i 3 92 Programming Language Processors in Java Syntactic Analysis 93

| Now, method parsesub’ ect: The parser is initiated using the following method:

public void parse () {

|
.l
‘ If the current terminal is ‘I’, then clearly the subject is of the form ‘I’; if the current

{h! terminal is ‘a’, then presumably the subject is of the form ‘a Noun’; if the current * On entry to method accept with argument ¢, currentTerminal is supposed to

contain the terminal z. On exit from accept, currentTerminal is supposed to
contain the input terminal immediately following z.

il private void parseSubject () { Subject 1=) L ,
il if (currentTerminal matches I’) _ currentTerminal = firstinput terminal ;
. accept (1) ; I parseSentencr—‘-T {};
- - else | check that no terminal follows the sentence
| if (currentTerminal matches ‘a’) { }
il : accept (‘a’); a This parser does not actually construct a syntax tree. But it does (implicitly) deter-
il parseNoun(} ; Noun mine the input string’s phrase structure. For example, parseNoun whenever called
‘ } else ' | finds the beginning and end of a phrase of class Noun, and parseSubject whenever
if (currentTerminal maiches ‘the’) { called finds the beginning and end of a phrase of class Subject. (See Figure 4.5.)
accept (‘the’) ; the ' 0
parseNoun() ; Noun :
} else .
il report a syntactic error In general, the methods of a recursive-descent parser cooperate as follows:
i'. 1 3 ' « The variable currentTerminal will successively contain each input terminal. All
! ',‘ : This is a little more complicated. According to the production rule, a subject must have parsing methods have access to this variable.
i one of three forms: ‘", ‘a Noun’, or ‘the Noun’. Method parseSubject must decide « On entry to method parseN, currentTerminal is supposed to contain the first
which form it is, and the only way to decide is to inspect the current terminal. On entry terminal of an N-phrase. On exit from parseN, currentTerminal is supposed to
to parseSubject, the current terminal should contain the first terminal of the subject. ‘ contain the input terminal immediately following that N-phrase.

- terminal is ‘¢the’, then presumably the subject is of the form ‘the Noun’; otherwise the
b subject is ill-formed.
If the production rules are mutvally recursive, then the parsing methods will also be

; }f Now method parseNoun: : : ‘ .
il : mutually recursive. For this reason (and because the parsing strategy is top-down), the

|
A private void parseNoun () { ' Noun :i= algorithm is called recursive descent.
i if (currentTerminal maiches ‘caf’) '
\ | ' accept (‘cat’) ; cat : ke '
| else | 4.3.4 Systematic development of a recursive-descent \
qi if (currentTerminal matches ‘mat’) parser ‘ 3
‘ E accept (‘mat’} ; mat . ‘
] else | A recursive-descent parser can be systematically developed from a (suitable} context- 1
if (currentTerminal matches ‘rat’) B free grammar, in the following steps: 1
accept ('rat’) ; rat ' (1) Express the grammar in EBNF, with a singie production rule for each nonterminal

'b else
! report a syntactic error
1 }
This is straightforward. According o the production rule, a noun must be ‘cat’, ‘mat’,
; or ‘rat’, and parseNoun simply checks the contents of currentTerminal to
[discover which it is. If currentTerminal does not contain one of these alternatives (3) Make the parser consist of:
I then the noun is ill-formed.

symbol, and perform any necessary grammar transformations. In particular, always
eliminate left recursion, and left-factorize wherever possible.

(2) Transcribe each EBNF production rule N =X to a parsing method .parseN,
whose body is determined by X.

» aprivate variable currentTokern;

Method parseObject is analogous to parseSubject, and parseVerbK to
parseNoun, so we omit the details here. (See Exercise 4.6.)

» private parsing methods developed in step (2);

94 Programming Language Processors in Java

« private auxiliary methods accept and acceptIt (to be explained later), both
of which call the scanner;

* g public parse method that calls parseS (where S is the start symbol of the
grammar), having first called the scanner to store the first input token in cur-
rentToken.

Example 4.12 Recursive-descent parser for Mini-Triangle

Consider the language Mini-Triangle whose BNF grammar was given in Example 1.3.
We systematically develop a Mini-Triangle parser as follows.

Step (1) is to express the grammar in EBNF, performing any necessary transform-
ations: Recall production rules (1.2a-b):

Command »= single-Command
| Command ; single-Command

The left recursion here is a BNF device for specifying a sequence of single-commands
separated by semicolons. By eliminating the left recursion, we can specify this more
directly using the “*’ notation of EBNF:

Command »= single-Command (; single-Command)*
Now recall production rule (1.6):
V-name u= Ildentifier

We can simplify the grammar (for parsing purposes) by substituting Identifler for V-
name wherever it appears on the right-hand side of a production rule, such as (1.3):

single-Command :i= Identifier := Expression
{ Identifier { Expression)
| if Expression then single-Command
else single-Command
.

The first two alternatives above can now be left-factorized:’

single-Command = Identifier (: = Expression | { Expression))
| if Expression then single-Command
else single-Command
| .

Distinguish carefully between ‘(’ and ‘), which are EBNF grouping parentheses, and the
emboldened ‘(* and ‘)’, which are terminal symbols of the source language. We will
consistently use this typography to distinguish between EBNF symbols and any terminal
symbols that happen to resemble them.

Syntactic Analysis 95

These transformations are justified because they will make the grammar more
suitable for parsing purposes. After making similar transformations to other parts of the
grammar, we obtain the following complete EBNF grammar of Mini-Triangle:

Program single-Command (4.6)

Command single-Command (; single-Command)* 4.7

single-Command = Identifier (s = Expression | { Expression)) 4.8)
| i £ Expression then single-Command
else single-Command
| while Expression do single-Command
[let Declaration in single-Command .
| bhegin Command end '

Exprassion n= primary-Expression 4.9
(Operator primary-Expression)*

primary-Expression :;:= Integer-Literal i ‘ (4.10)
| identifier
| Operator primary-Expression
| (Expression)

Declaration n= single-Declaration (; single-Declaration)* (4.11)

single-Declaration ::= const |dentifier ~ Expression (4.12)
| war Identifier : Type-denoter

Type-denoter n= ldentifier (4.13)

We have excluded production rules (1.10) through (1.13), which specify the syntax
of operators, identifiers, literals, and comments, all in terms of individual characters.
This part of the syntax is called the language's lexicon (or microsyntax). The lexicon is
of no concern to the parser, which will view each identifier, literal, and operator as a
single token. Instead, the lexicon will later be used to develop- the scanner, in Section

4.3,

We shall assume that the scanner returns tokens of class Token, defined in Exam-
ple 4.2. Each token consists of a kind and a spelling. The parser will examine only the
kind of each token.

Step (2) is to convert each EBNF production rule to a parsing method. The parsing
methods will be as follows:

private void parseProgram ();

private void parseCommand ();

private void parseSingleCommand’ () ;
private void parseExpression ();
private void parsePrimaryExpression (};
private void parseDeclaration ();
private void parseSingleDeclaration (};

96 Programming Language Processors in Java

private void parseTypeDencter (};
private void parseldentifier ():
private veoid parselntegerLiteral (};
private void parseOperator ();

Here is method parseSingleDeclaration:

private wvoid parseSingleDeclaration () {
gwitch (currentToken.kind} - { single-Declaration ::=

case Token.CONST:

{
acceptIt{); const
parseldentifier(); Identifier
accept (Token.IS); e
parseExpression() ; Expression

}

break;

case Token.VAR: |

{
acceptIt(); var
parseldentifier(); Idlentifier
accept (Token.COLON) ; H
parseTypelDenoter () ; Type-denoter

}

break;

default:

report a syntactic error

}

Note the use of the auxiliary method acceptIt, which unconditionally fetches the
next token from the source program. The following is also correct:

case Token.VAR:

{
accept {Token.VAR) ; var
parseldentifier(); Identifier
accept (Token.CCOLON) ; :
parseTypeDenoter () ; Type-denoter

}

break;

Here ‘accept (Token.VAR) ;' would check that the curtent token is of kind
Token.VAR. In this context, however, such.a check is redundant.

Now here is method parseCommand:

Syntactic Analysis 97

private void parseCommand ()} { Command ;=
parseSingleCommand() ; single-Command
while (currentToken.kind
: == Token.SEMICOLON)
{ (

acceptIt(); . :
parseSingleCommand(} ; _ single-Command
} Y

}

This method illustrates something new. The EBNF notation ‘(; single-Command)®’
signifies a sequence of zero or more occurrences of ‘7 single-Command’. To par'se this
we use a while-loop, which is iterated zero or more times. The condition for continuing
the iteration is simply that the current token is a semicolon.

Method parseDeclaration is similar to parseCommand. The remaining
methods are as follows:

private void parseProgram () { Program =
parseSingleCommand () ; single-Command
}

private void parseSingleCommand () { single-Command :=
switch (currentToken.kind} { :

case Token.IDENTIFIER:

{
parseldentifier(); Identifier
switch (currentToken.kind) ({ (
cagse Token.RECOMES:
{
‘ acceptIt(); 1=
parseBExpression(); - Expression
}
break;
case Token.LPAREN: |
{
acceptIt(); (
parseExpression(}; Expression
accept (Token.RPAREN) ;)
}
break;
default:
report a syntactic error
} :)
1

break;

98 Programming Language Processors in Java

case Token.IF:

{
acceptIt();
parseExpression{);
accept {Token.THEN) ;
parseSingleCommand({) ;
accept (Token.ELSE) ;
parseSingleCommand () ;

}

break;

case Token.WHILE:

{
acceptIt(};
parseExpression();
accept (Tcken.DO) ;
parseSingleCommand (] ;

1

break;

case Token.LET:

{
acceptIt();

. parseDeclaration{);
accept {(Token.IN);
parseSingleCommand () ;

}
break;

‘case Token.BEGIN:

{
acceptIt();
parseCommand () ;
accept {Token.END) ;

1
break;

default:
report a syntactic error

}

private void pargeExpression O {

parsePrimaryExpression(};
while (currentToken.kind
== Tocken.OPERATOR)

{

if

Expression

then

single-Command
‘alse

single-Command

while
Expression

do
singte-Command

let
Declaration

in
single-Command

begin
Command
end

Expression =
primary-Expression

(

parseOperator () ;
parsePrimaryExpression() ;

}

private void parsePrimaryExpression ()
switch (currentToken.kind) {
cage Token.INTLITERAL:
parselntegerLiteral();
break;

cage Token.IDENTIFIER:
parseIdentifier();
break;

case Token.OPERATOR:

{
parselOperator () ;
parsePrimaryExpression();
}
break;

case Token.LPAREN:
{ .
acceptIt{):;
parseExpression(};
accept (Token.RPAREN) ;
1

break;

default:
report a syntactic error

¥

private void parseTypeDenoter () {
parseldentifier();

}

Syntactic Apalysis 99 |

Operator
primary-Expression

)*

{
primary-Expression 1=

Integer-Literal

Identifier

Operator
primary-Expression

. (
. Expression
)

Type-denoter ::=
Identifier

The nonterminal symbol Identifier corresponds to a single token, so the method

parseldentifier is similar to accept:

private vold parseIdentifier () {

if (currentToken.kind == Token.IDENTIFIER)

currentToken = gcanner.scan();
else :
report & syntactic error

100 Programming Language Processors in Java

The methods parseIntegerLiteral and parseOperator are analogous.’
Step (3) is to assemble the complete parser:
public c¢lass Parser {
private Token currentToken;

private void accept (byte expectedKind) {

if (currentToken.kind == expectedKind)
currentToken = scanner.scan();
else

report a syntactic error

}

private void acceptIt ()} {
currentToken = scanner.scan();

}
// Parsing methods, as above.
public void parse () {
currentToken = scanner.scani);
parseProgram(} ;
if (currentToken.kind != Token.EOT)
report a syntactic error
}

}

The parser reads the next input token by calling the scanner. The method call ‘scan-
ner.scan ()’ constructs the next token from the input and returns it. (This will be
explained in Section 4.5.)

Note the following points:
» The parser examines only the kind of the current token, ignoring its spelling.

+ After parsing the program, parse checks that the token following the program is the
end-of-text.

« The parsing methods are mutually recursive (because the production rules are
mutually recursive). For example, parseCommand calls parseSingleCommand,
which may call parseCommand recursively.

' 1

¢ Later we shall enhance method parseldentifier to construct an AST terminal node
containing the identifier’s spelling. It would be wrong to write simply ‘accept (Token.
IDENTTFIER) ;°, because this would discard the identifier token, iricluding its spelling. The
same point applies to parseIntegerliteral, and parseCperator,

Syntactic Analysis 101

Having worked through a complete example, let us now study in general terms how
we systematically develop a recursive-descent parser from a suitable grammar. The two
main steps are: (1) express the grammar in EBNF, performing any necessary transform-
ations; and (2) convert the EBNF production rules to parsing methods. It will be con-
venient to examine these steps in reverse order.

Converting EBNF production rules to parsing methods

Consider an EBNF production rule & ::= X. We convert this production rule to a parsing
method named parseN. This method’s body will be derived from the extended RE X:

private vold parseN (} { !
parse X
}

Here ‘parse X° is supposed to parse an X-phrase, i.e., a terminal string generated by X.
{And of course the task of method parselV is to parse an N-phrase.)

Next, we perform stepwise refinement on ‘parse X°, decomposing it according to the
structure of X. (In the following, X and ¥ stand for arbitrary extended REs.)

* We refine ‘parse &’ to a dummy statement.
* We refine ‘parse £ (where £ is a terminal symbol) to:
accept (¢) ;

In a situation where the current terminal is already known to be ¢, the following is also
correct and more efficient:

acceptIt(};

« We refine ‘parse N' (where N is a nonterminal symbol) to a call of the corresponding
parsing method:

parseN();
* We refine ‘parse X 1" to:

{
parse X
parse ¥

}

The reasoning behind this is simple. The input must consist of an X-phrase followed
by a Y-phrase. Since the parser works from left to right, it must parse the X-phrase and
then parse the Y-phrase.

This refinement rule is easily generalized to ‘parse X1 ... Xn'.

* Werefine ‘parse X | ¥” to:

102 Programming Language Processors in Java

switch (currentToken.kind) {
cases in starters[X] :
parse X
break;
cases in starters[Y] :
parse ¥
break;
default:
report a syntactic error

}

The reasoning behind this is also straightforward. The input must consist of either an
X-phrase or a Y-phrase. The parser must parse one of these, and it must decide imme-
diately which it will be. It should choose ‘parse X only if the current token is one that
can start an X-phrase (since otherwise ‘parse X° would certainly fail). And likewise it

should choose ‘parse ¥ only if the current token is one that can start a Y-phrase. We

can express these conditions abstractly in terms of the starter sets of X and Y, and
concretely in terms of Java case labels. '

The parser will work correctly only if starters[X] and starrers{Y] are disjoint.
Otherwise the parser could not know whether to parse an X-phrase or a ¥-phrase. In
fact, if token ¢ is in both starters[X] and starters[Y], the switch-statement will con-
tain two occurrences of ‘case ¢:°, and will fail to compile. (See Example 4.15.)

>

This refinement rule is easily generalized to ‘parse X1 | ... | Xx".
» We refine ‘parse X*’ to:

while (currentToken.kindisin starters[X])
parse X

The reasoning behind this is as follows. The input must consist of zcro or more
consecutive X-phrases. The parser must repeatedly parse X-phrases, and it does this by
means of a while-loop. Before each iteration, it must decide whether to terminate or to
continue parsing X-phrases. It should continue only if the current token is one that can
start an X-phrase (since otherwise ‘parse X* would certainly fail).

The parser will work correctly only if starrersfX] is disjoint from the set of tokens
that can follow X* in this particular context. Suppose that some token ¢ is in
starters[X] and can also follow X*. When the current token is 7, the parser will
continue parsing X-phrases even when it should terminate. (See Example 4.16.)

The following examples illustrate the stepwise refinement of parsing methods.

Example 4.13 Stepwise refinement of parseCommand

Let us follow the stepwise refinement of the method parseCommand of Example 4.12,
starting from production rule (4.7):

Command ::= single-Command (3 single-Command)*

Syntactic Analysis 103

We start with the following outline of the method:

private void pargeCommand .() {
parse single-Command (; single-Command)*

}
‘Now we refine ‘parse single-Command (; single-Command)*’ to:

parseSingleCommand () ;
parse (3 single-Command)*

Now we refine ‘parse (; single-Command)*’ to:

while (currentToken.kind == Token.SEMICOLON)
parse (; single-Command)

since starters|; single-Commandj = {; }.
Finally we refine ‘parse (; single-Command)’ to:

{
‘acceptIt();
pargeSingleCommand () ;

}

In this situation we know already that the current token is a semicolon, so ‘accept-
It (};’isa correct alternative to ‘accept (Token.SEMICOLON) ;.

O

Example 4.14 Stepwise refinement of parseSingleDeclaration

Let us also follow the stepwise refinement of the method parseSingleDeclara-
tion of Example 4.12, starting {rom production rule (4.11):

single-Declaration ::= const [dentifier ~ Expression
| war Identifier 1+ Type-denoter

We start with the following outline of the method:

private void parseSingleDeclaration {) {
parse const |dentifier ~ Expression | vax Ideniifier :+ Type-denoter
1

Now we refine ‘parse const ... | var..." to:
switch {currentToken.kind) {

case Token.CONST:
parse .const Identifier ~ Expression
break; .k

104 Programming Language Processors in Java

cage Token.VAR:
parse wvar ldentifier :+ Type-denoter
break;

default:
report a syntactic error

}

since starters[const ...] = {const} and starfers|var ...] = {var). Fortunately,
these starter sets are disjoint.

Finally, we refine ‘parse const |dentifier ~ Expression’ to:

{
acceptIt();
parseldentifier();
accept (Token.IS);
parseExpression();
1

and ‘parse var Identifier : Type-denoter’ similarly, as shown in Example 4.12.

[

In defining how to refine ‘parse X | ¥" and ‘parse X*°, we stated certain conditions
that must be satisfied. These conditions are:

« If the grammar contains X | Y, starters[X] and starters[Y] must be disjoint.

o If the grammar contains X*, starters[X] must be disjoint from the set of tokens that
can follow X* in this particular context.

A grammar that satisfies both these conditions is called an LL(1) grammar.
Recursive-descent parsing is suitable orly for L1(1) grammars.

Not all programming language grammars are LL(1). In practice, however, nearly
every programming language grammar can easily be transformed to make it LL{1),
without changing the language it generates. Why this should be so is a matter for
conjecture, but often a language designer will consciously design the new language’s
syntax to be suitable for recursive-descent parsing.

The following examples illustrate grammars that are not LL(1). However, simple
transformations of these grammars are sufficient to make them LI(1).

Example 4.15 Non-LL(1) grammar for Mini-Triangle

Recall production rules (1.3a—f) in the original grammar of Mini-Triangle:

Syntactic Analysis 105

single-Command = V-name := Expression
| Identifier { Expression }
| if Expression then single-Command
‘ elge single-Command

The relevant starter sets are:

starters[V-name &= Expression] starters[V-name]]

= {Identifier}
starters[[ldentifier (Expression) | = {Iidentifier}
starters[if Expression then .,] = {if}

The first two are not disjoint, so the grammar is not LL({1).

What would happen if we tried to develop a parsing method directly from the above
production rule? The parsing method would turn out as follows:

private volid parseSingleCommand {) {
switch {(currentToken.kind) {

cagse Token.IDENTIFIER: {
parseVname () ;
accept (Token.BECOMES) ;
parseExpression();

1
break;

case Token.IDENTIFIER: {
parseldentifier();
accept (Token . LPAREN) ;
parseExpression();
accept {Token.RPAREN)

}
break;

case Token.IF:

default:

¥
This parser is clearly incorrect, and will not compile due to the duplicate case label.

Fortunately the problematic production rule can easily be transformed, by
substitution and left factorization, to solve this particular problem. This was done in
Example 4.12. '

O

106 Programming Language Processors in Java

Example 4.16 Non-LL(1) grammar for Algol

Consider the following production rules taken from a grammar of Algol:
Block = begin Declaration (; Declaration)* ; Command end
Declaration = integer identifier (, ldentifier)*

Here starters[; Declaration] = {3}, and the set of terminals that can follow
‘(; Declaration)*” in this context is {7 }. These sets are not disjoint, so the grammar is
not LL(1).

If we tried to develop a parsing method directly from the production rule defining
Block, we would get: '

private void parseBlock () {
accept (Token.BEGIN) ;
parseDeclaration() ;
while (currentTokern.kind == Token.SEMICOLON}
{
acceptIt{);
parseDeclaration(};
} .
accept (Token.SEMICOLON) ;
parseCommand () ;
accept (Token.END) ;
}

This is clearly incotrect. [teration will continue as long as the current token is a semico-
lon. But this might be the semicolon that separates the declarations from the command,
e.g., the second semicolon in:

begin integer i; integer j; i := j+1 end
Then parseBlock would attempt to parse the command ‘1 i= j+1’ as a declaration.
Fortunately, we can transform the production rule defining Block:
Block ::= begin Declaration ; (Declaraticn ;)* Command end

This does not affect the generated language, but leads to the following correct parsing
method:

private void parseBlock () {
accept (Token.BEGIN) ;
parseDeclaration();
accept (Token . SEMICOLON} ;
while (currentToken.kind == Tcken.INTEGER)
{
parseDeclaration();
accept (Token.SEMICOLON} ;

Syntactic Anaiysis 107

parseCommand () ;
accept (Token.END) ;
}

This eliminates the problem, assuming that starters[Declaration 3] is disjoint from
starters[Command].

O

The above examples are quite typical. Although the LL(1) condition is quite restric-
tive, in practice most programming language grammars can be transformed to make
them LL(1) and thus suitable for recursive-descent parsing.

x

Performing grammar transformations

Left factorization is essential in some situations, as illustrated by the following exampie.

Example 4.17 Left factorization

In Example 4.12, the production rule ‘V-name .= Identifier’ was eliminated. The
occurrences of V-name on the right-hand sides of (1.3a) and (1.5b) were simply replaced
by ldentifier, giving:

single-Command = |dentifier s = Expression
| Identifier { Expression)
| if Expression then single-Command
else single-Command
I

The starter sets are not disjoint:

starters[[Identifier : = Expression]

{Identifier}

starters[[|dentifier { Expression)] {Identifier}

However, the substitution created an opportunity for left factorization:

single-Command = Identifier (2= Expression | { Expression })
| if Expression then single-Command
else single-Command
|

This is an improvement, since now the relevant starter sets are disjoint:
starters] = = Expression] = {:=}

{}

starters[(Expression)]

]

Left recursion must always be eliminated if the grammar is to be LI(1). The
following example shows why.

108 Programming Language Processors in Java .

Example 4.18 Left recursion elimination

Recall production rules (1.2a—b) in the grammar of Mini-Triangle:

Command = single-Command
| Command ; single-Command

In Example 4.12 we eliminated this left recursion, yielding:
Command n= single-Command (; single-Command)*

What would happen if we omitted this transformation? First we would compute the
relevant starter sets:

starters[single-Command] [Identifier, L€, while, let, bagin}
starters[Command ; single-Command] = { Identifier, 1€, while, let, begin}

Then we would write the parsing method like this:

private void parzeCommand (} {
switeh (currentToken.kind) {

case Token.IDENTIFIER:

case Token.IF:

case Token.WHILE:

casge Token.LET:

cage Token.BEGIN:
parseSingleCommand (} ;
break:

case Token.IDENTIFIER:
case Token.IF:
case Token.WHILE:
case Token.LET:
case Token.BEGIN: {
pargeCommand () ;
accept (Token.SEMICOLON) ;
parseSingleCommand () ;
}
break;

default:
report a syntactic error

}

This method cannot tell which way to go if the current token is an identifier, *if’,
‘while’, ‘let’, or ‘begin’. It simply does not have the information required to make a
correct decision. (In fact, this method will fail to compile due to the duplicate case
labels.)

Il

In general, a grammar that exhibits left recursion cannot be LL(1). Any attempt to
convert left-recursive production rules directly into parsing methods would result in an
incorrect parser. It is easy to see why. Given the left-recursive production rule:

N:=X|NY
we find:
starters[N Y] = startersN]|| = starters|[X] © starters[N Y]

so starters[X] and starters[N ¥] cannot be disjoint.

4.4 Abstract Syntax trees

A recursive-descent parser determines the source program’s phrase structure implicitly,
in the sense that it finds the beginning and end of each phrase. In a one-pass compiler,
this is guite sufficient for the syntactic analyzer to know when to call the contextual
analyzer and code generator. In a multi-pass compiler, however, the syntactic analyzer
must construct an explicit representation of the source program’s phrase structure. Here
we shall assume that the representation is to be an AST.

4.4.1 Representation

The following example illustrates how we can define ASTs in Java.

Example 4.19 Abstract syntax trees of Mini-Triangle

Figure 4.4 shows an example of a Mini-Triangle AST. Below we summarize all possible
forms of Mini-Triangle AST, showing how each form relates to one of the production
rules of the Mini-Triangle abstract syntax (Example 1.5):

* Program ASTs (P):

Program
(1.14)
c
s Command ASTs (C):
AssignCommand CallCommand SequentialCommand
—— (L152) —— (L15b) — {1.15¢c)

v E Identifier E Cy Cy

spéiliﬁg

