52 Programming Language Processors in Java

version written in C. The interpreter (3ava) is written in C, for efficiency. Most web
browsers contain an embedded JVM interpreier to allow them to run Java software
downloaded from the Internet. For a comprehensive account of the Java Virtual

Machine, see Lindholm and Yellin (1999).

Java software has to be highly portable, especially applets that may be downloaded
from & host computer and run on any computer connected to the Internet. In this context,
the use of an interpretive compiler makes sense, but for some applications the run-time
performance penalty is excessive. This observation has led to the appearance of JIT
(just-in-time) compilers. A JIT compiler translates program code into machine code just
when it is loaded into memory for execution. In particular, a Java JIT compiler
translates JVM code into machine code each time a class is loaded. Since classes are
loaded dynamically (during execution), JIT compilation also happens dynamically.
Portability is not affected, since Java software is still stored on the host computer and
downloaded to the user’s computer as JVM code: the JIT compiler runs on the user’s
computer. If a user does not have a JIT compiler, the same Java software can still be run
(albeit more slowly) using the JVM interpreter embedded in the user’s Internet browser.

Some Java JIT compilers are even more dynamic than suggested in the previous
paragraph. They keep track of the number of calls to individual methods, and translate

only the most frequently-executed methods into machine code. The less frequently-

executed methods remain as JVM code and are still interpreted. This more complex
ilation time and execution time.

scheme seems to yield a good tradeoff between comp
Just-in-time compilation is explained in a paper by Adl-Tabatabai ef al. (1998).

Exercises

2.1% Consider each of the following (hypothetical) translators. Do you think the
translator might be useful in practice? Explain your answer. Also, what diffi-
culties could be anticipated in making it generate a good-quality object pro-

gram?
(a) aJava-into-C translator;
(b)) aC-into-Java translator;
(¢) an assembly-language-into-Pascal decompiler.
2.2 From the description of the Triangle language processor in Section 2.7, use
tombsione diagrams to show:
(a) compiling a Triangle source program P;
(b) running the object program;

(c) disassembling the object program.

2.3

24

2.5

2.6

2.7

Language Processors 353

Assume that you have the following: a machine M; a C compiler that rans on
machmelM and generafes machine code M; and a Java-into-C translator ex-
pressed in C. Use tombstone diagrams to represent these language processors
Also show how you would use these language processors to: -

(a) compile and run a program P expressed in C;
{(b) compile the Java-into-C translator into machine code;

(c) compile and run a program @ expressed in Java.

Assur_ne that you have the following: a machine M; a C compiler that rans on
machine M and generates machine code M; a TAM interpreter expressed in C;
and a Pascal-into-TAM compiler expressed in C. Use tombstone diagrams to’
represent these langnage processors. Also show how you would use these lan-
guage processors to: ‘

{a} compile the TAM interpreter into machine code;
{b) compile the Pascal-into-TAM compiler into machine code;

(c) compile and run a program P expressed in Pascal.

The Gnu conlupiler kit uses a machine-independent register transfer language
RTL, as an intermediate language. The kit includes translators from severai
hlgh-lc':zvel languages (such as C, C++, Pascal) into RTL., and translators from
RTL into several machine codes (such as Alpha, PPC, SPARC). It also
1nc|1u.des an RTL ‘optimizer’, i.e., a program that translates RTL into more
efficient RTL. All of these translators are expressed in C.

(a) S.how how you would install these translators on a SPARC machine
given a C compiler for the SPARC. ’

Now show how you would use these translators to:
(b) compile a program P, expressed in Pascal, into SPARC machine code;

(c) chnI.Jile the same program, but using the RTL optimizer to generate more
efficient object code; ‘

(d) cross-compile a program Q, expressed in C++, into PPC machine code.

The Triangle Iang.uage processor (see Section 2.7) is expressed entirely in Java,
Use tombstone diagrams to show how the compiler, interpreter, and disassem-
!3161' thould be made to run on machine M. Assume that a Java-into-M compiler
is available. -

Draw' tombstone diagrams to illustrate the use of a Java JIT (just-in-time)
compiler. Shovxf what happens when a Java program P is compiled and stored
on a host machine H, and subsequently downloaded for execution on the user’s

54 Programming Language Processors in Java

2.8%

2.9%

2.10%

machine &/, Assume that a JIT compiler is available that runs on and generates
code for machine U.

Suppose that you have designed a language C+, which is C extended with
packages. (A package is just a named group of global declarations, some of
which are designated as exported by the package; the remaining declarations
are visible only inside the package. So packages are intended to support 2
modern programming discipline, rather than adding new functionality to the

language.)

A two-stage C-into-M compiler is available, consisting of a C-into-RTL trans-
lator and an RTL-into-M translator. The two-stage compiler is available both in
C and in machine code M. Machine M is also available.

Suggest wo different strategies for implementing C+. What are the advantages
and disadvantages of each strategy?

Suppose that an ambitious new programming language, Utopia, has been
designed to meei the needs of all programmers everywhere. Rather than a
single language, it is actnally a series of nested sublanguages Utopia-1, Utopia-
2, and Utopia-3. The smallest sublanguage Utopia-1 has roughly the
functionality of C; Utopia-2 has some extra features; and the full language
Utopia-3 supports a varisty of advanced features such as concurrency.

The motivations for defining the sublanguages were as follows. Some imple-
mentors might prefer to develop compilers for the sublanguages only; whereas
more ambitious implementors will aim to develop compilers for the full lan-
guage. Programmers who do not need the functionality of the full language can
use a compiler for a sublanguage (and such a compiler will be smaller and

faster than a compiler for the full language); but they can easily graduate to the’

full language if the need arises, without having to rewrite any of their existing
programs.

You are required to develop a complete set of compilers for Utopia-1, Utopia-
2, and Utopia-3. What strategy would you adopt? You may assume that a C
compiler is available. (Note: There arc several possible strategies. Weigh their

advantages and disadvantages carefully.)

Consider a programming language that allows code to be manufactured at run-
time (such as Lisp, Example 2.11(b)).

(a) What would be unusual about the specification of this languége?

(b) Why would this language normally be implemented by means of an inter-
preter?

(c) Suppose, nevertheless, that a compiler is to be designed for this language.

What would be unusual about this compiler?

CHAPTER THREE

Compilation

_In this chapter we study the internal structure of compilers. A compiler’s basic functi

18 Fo trans!ate a high-level source program to a low-level object program, but befoc;n
doing so it 1}1ust check that the source program is well-formed. So cm"npilation ie
defcomposec‘l into th;'ee phases: syntactic analysis, contextual analysis, and code ener?
ation. In ﬂ‘fIS chapter we study these phases and their relationships. ;?Ve also eximine
some possible compiler designs, each design being characterized by the number of
passes over the source program or its iniernal representation, and discuss the i
underlying the choice of compiler design. , o

) IIln this chapter we Itestrict ourselves to a shallow exploration of compilation. We
sha ta_ke a more detailed look at syntactic analysis, contextual analysis, and code
generafion in Chapters 4, 5, and 7, respectively. ,

3.1 Phases

In51d§. any compiler., th-e source program is subjected to several transformations before
an o Jegt program is finally generated. These transformations are called phases. The
three principal phases of compilation are as follows: '

* Syntactic analys’is: The source program is parsed to check whether it conforms to the
source language’s syntax, and to determine its phrase structure.

« Contextual analysis: The parsed program is analyzed to check whether it conforms to
the source language’s contextual constraints.

. ((j:'ode gefneratian: The_ checked program is translated to an object program, in accor-
ance with the semantics of the source and target languages.

;l'he threr;: phasz?s‘ of‘ con”:lpilation correspond directly to the three parts of the source
anguage’s specification: its syntax, its contextual constraints, and its semantics. '

1 . . '
frome cornplller‘s include a fourth phase, code optimization. Lexical analysis is sometimes
eated as a distinct phase, buf in this book we shall treat it as a sub-phase of syntactic analysis

55

56 Programming Language Processors in Java

Between the phases we need to represent the source program in s‘uch. a way as to
reflect the analysis already done on it. A suitable choice of represent?mn is an abstract
syntax tree (AST). The AST explicitly represents the source program-s phraselstructure.
Tts subtrees will correspond to the phrases {commands, ex.press.lc?ns, dfaclaratlons, etc.)
of the source program. Its leaf nodes will correspond to tht‘: identifiers, literals, and oper-
ators of the source program. All other terminal symbols in the source program can be

discarded after syntactic analysis.
We can conveniently summarize the phases of a compiler by means of a data flow
diagram.” Figure 3.1 shows the data flow diagram of a typical compiler. It shows the

successive transformations effected by the three phases. It.also shows that syntactic and
contextual analysis may generate error reports, which will be transmitted to the pro-

grammer.

Let us now examine the three principal phases in more detail. We shall fqllow a til?y
Triangle program through all the phases of compilation. The source program is shown in
Figure 3.2, and the results of successive transformations in Figures 3.3,3.4,and 3.7.

SOUFCE program

syntactic error reports

analysis

contextual error Feports

analysis

decorated AST

code
generation

object program

Figure 3.1 Data flow diagram for a typical compiler.

* A data flow diagram summarizes data flows and transformations in a system. An arrow
represents a data flow, and is labeled by a description of the data. A rounded box represents a

transformation, and is labeled accordingly.

Compilation 57

In order to be concrete, we shall explain these transformations as implemented in the
Triangle compiler that is our case study. It should be understood, however, that another
Triangle compiler could implement the transformations in a different way. The main
purpose of this section is to explain what transformations are performed, not how they
are implemented. In Section 3.2.2 we shall emphasize this point by sketching an
alternative Triangle compiler with a very different design, which nevertheless performs
essentially the same processing on the source program.

3.1.1 Syntactic analysis

The purpose of syntactic analysis is to determine the source program’s phrase structure.
This process is called parsing. It is an essential part of compilation because the subse-
quent phases (contextual analysis and code generation) depend on knowing how the
program is composed from commands, expressions, declarations, and so on.

The source program is parsed to check whether it conforms to the source language’s
syntax, and to construct a suitable representation of its phrase structure. Here we assume
that the chosen representation is an AST,

Example 3.1 Triangle AST

Syntactic analysis of the Triangle source program of Figure 3.2 yields the AST of
Figure 3.3. As we shall be studying the compilation of this program in some detail, let
us examine those parts of the AST that are numbered in Figure 3.3.

(1) The program is a let-command. It consists of a declaration (*var n: Integer;
var ¢: Chaxr’ in the source program) and a subcommand (‘¢ := '&'; n :=
n+1”). This is represented by an AST whose root node is labeled ‘LetCommand’,
and whose subtrees represent the declaration and subcommand, respectively.

(2} This is a variable declaration. It consists of an identifier (n) and a type-denoter

{Integer).

(3) This also is a variable declaration. It consists of an identifier (c) and a type-denoter
(Char).

{4) This is a sequential command. It consists of two subcommands (¢ := '&'” and
‘n :=n+1").

(5) This is an assignment command. [t consists of a value-or-variable-name on the
left-hand side (n) and an expression on the right-hand side (n+1).

(6) This value-or-variable-name is just an identifier ().
(7) This is an expression that applies an operator {‘-+’) to two subexpressions.
(8) This expression is a Value—or-\{ariabie—name (n).

(9) This expression is an integer-literal (1).

58 Programming Language Processors in Java

| This program is useless
1 except for illustration.
let

var n: Integer;

var c¢: Char

in
begin
c o= &'
n := n+l
end

Figure 3.2 A Triangle source program.

Program
I
LetCommand
| @]
SequentialDeclaration SequentialCommand
5
AssignCommand AssignCommand
1
| 5l)
Char.Expr. BinaryExpression
8))]
(2) (3 {
VarDeclaration ~ VarDeclaration VnameExpr, Tnt. Exps.
SimpleV. |
SimpleT. SimpleT. SimpleV. SimpleV.
(® l .
Ident. Ident. Ident. Ident. Ident. Char.Lit. Ide_nt. Ide:rlt. Op Int.:L1t.
n Intéger b Char c gt n o + 1

Figare 3.3 AST after syntactic analysis of the source program of Figure 3.2

In general, the AST has terminal nodes that correspond to identifiers, literals, and
operators in the source program, and subtrees that represent‘ the phrases of the souéce
program. Blank space and comments are not represented in the AST, becanse they
contribute nothing to the source program’s phrase structure. Punctuation and brackets
also have no counterparts in the AST, because they serve only to separate and enclose
phrases of the source program; once the source program has been parsed, they are no

longer needed. For example, the ‘begin’ and ‘end’ brackets in Figure 3.2 serve only
s= 'g&': n ;= n+l’, thus ensuring that the

to enclose the sequential command ‘c : ,
sequential command as a whole is taken as the body of the let-command. The AST’s

very structure represents this bracketing perfectly well.

Compilation 59

If the source program contains syntactic errors, it has no proper phrase structure, In
that case, syntactic analysis generates error reports instead of constructing an AST.

3.1.2 Contextual analysis

In contextual analysis the parsed program is further analyzed, to determine whether it
conforms to the source language’s contextual constraints:

* The source langnage’s scope rules allow us, at compile-time, to associate each applied
occurrence of an identifier (e.g., in an expression or command) with the
corresponding declaration of that identifier, and to detect any undeclared ideptifiers.
(Here we are assuming that the source language exhibits static binding.)

* The source langnage’s type rules allow us, at compile-time, to infer the type of each
expression and to detect any type errors. (Here we are assuming that the source lan-
guage is statically typed.)

If the parsed program is represented by its AST, then contextual analysis will yield a
decorated AST. This is an AST enriched with information gathered during contextual
analysis:

* As a result of applying the scope rules, each applied occurrence of an identifier is
linked to the corresponding declaration. We show this diagrammatically by a dashed
arrow.

* As aresult of applying the type rules, each expression is decorated by its type 7. We
show this diagrammatically by marking the expression’s root node *: T".

Example 3.2 Triangle contextual analysis

Triangle exhibits static binding and is statically typed. Contextual analysis of the AST of
Figure 3.3 vields the decorated AST of Figure 3.4.

The contextual analyzer checks the declarations as follows:
(2) It notes that identifier n is declared as a variable of type int.
(3) It notes that identifier ¢ is declared as a variable of type char. -
The contextual analyzer checks the second assignment command as follows:

{6) At this applied occurrence of identifier n, it finds the corresponding declaration at
(2). It links this node to (2). From the declaration it infers that n is a variable of
type int. :

(8) Here, similarly, it infers that the expression n is of type ins.
(9) This expression, being an integer-literal, is manifestly of type int.

{7) Since the operator ‘+° is of t§pe int X int — int, it checks that the left and right
subexpressions are of type int, and infers that the whole expression is of type int.

60 Programming Language Processors in Java

(5) Tt checks that the left-hand side of the assignment command is a variable, and that
the right-hand side is an expression of equivalent type. Here both (6) and (7} are of
type inf, so the assignment command is indeed well-typed.

In this way the contextual analyzer verifies that the source program satisfies all the

contextual constraints of Triangle.

O
Program
N
LetCommand
1
(f‘)|
SequentialDeclaration SequentialCommand
i BN
AssignCommand AssignCommand
6] o
SimpleV. BinaryExpression : int
N R T h Expr - int ® ©
@) & (3) T . che
VarDeclaration ~ VarDeclaration chat VnameE)iilllatr. Int.E}(:pi1;.!t
‘\ hl \\\ '
int char s SimpleV.] OS] Simple.
\\ : char S (®) \\\ I.mt
Ident. Ident, “ident. CharLit Ident. Idemt. ~ Op. TntLit
2 ¢ ¢ s n onm o+ 1

Figure 3.4 Decorated AST after coniextual analysis of the AST of Figure 3.3.

If the source program does not satisfy the source 1

anguage’s contextual constraints,
contextual analysis generates error reports. : o

Example 3.3 Detection of Triangle contextual errors

3.6 illustrate how contextual analysis will detect violations of scope

Figures 3.5 and
o three contextual errors:

rules and type rules. This particular Triangle program contains
(1) The expression of this while-command is not of type bool.
(2) Identifier m is used but not declared.

(3) In this application of operator >,
subexpression has the wrong type.

which is of type int X int = bool, one

O

Compilation 61

let
var n: Integer

in ! ill-formed program
while n/2 do

m:= 'n' > 1

Figure 3.5 An ill-formed Triangle source program.

Program
LetCommand
|
0]
WhileCommand
|
AssignCommand
V SN I)
VarDeclaration ™~ VnameExpr, SimpleV. BinaryExpression
AN :int
int N SimpleV. Int.Expr. Char Expr Int.Expr.
RN Tt s int sint
. I (2
Ident, Ident. Op. IntLit. Ident. CharLit. Op. IntLit.
n n / 2 SN TR 1

Figure 3.6 Discovering errors during contextual analysis of the Triangle program of Figure 3.5,

3.1.3 Code generation

After syntactic and contextual analysis, the source program has been thoroughly
checked and is known to be well-formed. Code generation is the final translation of the
checked program to an object program, in accordance with the source and target
languages’ semantics.

A pervasive issue in code generation is the treatment of identifiers that are declared
and/or used in the source program. In semantic terms, a declaration birds an identifier to
some sort of entity. For example:

« A constant declaration such as ‘const m ~ 7’ binds the identifier m to the value 7.
The code generator must then replace each applied occurrence of m by the value 7.

* A variable declaration such as ‘var .b: Boolean’ binds the identifier b to some
address (storage cell), which is decided by the code generator itself. The code generat-
or must then replace each applied occurrence of b by the address to which it is bound.

62 Programming Language Processors in Java

A rather different issue for the compiler designer is the ex
language: should the compiler generate machine code or the as

act nature of the target
sembly language of the

the structure of the

Compilation 63

(7) It generates the instruction ‘CATL add’. (Wh is i
: . en executed, this instruction will
the two previously-fetched values.) il e

(5) By following the link to the declaration of n, it retrieves this variable’s address,

target machine? Actually, the choice has only minor influence on
compiler, and we shall not pursue the issue in this book. When presenting examples of
ys write instructions mnemonically (as in Figure 3.7,

| ‘ ' object code, however, we alwa
‘ ‘ since this is considerably more readable than the equivalent binary machine code.

namely Q[‘SB]. Then it generates the instruction ‘STORE C[SB]1°. (When exe-
cuted, this instruction will store the previously-computed value in that variable.)

In this way the code generator translates the whole program into object code.

O
‘ PUSH 2
|HY - LOADL 38 '
“"i. ‘ STORE 1[SB] '
| MJ" | LOAD O0[SB] 3.2 Passes
{ LOADL 1
CALL add
] In the i i i F P
“1} ‘ STORE 0 [SE] o tpllr;:vmus section we e).(amme.d the principal phases of compilation, and the flow
I cor 2 a'a etw.een them. In this section we go on to examine and compare alternative i
LT compiler designs. {
! !

In deSIgmflg a compiler, we wish to decompose it into modules, in such a way that :
ea(fh module is responsible for a particular phase. In practice there are several ways of |
doing so. The design of the compiler affects its modularity, its time and space re 311111‘6 |
ments, and the number of passes over the program being compiled. e

| 13 ‘ Figure 3.7 Object program after code generation from Figure 3.4.

|
¥ Example 3.4 TAM code generation A pass is a complete traversal of the source program, or a complete traversal of an
internal representation of the source program (such as an AST). A one-pass compiler :

[\ c)) i)
L ode generation from the decorated AST of Figure 3.4 yields the TAM object program makes a single tr . ; !
| traversals. gle traversal of the source program; a mulfi-pass compiler makes several

X of Figure 3.7.
. - . - - " !
31?1 pracﬂqe, theldemgn of a compiler is inextricably linked to the number of passes it il
makes. In this secuog we contrast multi-pass and one-pass compilation, and summarize |
the advantages and disadvantages of each.

"Ik
I ‘ The code generator processes the declarations as follows:

| (2) It allocates an address for the variable n, say 0 [SBI. It stores that address at node

" (2), for later refrieval.’

3 (3) It similarly allocates an address for the variable c, say 1[SB]. It stores that

i ‘ address at node (3), for later retrieval.

3.2.1 Multi-pass compilation

The code generator processes the second assignment co

mmand as follows:

(8) By following the link to the declaration of n, it retrieves this variable’s address,
namely 0[SB]. Then it generates the instruction ‘LOAD C{SB]’. (When

One possible compiler design is shown by the structure diagram” of Figure 3.8.

;ll"he compiler cor.lsists of a top-level driver module together with three lower-level
mho ules,.the syfntactlc analyzer, the contextual analyzer, and the code generator. First
the compiler driver calls the syntactic analyzer, which reads the source program, parses

7 executed, this instruction will fetch the current value of that variable.)

uction ‘LOADL 1’. (When executed, this instruction will fetch it, and constructs a complete AST. Next, the compiler driver calls the contextual |

(M (9) It generates the insir
: ‘ b the literal value 1.)

4 . .
‘il | A structure diagram summarizes the modules and module dependencies in a system. The !
}. higher-level modules are those near the top of the structure diagram. A connecting line
representsfa dependency of a higher-level module on a lower-level module. This dependency H
consists of the higher-level module using the services (e |
.g., types or method i
lower-level module. = o provided by fhe

able to follow

. ‘ Lo ' Here ‘0 [8B3]° means address O relative to the base register SB — but you will be

this example without knowing TAM's addressing mechanisim.

e SR 0 S ST

64 Programming Language Processors in Java
{

analyzer, which traverses the AST, checks it, and decorates it. Finally, the compiler
driver calls the code generator, which traverses the decorated AST and generates an
object prograr.

In general, a compiler with this design makes at least three passes over the program
being compiled. The syntactic analyzer takes one pass, and the contextual analyzer and
code generator take at least one pass each.

Compiler
Driver

e

Syntactic Contextual Code
Analyzer Analyzer Generator

Figure 3.8 Structure diagram for a typical multi-pass compiler.

Compiler
Driver

Syntactic
Analyzer

/ N\

Contextual Code
Analyzer Generator

Figure 3.9 Structure diagram for a typical one-pass compiler.

3.2.2 One-pass compilation

An alternative compiler design is for the syntactic analyzer to control the other.phases of
compilation, as shown in Figure 3.9. A compiler with this design makes a single pass
over the source program.

Contextual analysis and code generation are performed ‘on the fly’ during syntactic

analysis. As soon as a phrase (e.g., expression, command, or declaration) has been

parsed, the syntactic analyzer calls the contextual analyzer to perform any necessary

checks. It also calls the code generator to generate any object code. Then the syntactic

analyzer continues parsing the source program.

Compilation 65

Example 3.5 One-pass compilation

A one-pass Triangle compiler would work as follows. Consider the following Triangle
SOUICe Program:

! This program is useless
! except for illustration.
let

var m: Integeruh

var c: Char®

in
begin)
B 1= g @A),
n® .= n+1008)
end

This is identical to the source program of Figure 3.2, but some of the key points in the
program have been numbered for easy reference. At these points the following actions
are taken: '

(1) After parsing the variable declaration ‘var n: Integer’, the syntactic analyzer
calls the contextual analyzer to record the fact (in a table)} that identifier n is de-
clared to be a variable of type inr. It then calls the code generator to allocate and
record an address for this variable, say 0 [SB].

(2y After parsing the variable declaration ‘var ¢: Char’, the syntactic analyzer
similarly calls the contextual analyzer to record the fact that identifier ¢ is declared
to be a variable of type char. It then calls the code generator to allocate and record
an address for this variable, say 1 [SE].

(3) After parsing the value-or-variable-name c, the syntactic analyzer infers (by
calling the contextual analyzer) that it is a variable of type char. It then calls the
code generator to retrieve its address, 1 [SB].

(4) After parsing the expression '&', the syntactic analyzer infers that it is of type
char. 1t then calls the code generator to generate instruction ‘LOADL 38°.

(5) After parsing the assignment command ‘¢ := '&'’, the syntactic analyzer calls
the contextual analyzer to check type compatibility. It then calls the code generator
to generate instruction ‘STORE 1 [SB]’, using the address retrieved at point (3).

(6) After parsing the value-or-variable-name n, the syntactic analyzer infers (by
calling the contextual analyzer) that it is a variable of type int. It then calls the code
generator to retrieve the variable’s address, 0 [SB]. '

(7 While parsing the expression n+1, the syntactic analyzer infers (by calling the
contextual analyzer) that the subexpression n is of type int, that the operator ‘+ is
of type inr X int — int, that the subéxpression 1 is of type inf, and hence that the
whole expression is of type int. It calls the code generator to generate instructions
‘LOAD 0 [SB]’, ‘LOADL 1°, and ‘CALL add’,

66 Programming Language Processors in Java

(8) After parsing the assignment command ‘n := n+1’, the syntactic analyzer calls
the contextual analyzer to check type compatibility. It then calls the code generator

to generate instruction ‘STORE 0 [SB] .
O

3.2.3 Compiler design issues

The choice between one-pass and multi-pass compilation is one of the first and most
important design decisions for the compiler writer. It is not an easy decision, for both
designs have important advantages and disadvantages. We summarize the main issues

here.

* Speed is an issue where a one-pass compiler wins. Construction and subsequent
traversals of the AST (or other internal program representation) is a modest time
overhead in any multi-pass compiler. If the AST is stored on disk, however, the
input—output overhead is likely to be large, even dominating compilation time.

« Space might also seem to favor a one-pass compiler. A multi-pass compiler must find
memory to store the AST. But the situation is not really so clear-cut. In a multi-pass
compiler, only one of the principal modules (syntactic analyzer, contextual analyzer,
and code generator) is active at a time, so their code can share memory. In a one-pass
compiler, all these modules are active throughout compile-time, so they must be co-
resident in memory. As a result, the code of a one-pass compiler occupies more mem-
ory than the code of a multi-pass compiler.

Of course, a very large source program will give rise to a very large AST, perhaps
occupying more memory than the compiler itself. Fortunately, modern programming
languages allow larger programs to be decomposed into compilation units, which are
compiled separately; and individual compilation units tend to be moderately-sized.
(See also Exercises 3.5 and 3.6.)

» Modularity favors the multi-pass compiler. In a one-pass compiler, the syntactic
analyzer not only parses the source program but also coordinates the contextual ana-
lyzer and code generator. That is to say, it calls these modules, and maintains the data
passed to and from them. In practice, the coordinating code may swamp the syntactic
analysis code. In a multi-pass compiler, each module (including the syntactic
analyzer) is responsible for a single function.

Flexibility is an issue that favors the multi-pass compiler. Once the syntactic analyzer
has constructed the AST, the contextual analyzer and code generator can traverse the
AST in any convenient order. In particular, the code generator can translate phrases
out of order, and sometimes this allows it to generate more efficient object code. A
one-pass compiler is restricted to check and translate the phrases in exactly the order

in which they appear in the source program.

Semantics-preserving transformations of the source program or object program.are
performed by some compilers in order to make the object code as efficient as

Compilation 67

possible, (These are the so-called ‘optimizing’ compilers.} Such transformations

" generally require analysis of the whole pro i i
. gram prior to code generati
force a multi-pass design on the compiler. : geperation, <o they

Source language properties might restrict the choice of compiler design. A source
program can be compiled in one pass only if every phrase (e.g., command.or expres-
sion) can be compiled using only information obtained from the preceding part of the
source program, This requirement usually boils down to whether identifiers must be
declared before use. If they must be declared before use (as in Pascal, Ada, and Trian-
gle), then one-pass compilation is possible in principle. If identifi,ers n,eed not be
declared before use (as in Java and ML), then mwulti-pass compilation is required.

Example 3.6 Pascal compiler design

In Pascal, the usufﬂ rul.e .is that identifiers must be declared before use. Thus an applied
occurrence of an identifier can be compiled in the sure knowledge that the identifier’s
declaration has already been processed (or is missing altogether).

Consider the following Pascal block:
var n: Integer;

procedure ing;
begin
n := n+l
end;

begin
n := 0; inc
end

When a Pascal one-pass compiler encounters the command ‘n := n+1’, it has already
proFessed the de_cIaIauon of n. It can therefore retrieve the type and address of the
variable, and subject the command to contextual analysis and code generation.

Suppose, instead, that the declaration of n follows the procedure. When the Pascal
one-pass compiler encounters the command ‘n := n+1’, it has not yet encountered the
declaratllon of n. So it cannot subject the command to contextual analysis and code
generation, Fortunately, the compiler is not obliged to do so: it can safely generate an
error report that the declaration of n is either misplaced or missing altogether.

O

Example 3.7 Java compiler design

The situatif)n is different in Java, in which variable or method declarations need not be
i any particular order. The following Java class is perfectly well-formed:

68 Programming Language Processors in Java

clasg Example {

1]

void inc{) { n n+ 1; 1}

int n;
void use() {{ n = 0; inc(}; 7
} .
The command ‘n = n + 1;’ cannot be subjected to contextual analysis and code

generation until the variable declaration ‘int n;’ has been processed. A Java C(zlmpﬂe;
must therefore process variable declarations in one pass, and the commands an

expressions inside a method body in a later pass. -

3.3 Case study: the Triangle compiler

In Section 2.7 we introduced our case study, the Triangle 1a.nguagfa processor. This
consists of a compiler, an interpreter, and a disassembler. In this section we look more

closely at the Triangle compiler, explaining its design.

The Triangle compiler has the usual three phases of syntactic anallysis, context}tllal
analysis, and code generation, as shown in the dz':.lta f!ow diagram of Flgure. 3.1 {t as
three passes, having the outline structure shown in Figure 3.8. The syntactm. analyzer,
contextual analyzer, and code generator modules take one pass eac.h, communicating v;a
an AST that represents the source program, This was iliustrated in Examples 3.1, 3.2,

and 3.4.
Omitting minor details, the compiler driver looks like this:
public class Compiler ¢
public static void compileProgram (...) {

Parger parser = new Parser(...):
Checker checker = new Checker(...) ;
Encoder generator = new Encoder (...) ;

// Call the syntactic analyzer to parse the source program and
// construct theAST...
Program theAST = parser.parse ()

// Call the contextual analyzer to check and decorate theAST...
checker .check {theAST) ;

// Call the code generator to translate theAST o an object program...
generator.encode (theAST) ;

Compilation 69
public static void main (String[] args) {
compileProgram{...} ;

}

A one-pass Triangle compiler would have been perfectly feasible, so the choice of a
three-pass design needs to be justified. The Triangle compiler is intended primarily for
educational purposes, so simplicity and clarity are paramount. Efficiency is a secondary
consideration; in any case, efficiency arguments for a one-pass compiler are inconclu-
sive, as we saw in Section 3.2.3. So the Triangle compiler was designed to be as modul-
ar as possible, allowing the different phases to be studied independently of cne another.

Triangle

Triangle. Triangle. Triangle.
SyntacticAnalyzer Contextualinalyzer CodeGenerator

T

Triangle.
AbstractSyntaxTrees

Figure 3.1¢ Structure diagram for the Triangle compiler.

A detailed structure diagram of the Triangle compiler is given in Figure 3.10,
showing the main classes and packages. Here are brief explanations of the packages and
the main classes they contain:

* The Triangle.AbstractSyntaxTrees package contains classes defining the
AST data structure. There is a class for each Triangle construct, e.g., AssignCom-
mand, IfCommand, BinaryExpression, ConstDeclaration, VarDec-
laration, etc. Each class contains a constructor for building the AST for that
construct, and a visitor method used by the contextual analyzer and the code generator
to traverse the AST. The other parts of the compiler are allowed to manipulate the
fields of the AST objects directly.

* The Triangle.SyntacticAnalyzer package contains the Parser ¢lass (and

some classes of no concern here). The parser parses the source program, and
constructs the AST. It generates an error report if it detects a syntactic error.

* The Triangle.ContextualApaleer package contains the Checker class.
The checker traverses the AST, links applied occurrences of identifiers to the corre-
sponding declarations, infers the types of all expressions, and performs all necessary

70 Programming Language Processors in Java

type checks. It decorates the AST with these types. It generates an error report if it
detects a contextual error.

+ The Triangle.CodeGenerator package contains the Encoder class. The
encoder traverses the decorated AST, allocates addresses to variables, and generates

TAM object code.

+ The Triangle package contains the Compiler ¢lass. The compiler simply drives
the three phases of the compilation, as described above.

Diagrams describing the complete design of the Triangle compiler are given in
Appendix D. In later chapters we shall continue this case study by looking inside the
individual packages and their classes. Detailed documentation about the contents of
each class can also be found at our Web site (see Preface, page).

3.4 Further reading

The textbook by Aho et al. (1985) offers a comprehensive treatment of all aspects of
compilation. Chapter 1 discusses compiler designs in general, Chapter 2 presents a
complete example of one-pass compilation; Chapter 11 discusses compiler design
issues; and Chapter 12 tooks at several case studies of real compilers.

This book concentrates on multi-pass compilation, in the interests of clarity and
modularity. Other authors, such as Hoare (1973), have stressed the advantages of one-
pass compilation. Welsh and McKeag (1980) devote a large part of their textbook to
one-pass compilation. As a case study they develop a complete compiler for a subset of

Pascal. Welsh and Hay (1986) is a complete one-pass Pascal compiler, together with an -

interpreter. That book is a fine example of literate programming.

The idea of using abstract syntax as a basis for compilation seems to be due to
McCarthy (1963). Despite the attractions of this idea, it has received scant attention in
most compiler textbooks.

Many internal representations other than ASTs are possible, of course. Lower-level
internal representations tend to be more convenient for code generation to real machine
code. A prominent example of this is the Gnu compiler kit, which uses a machine-
independent but low-level intermediate language RTL. We can then construct ‘front-
ends’ translating a variety of high-level languages to RTL, and ‘back-ends’ translating
RTL to a variety of target machine codes. (See Exercise 2.5.) If we have m front-ends
and n back-ends, we can combine these m+n components to make mr distinct compilers.

This is a major saving of effort.

Compilation 71

Exercises

31 ‘In Examples 3..2 and 3.4, the first assignment command ‘c := '&'" was
1gn0refl. Describe how this command would have been subjected to contextual
analysis and code generation.

3.2 The Mini-Triangle source program below left would be compiled to the object
program below right: '
let
const m ~ 7; ’
var x: Integer PUSH 1
in
X 1= m *x ~ LOADL 7

LOAD O0[SB]
CALL mult
STORE 0 {SB]
oP 1
HALT

Describe the compilation in the same manner as Examples 3.1, 3.2, and 3.4,
(You may ignore the generation of the PUSE, and POP instructions.)

3.3 .The Mini-Triangle source program below contains several contextual errors:

let
var a: Logical;
var b: Boolean:
var i: Integer
in
if i then b := 1 = 0 else b := yes

In the same manner as Example 3.3, show how contextual analysis will detect
these errors.

34* Choose a c_ompiler with which you are familiar. Find out and describe its
phases and. its pass structure. Draw a data flow diagram (like Figure 3.1) and a
structure diagram (like Figure 3.8 or Figure 3.9),

3.5 Cons.1der a source language, like Fortran or C, in which the source. program
consists of one or more distinct subprograms — a main program plus some pro-
cedures or functions. Design a compiler that uses ASTs, but (assuming that in-

dividual subprograms are moderately-sized} requires only a moderate amount
of memory for ASTs.

72 Programming Language Processors in Java

3.6* The Triangle compiler would be unable to translate a very 1?rge source
program, because of the memory required to store its AST. ¢0n51der the fol-
lowing proposal to redesign the compiler to improve its handling of very large

source programs.

One procedure/function body is to be (completely) compile.:d at a time. When-
ever the compiler has parsed a procedure/function declaration and cgnstructed
its AST, it breaks off to perform contextual analysis and code genf:ratlon on tl.le
procedure/function body’s AST, and then prunes the‘AST leaving a a.;tub in
place of the procedure/function body. Then the compiler resumes parsing the

source program.

Would such a restructuring of the compiler be feasible? If no, exp¥ain why not.
If ves, work through the following small source program, showing the steps
that would be taken by the compiler, along the same lines as Example 3.5:

let
var n: Integer;
proc inc {) ~
n:=n+1
in
begin n := 0; inc() end

CHAPTER FOUR

Syntactic Analysis

In Chapter 3 we saw how compilation can be decomposed into three principal phases,
one of which is syntactic analysis. In this chapter we study syntactic analysis, and
further decompose it into scanning, parsing, and abstract syntax tree construction.
Section 4.1 explains this decomposition. '

The main function of syntactic analysis is to parse the source program in order to
discover its phrase structure. Thus the main topic of this chapter is parsing, and in
particular the simple but effective method known as recursive-descent parsing. Sec-
tion 4.3 explains how parsing works, and shows how a recursive-descent parser can be
systematically developed from the programming language’s grammar. This
development is facilitated by a flexible grammatical notation (EBNF) and by various
techniques for transforming grammars, ideas that are introduced in Section 4.2.

In a multi-pass compiler, the source program’s phrase structure must be represented
explicitly in some way. This choice of representation is a major design decision. One
convenient and widely-used representation is the abstract syntax free. Section 4.4 shows
how to make the parser construct an abstract syntax tree.

In parsing it is convenient to view the source program as a stream of tokens: symbols
such as identifiers, literals, operators, keywords, and punctuation. Since the source
program text actually consists of individual characters, and a token may consist of
several characters, scanning is needed to group the characters into tokens, and to discard
other text such as blank space and comments. Scanning is the topic of Section 4.5.

4.1 Subphases of syntactic analysis

Syntactic analysis in a compiler consists of the following subphases:

* Scanning (or lexical analysis): The source program is transformed to a stream of
tokens: symbols such as identifiers, literals, operators, keywords, and punctuation.
Comments, and blank spaces between tokens, are discarded. (They are present in the
source program mainly for the benefit of human readers.)

¢ Parsing: The source program '(norw represented by a stream of tokens) is parsed to
determine its phrase structure. The parser treats each token as a terminal symbol.

73

