonterminal on their left-hand sides:

Ni=o
Nu:=J

may be grouped as:
N:=o|B]....
EhelB,NF symbol *;:=" is pronounced ‘may consist of’, and ‘|’ is pronounced ‘or alierna-
vely’, ‘
Example 1.3 Mini-Triangle syntax

Mini-Triangle is a'toy programmiﬁg language that will serve as a running example here
and elsewhere. (It is a subset of Triangle, the language to be introduced in Section 1.4.)

8

Programming Language Processors in Java

Here is a trivial Mini-Triangle program:

| Thig is a comment. It continues to the end—of-lipe.

let
const m ~ 7;
var n: Integer
in
begin
n:=2 *m* m;
putint (n)
end

Here we present the context-free grammar of Mini-Triangle.

The terminal symbdis of Mini-Triangle include:

begin const do else end if

in let then var while

i : e ~ £)

+ - * / < - = =
\

(These are emboldened in the production rules below, for emphasis.)

The nonterminal symbols of Mini-Triangle include:

Program (start symbol)

Command single-Command
Expression primary-Expression
V-name -
Declaration single-Declaration
Type-denoter
Operator Identifier
Integer-Literal

The production rules are:
Program = singie-Command
Command = single-Command

| Command ; single-Command

= V-name 3= Expression

| Identifier (Expression)

| if Expression then single-Command
else single-Command

| while Expression do single-Command

| 1let Declaration in single-Command

| begin Command end

single-Command

(1.1)

(1.2a)
(1.2b)

(1.3a)
(1.3b)
(1.3¢)

(1.3d)
(1.3e)
(1.36)

Introduction 9

Expression = primary-Expression (1.4a)
| Expression Qperator primary-Expression (1.4b)
primary-Expression ;1= Integer-Literal {1.5a)
| V-name (1.5b)
| Operator primary-Expression (1.5¢)
| { Expression) (1.5d)
V-name = Identifier (1.6}
Declaration = single-Declaration (1.7a)
| Declaration ; single-Declaration (1.7b)
single-Declaration = const ldentifier ~ Expression (1.8a)
| wvar Identifier : Type-denoter (1.8b)
Type-denoter = Identifier (1.9
Operator = o+ =b*| s> =] - (1.10a-h)
Identifier u= Letter | Identifier Letter | Identifier Digit {1.11a-c)
Integer-Literal = Digit | Integer-Literal Digit (1.12a-b)
Comment = 1 Graphic* eol (1.13)

Production rule (1.3f) tells us that a single-command may consist of the terminal
symbol ‘begin’, followed by a command, followed by the terminal symbol ‘end’.

Production rule (1.3a) tells us that a single-command may consist of a value-or-
variable-name, followed by the terminal symbol *: =’, followed by an expression.

A value-or-variable-name, represented by the nonterminal symbol V-name, is the
name of a declared constant or variable. Production rule (1.6) tells us that a value-or-
variable-name is just an identifier. (More complex value-or-variable-names can be writ-
ten in full Triangle.)

Production rules (1.2a-b) tell us that a command may consist of a single-command
alone, or alternatively it may consist of a command followed by the terminal symbol *;’
followed by a single-command. In other words, a command consists of a sequence of
one or more single-commands separated by semicolons.

In production rules (1.11a—c), (1.12a—b), and (1.13):
* eol stands for an end-of-line ‘character’;
* Letter stands for one of the lowercase letters ‘a’, ‘b’, ..., or 2"}
* Digit stands for one of the digits ‘0°, ‘1°, ..., or ‘97
* Graphic stands for a space or visible character.

The nonterminals Letter, Digit, and Graphic each represents a set of single characters.
Specifying them formally is simple but tedious, for example:

10 Programming Language Processors in Java

Digit = 0|1|2|3|4|5|6]7]8]29

O

Each context-free grammar generates a language, which is a set of strings of
terminal symbols. We define this language in terms of syntax trees and phrases.
Consider a particular context-free grammar G.

A syntax tree of G is an ordered labeled tree such that: (a) the terminal nodes are
labeled by terminal symbols; (b) the nonterminal nodes are labeled by nonterminal sym-
bols; and (c) each nonterminal node labeled by N has children labeled by Xj, ..., X, (in
order from left to right) such that N ::= X ... X, is a production rule. More specifically,
an N-tree of G is a syntax tree whose root node is labeled by M.

A phrase of G is a string of terminal symbols labeling the terminal nodes (taken
from left to right) of a syntax tree. More specifically, an N-phrase of G is a string of
terminal symbols labeling the terminal nodes of an N-tree.

A sentence of G is an S-phrase, where S is the start symbol. The Ianguage generated
by G is the set of all sentences of G.

Example 1.4 Mini-Triangle syntax trees

Figures 1.1 through 1.3 show some Mini-Triangle syntax trees. Some of the nonterminal
symbols have been abbreviated. The syntax trees of identifiers, operators and literals
have been elided, being of little interest.

From the syntax tree of Figure 1.1 we can see that the following is an expression
(formally, an Expression-phrase):

da+ 10 * n

Note that this expression will be evaluated like * (d+10) #*n’, since Mini-Triangle’s
binary operators all have the same precedence. This is implicit in production rule (1.4b),
and in the shape of the syntax tree.

From the syntax tree of Figure 1.2 we can see that the following is a single-
command (formally, a single-Command-phrase):

while b do begin n := 0; b := false end

From the syntax tree of Figure 1.3 we can see that the following is a program (for-
mally, a sentence or Program-phrase):

let var v: Integer in y := y + 1

O

A grammar like that of Example 1.3 has two roles:

« The grammar tells us, for each form of phrase, what its subphrases are. For example, a
Mini-Triangle assignment command (1.3a} has two subphrases: a value-or-variable-

Introduction 11

name al}d an expression. A Mini-Triangle if-command (1.3¢) has three subphrases: an
expression and two (sub)commands. The way in which a program is composed from
phrases and subphrases is called its phrase structure.

¢ The grammar also tells us the order in which the subphrases must be written, and the
terminal symbols with which they must be delimited. For example, a Mini-Triangle
assignment command (1.3a) consisting of a value-or-variable-name V and an expres-
sion E must be written in the form ‘V : = £’. A Mini-Triangle if-command (1.3c) con-
sisting of an expression E and subcommands C; and C; must be written in the form
‘if E then C; else C;'. Moreover, the grammar tells us that C; and C, must be
single-commands (in order to avoid ambiguity).

Because of its concentration on concrete syntactic details, a grammar such as this
specifies what we call the concrefe syntax of the language. The concrete syntax is

important to the programmer who needs to know exactly how to write syntactically
well-formed programs.

But concrete syntax has no influence on the semantics of the programs. For example,
whether the assignment command is written in the form *V := E" or ‘V& F or ‘E =
V or ‘set. V=F or ‘assign E to V’ does not affect how the command will be

executed. These are all different in terms of concrete syntax, but all the same in terms of
phrase stiucture,

When specifying semantics, it is convenient to concentrate on phrase structure alone.
This is the point of abstract syntax. A grammar specifying abstract syntax generates
only a set of abstract syntax trees (ASTs). Each nonterminal node of an AST is labeled
by a production rule, and it has exactly one subtree for each subphrase. The grammar
does not generate sentences, for terminal symbols have no real role in abstract syntax.

Expression
|

|
Expression

I

Expression

primary-Expr. primary-Expr. primary-Expr.

V-name V-name

Ident. Op. IntLit. Op. Ident.

a + 10 * n

Figure 1.1 Syntax tree of a Mini-Triangle expression.

12 Programming Language Processors in Java Introduction 13

single-Command ' Example 1.5 Mini-Triangle abstract syntax
1
single-Command Here we present a grammar specifying the abstract syntax. of Mini-Triangle. This will
" | specify only the phrase structure of Mini-Triangle. Distinctions between commands and
| l‘l"‘!i : Comlnand single-commands, between declarations and single-declarations, and between expres-
e l sions and primary-expressions, will be swept away.
’ o I .
it Command : single-Command . The nonterminal symbols are:
1o
‘ i | | | Program (start symbol)
i J Expression single-Command Expression Command
| '|| . l] . I Expression .
T K primary-Expr. Expression primary-Expr. _ V-name
[| | | L Declaration
|l V-name V-name primary-Expr. V-name V-name ‘ Type-dencter
‘| 'I_ | l | ‘ The production rules are:
| ‘ : ldent. ident. Int.Lit. Ident. Ident. :
{ s : ; Program = Command Program (1.14)
I “|1'i : - while b do begin n 1= 0 i b := false end Command = V-name := Expression AssignCommand {1.15a)
|‘_| - £ MiniTriangle single-command | Identifier { Expression) CallCommand (1.15b)
‘|“. Figure 1.2 Syntax treeo. a Mint-1riangle Sing) | Command ; Command SequentialCommand (1.15¢)
‘! = | if Expression then Command IfCommand (1.15d)
1 1| : 7 else Command
o Pragram i | while Expression do Command WhileCommand (1.15¢)
: | 1let Declaration in Command LetCommand (1.15f)
single-Command . . . - .
| Expression = Integer-Literal IntegerExpression (1.16a)
single-CIommand | V-name VnameExpression (1.16b)
. ' | Operator Expression UnaryExpression (1.16¢)
|1| | Expression | Expression Operator Expression BinaryExpression (1.16d)
L | V-name = |dentifier SimpleVname 1.17)
I‘H Declaration Expression Declaration ::= const Identifier ~ Expression ConstDeclaration (1.18a)
||‘.\ : | I _ | vaxIdentifier s+ Type-denoter VarDeclaration (1.18b)
‘Y’I‘ . single-Declaraiion primary-Expr. | primary-Expr. [Declaration ; Declaration SequentialDeclaration (1.18¢)
It ! ' |
i, | Type-denoter ::= Identifier SimpleTypeDenoter 1.19
e Type-denoter V-name v-name s petyp (1.19)
1 Production rules in the abstract syntax look much like those in the concrete syntax.,
i | \ Ident. ident. ident. ldent. Op. IntLit In addition, we give each production rule a suitable label, as shown above right. We will
g ‘| |‘ : ; i ; i use these labels to label the nonterminal nodes of ASTs. _
‘ | let var v : Integer in v 1= Y + 1 Figures 1.4 through 1.6 show some Mini-Triangle ASTs, corresponding to the (con-

‘ :‘i : M Ty crete) syntax trees of Figures 1.1 through 1.3, respectively.
: Figure 1.3 Syntax tree of a Mini-Triangle program.

The AST of Figure 1.5 represents the following command:

while b do begin n := 0; b := false end

14 Programming Language Processors in Java

This AST’s foot node is labeled WhileCommand, signifying the fact that this is a while-
command. The root node’s second child is labeled SequentialCommand, signifying the
fact that the body of the while-command is a sequential-command. Both children of the
SequentialCommand node are labeled AssignCommand.

When we write down the above command, we need the symbols ‘begin’ and ‘end’
to bracket the subcommands ‘n := 0’ and ‘b := false’. These brackets distinguish
the above command from:

while b do n := 0; b := falze

whose meaning is quite different. (See Exercise 1.5.) There is no trace of these brackets
in the abstract syntax, nor in the AST of Figure 1.5. They are not needed because the
AST structure itself represents the bracketing of the subcommands.

O

A program’s AST represents its phrase structure explicitly. The AST is a convenient
structure for specifying the program’s contextual constraints and semantics. It is also a
convenient representation for language processors such as compilers. For example, con-
sider again the assignment command ‘while E do C’. The meaning of this command can
be specified in terms of the meanings of its subphrases £ and C. The translation of this
command into object code can be specified in terms of the translations of E and C into
object code. The command is represented by an AST with root node labeled “While-
Command’ and two subtrees representing E and C, so the compiler can easily access
these subphrases.

In Chapter 3 we shall use ASTs extensively to discuss the internal phases of a com-
piler. In Chapter 4 we shall see how a compiler constructs an AST to represent the
source program. In Chapter 5 we shall see how the AST is used to check that the
program satisfies the contextual constraints. In Chapter 7 we shall see ow to translate
the program into object code.

BinaryExpression
|
i
BinaryExpression
VnameExpr. IntegerExpr. VnameExpr.
SimpleVname SimpleVname

Ident. Op. ImtLit. Op. Ident.

d + 10 x n

Figure 1.4 Abstract syntax tree of a Mini-Triangle expression.

Introduction 15

WhileCommand
|

Sequential Command
AgsignCommand AssignCommand

VnameExpr, Int.Expr. VnameExpr.
SimpleV. SimpleV.
SimpleV. SimpleV,

Ident. Tdent, IntLit. Ident. Ident.

b n 0 b fa:i.se

Figure 1.5 Abstract syntax tree of a Mini-Triangle command.

Program
LetCommand
1
AssignCommand
BinaryExpression
VarDeclaI;ltion VnameExpr. Int.Expr.
SimpleV. I
SimpleT. SimpleV.
Idffnt. Ide?nt. Ident. Ident. Op. Int.Lit.
ﬁr Intéger y y + 1

Figure 1.6 Abstract syntax tree of a Mini-Triangle program.

1.3.2 Contextual constraints

Cont.e).ct}lal constraints are things like scope rules and type roles. They arise from the
possibility that whether a phrase is well-formed or not may depend on its context.

‘ Every programnﬂng language allows identifiers to be declared, and thereafter used
In ways consistent with their declaration. For instance, an identifier declared as a

16 Programming Language Processors in Java

constant can be used as an operand in an exptession; an identifier declared as a variable

can be used either as an operand in an expression or on the left-hand side of an assign- -

ment; an identifier declared as a procedure can be used in a procedure call; and so on.

The occurrence of an identifier I at which it is declared is called a binding occur-
rence. Any other occurrence of I (at which it is used) is called an applied occurrence.
At its binding occurrence, the identifier I is bound to some entity (such as a value,
variable, or procedure). Each applied occurrence of I then denotes that entity. A
programming language’s rules about binding and applied occurrences of identifiers are
called its scope rules.

If the programming language permits the same identifier I to be declared in several
places, we need to be careful about which binding occurrence of / corresponds to a
given applied occurrence of /. The language exhibits static binding if this can be
determined by a language processor without actually running the program; the language
exhibits dynamic binding if this can be determined only at run-time. In fact, nearly all
major programming languages do exhibit static binding; only a few languages (such as
Lisp and Smalltalk) exhibit dynamic binding. '

Example 1.6 Triangle scope rules

Mini-Triangle is too simplistic a language for static binding to be an issue, so we shall
use Triangle itself for illustration. In the following Triangle program outline, binding
occurrences of identifiers are undetlined, and applied occurrences are italicized:

let
const m ~ 2;
" war n: Integer;

func £ (i: Integer) : Integer -~
i*m
in
begin
n := fi{n); (1)
end

Each applied occurrence of m denotes the constant value 2. Bach applied occurrence of
n denotes a particular variable. Each applied occurrence of £ denotes a function that
doubles its argument. Each applied occurrence of i denotes that function’s argument.
Each applied occurrence of Integer denotes the standard type int, whose values are
integer nambers.

Triangle exhibits static binding. The function call at point (1) above doubles its argu-
ment. Imagine a call to £ in a block where m is redeclared:

let
const m ~ 3

Introducition 17

in
. F(n) ... @

The function call at point (2) also doubles its argument, because the applied occurrence

Ofﬁn inside the function f always denotes 2, regardless of what m denotes at the point of
call.

- In a language with dynamic binding, on the other hand, the applied occurrence of m
would denote the value to which m was most recently bound. In such a language, the

function call at (1) would double its argument, whereas the function call at (2) would
triple its argument.

. 0

Every programming language has a universe of discourse, the elements of_which we
call values. Usually these values are classified into ¢ypes. Each operation in the language
has an associated fype rule, which tells us the expected operand type(s), and the type of

the op.eration’s result (if any). Any attemnpt to apply an operation to a wrongly-typed
value is called a type error.

A programming language is statically typed if a language processor can detect all

type errors without actually running the program; the language is dynamically typed if
type errors cannot be detected until run-time, '

Example 1.7 Mini-Triangle type rules

Mini-Triangle is statically typed. Consider the following program outline:

let
var n: Integer

in
begin
while n > 0 do ¢))]
n:=n - 1; (3]
end

The type rule of *>’ is:
If both operands are of type int, then the result is of type bool.

Thus the expression ‘n > 0’ at point (1) is indeed of type bool. Althongh we cannot tell
in advance what particular values n will take, we know that such values will always be
1l}tegers. Likewise, although we cannot tell in advance what particular values the expres-
sion ‘n > 0 will take, we know that such values will always be truth values.

The type rule of ‘while E do+(is:
E must be of type bool.

20 Programming Language Processors in Java

An expression E is evaluated to yield a value.
The expression /L’ yields the value of the integer-literal IL. (1.21a)
The expression ‘V’ yields the value of the value-or-variable-name V. (1.21b)

The unary expression ‘O E’ yields the value obtained by applying unary
operator O to the value yielded by the expression E. (1.21c)

The binary expression ‘E) O E3’ yields the value obtained by applying bi-
nary operator O to the values yielded by the expressions £ and Ep. (1.21d)

Note that clauses (1.21a—d) correspond respeciively to production rules (1.16a-d) of
the abstract syntax.

Note also that expressions have no side effects in Mini-Triangle.

A value-or-variable-name V may be identified either to yield a value or to assign a
value to a variable (as required by the context).

A simple value-or-variable-name / yields a value as follows. If I is bound
to a value, it yields that value. If 7 is bound to a variable, it yields the

value contained in that variable. (1.22)
A simple value-or-variable-name I is assigned a value v as follows. If I is
bound to a variable, it updates that variable to contain v. (1.23)

A declaration D is elaborated to produce bindings; it may also have the side effect of
allocating variables,

The constant declaration ‘const I ~ E’ is elaborated by binding 1 to the

value yielded by the expression E. (1.24a)

The variable declaration “var I : T is elaborated by binding I'to a newly
allocated variable, whose initial value is undefined. The variable will be
deallocated on exit from the block containing the variable declaration, (1.24b)

The sequential declaration ‘D ; Dy’ is elaborated by elabofating Dy fol-
lowed by Dy, and combining the bindings they produce. Dy is elaborated
in the environment of the sequential declaration, overlaid by the bindings

produced by D;.
Note that clauses (1.24a—c) correspond respectively to production rules (1.18a—c) of
the abstract syntax.

(1.24c)

In Chapter 7 we shall use the semantics of Mini-Triangle to build a code generator
" for Mini-Triangle. In Chapter 8 we shall use the semantics to build a Mini-Triangle

interpreter.

O

Introduction 21

1.4 Case study: the programming language
Triangle

_In this book we s!'lall use small examples — such as the toy language Mini-Triangle — to
}]lustraFe various implementation methods without getting lost in details. Nevertheless, it
is also important to illustrate how these methods can be applied to realistic programming
langnages.

_ A major language like Pascal or Java is just foo complicated for the purposes of an
introductory textbook. Instead we shall use Triarngle, a small but realistic programming
language, as a case study. Triangle is a Pascal-like language, but generally simpler and
more regular. Here we give a brief overview of Triangle. (A complete description may
be found in Appendix B.)

y Triangle commands are similar to Pascal’s, but for simplicity there is only one cond-
itional command and one iterative command. Unlike Pascal, Triangle has a let-
command with local declarations.

Example 1.9 Triangle commands

The following illustrates the Triangle if-command and let-command:

if x » vy then
let const xcopy ~ %
in
begin x := v; ¥ :1= xcopy end
else

Note the empty else-part. (It is actually a skip command.)

O

Triapgle expressions are richer than Pascal’s, but free of side effects. Conditional
expressions, let-expressions with local declarations, and aggregates (record and array
expressi.ons) are all provided. A function body is just an expression. For simplicity, only
three primitive types (denoted by the identifiers Boolean, Char, and Integer), and
.two forms of composite type (tecords and arrays), are provided. Unlike Pascal, Triangle
is type-complete, i.e., no operations are arbitrarily restricted in the types of their oper-
and.s. Thus values of any type may be passed as parameters, refurned as function results
assigned, and compared using the binary operators ‘=" and ‘\=". ’

Example 1.10 Triangle expressions

The following illustrates a Triangle let-éxpression and if-expression:

22 Programming Language Processors in Java

let
const taxable ~ if income > allowance
then inccocme - allowance
else O
in
taxable / 4

The following iltustrates Triangle record and array types and aggregates:

let
type Date ~ record
m: Integer, d: Integer
end;
const days ~ [31i, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31]:
var today: Date
in

if today.d < days[teday.m - 1]

then {m ~ today.m, d ~ today.d + 1}
elge if today.m \= 12

then {m ~ teday.m + 1, 4 ~ 1}

elze {m ~ 1, d ~ 1}

if today = {m ~ 2, d ~ 29} then ... else ...

Here davys is declared to be a constant of type ‘array 12 of Integer’,i.e., an array
with elements 31, 28, 31, eic. The first if-expression yields a value of the record type
Date, representing the day after today. The second if-expression illustrates record

comparisof.
L]

Triangle declarations of different kinds may be mixed freely, Constant, variable, and

type declarations have been illustrated in Examples 1.9 and 1.10. A Triangle constant
declaration may have any expression, of any type, on its right-hand side. This
expression must be evaluated at run-time, but thereafter the constant identifier’s value is
fixed. (The Triangle constant declaration is more general than Pascal’s, where the right-
hand side is restricted to be a constant.)

Triangle has procedure and function declarations. A procedure body is just a com-
mand, which may be (but not necessarily) a let-command. Likewise, a function body is
just an expression, which may be (but not necessarily) a let-expression. Functions are
free of side effects,

Procedures and functions may have constant, variable, procedural, or functional
parameters. These have uniform semantics: in each case the formal-parameter-identifier

Introduction 23

is SiIl'.lply bound to the corresponding argument, which is a value, variable, procedure, or
function, respectively.

Example 1.11 Triangle procedures and functions

The following function and procedure implement operations on a type Point:

type Point ~ record
x: Integer,
y: Integer
end;

func-projection {pt: Point) : Point ~
{ x~pt.x, vy ~0-pt.v };

proc moveup (yshift: Integer, var pt: Point) ~
pt.v := pt.v + yshift;

var p: Point; var g: Point;

moveup (3, var p);
g := projection{p)

[]

Trtangle has the usual variety of operators, standard functions, and standard proce-
dures. These behave exactly like ordinary declared functions and procedures; unlike
Pascal, they have no special type rules or parameter mechanisms. In particular, Triangle
operators behave exactly like functions of one or two parameters.

Example 1.12 Triangle operators

The Triangle operator */\’ (logical conjunction) is, in effect, declared as follows:

func /\ (bl: Boolean, b2: Boolean} : Boolean ~
if bl then b2 else false

The expression ‘a /\b’ is, in effect, a function call:
/\(a, b}

and the more dbmplicated expression ‘{n>0) /\ (sum/n > 40)’ likewise:
/N (={n, 0), >{/(sum, n), 40))

Note that the. above declaration of /\ implies that both operands of /\ are evaluated
before t.he function is called. (Some other programming languages allow short-circuit
evaluation: the second operand of ./ \ is skipped if the first operand evaluates to false.)

O

24 Programming Language Processors in Java

A complete informal specification of Triangle may be found in Appendix B. Each
section is devoied to a major construct, e.g., commands, expressions, or declarations.
Within the section there are subsections describing the intended usage of the construct,
its syntax (expressed in BNF), its semantics (and contextual constraints), and finally
examples. Browse through Appendix B, attempting to fill the gaps in your
understanding of Triangle left by the brief overview here. Appendix B is intended to
serve as a model of a carefully written informal specification of a programming
language. Nevertheless, if you read carefully, you might well find loopholes!

1.5 Further reading

This book assumes that you are familiar with the basic concepts of high-level program-
ming languages, including those summarized in Section 1.1. A detailed study of these
concepls, using terminology consistent with this book, may be found in the companion
textbook by Wait (1990). Some other good texibooks cover similar material, including
those by Ghezzi and Jazayeri (1987), Sethi (1988), and Tennent (1981).

A very brief review of syntax and semantics was given in Section 1.3. A much fuller
treatment may be found in the companion textbook by Watt (1991). The advantages and
disadvantages of formal and informal specification are discussed in detail, as are various
methods for formally specifying syntax, contextual constraints, and semantics. There is
an introduction to formal semantics. Formal specifications of the syntax and semantics
of Triangle are given as case studies.

A typical and recent example of a programming language specification is that of
Java (Gosling ez al. 1996). Java’s syntax is specitied formally in BNF, but its contextual
constraints and semantics are specified informally. This specification is by no means

easy reading.

Exercises

1.1 In this chapter editors, compilers, and interpreters have been cited as kinds of
language processor. Can you think of any other kinds of language processor?

1.2%* Recall Examples 1.1 and 1.2. Write a similar critical account of any other pro-
gramming system with which you are familiar.

1.3** Design an editor tailored to your favorite programming language.

(Hints: Think of the editing operations you perform most frequently on your
programs. You probably delete or replace complete symbols more often than
individual characters, and you probably delete or replace complete phrases —

1.4

1.5

1.6

e 25

expressions, commands, declarations — rather than individual lines. You proba-
bly spend a lot of time on chores such as good layout. Also think of the
common syntactic errors that might reasonably be detected immediately.)

Ac.?ording to the context-free grammar of Mini-Triangle in Example 1.3,
which of the following are Mini-Triangle expressions?

(a) true

(b) sin(x)

(c) -n

(d m>=n .

(&) m - n * 2
Draw the syntax tree and AST of each one that is an expression.
Similarly, which of the following are Mini-Triangle commands?

(f) n:=n + 1

(g) halt
(hy put{m, n)
(i) ifn>m thenm := n

() whilen > 0 do n := n-1

Similarly, which of the following are Mini-Triangle declarations?
(k) const pi ~ 3.1416

1) const yv ~ x+1

(m) var b: Boolean

(n) var m, n: Integer

(0) var y: Integer; const dpy ~ 365

Draw the syntax tree and AST of the Mini-Triangle command:
while b don := 0; b := false
cited at the end of Example 1.5. Compare with Figures 1.2 and 1.5.

According to the syntax and semantics of Mini-Triangle in Examples 1.3 and
1.8, what value is written by the following Mini-Triangle program? (The stan-
dard procedure putint writes its argument, an integer value.}

let

const m ~ 2;

const n ~ m + 1

in :
putint(m +'n * 2)

(Note: Do not be misled by your knowledge of any other languages.)

