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Semantics of CASL basic specifications

The CASL logic (institution)

e Signatures: a signature provides the vocabulary

e Signature morphisms: for extending and renaming
signatures

e Models: interpret the vocabulary of a signature with
mathematical objects (sets, functions, relations)

e Sentences (formulae): for axiomatizing models
denote true or false in a given model

e [erms: parts of sentences, denote data values

e Satisfaction of sentences in models
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Semantics of CASL basic specifications 5

CASL many-sorted signatures

® a set S of sorts,

e an S* x S-indexed set (T'F, s)w scs*xs of total operation
symbols,

e an S* x S-indexed set (PFy, s)w ses*xs Of partial operation
symbols, such that TF, ;N PF, ; =0,

e an S*-indexed set (P,),cs+ of predicate symbols

Signature morphisms map these components in a compatible
way

T.MossakOWSki, L. Schroder: CASL, October 2006 ’.smmcocumou



Semantics of CASL basic specifications

Example signatures

o YN — (fNat}, {0 : Nat, succ: Nat — Nat},
{pre: Nat —?Nat}, ()

e ({Elem},0,0,{__ < __: Elem x Elem})

o ({Flem, List},
{Nil : Elem,Cons: Elem * List — List}, (), D)
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Semantics of CASL basic specifications

CASL many-sorted models

For a many-sorted signature > = (S, TF, PF, P) a
many-sorted model M € Mod(>) consists of

e a non-empty carrier set s for each sort s € S (let w¥

denote the Cartesian product s x --- x s when

W= 81...5),
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Semantics of CASL basic specifications

CASL many-sorted models

For a many-sorted signature > = (S, TF, PF, P) a
many-sorted model M € Mod(>) consists of

e a non-empty carrier set s for each sort s € S (let w¥

denote the Cartesian product s x --- x s when

W= 81...5),

e a partial function fM from w™ to s™ for each function
symbol f € TF,, s or f € PF, ;, the function being
required to be total in the former case,

e a predicate p™ C w for each predicate symbol p € P,,.
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Semantics of CASL basic specifications

o Nath = IN, 0 = K, suct(z) = «,
Y, if TM x outputs y on input x

K(.\ _
prev(z) = undefined, otherwise
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Semantics of CASL basic specifications

o Nath = IN, 0 = K, suct(z) = «,

K/ )Y, if TM x outputs y on input x
pret(z) = { undefined, otherwise

e Nat! = IN — IN, 0/ (z) =0, suc” (f)(z) = f(x) + 1,
pref’ (f) undefined for each f
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Semantics of CASL basic specifications

10

CASL many-sorted terms

Given a signature X and a variable system (X;)cg, the set
of terms is defined inductively as follows:

e variables x € X, are terms of sort s
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CASL many-sorted terms

Given a signature X and a variable system (X;)cg, the set
of terms is defined inductively as follows:

e variables x € X, are terms of sort s

e applications fy, s(t1,...,t,) is a term of sort s, if
feTF,;UPF,andt;is aterm of sort s;, w =51 ...85),.
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Semantics of CASL basic specifications

11

Semantics of terms

Given a Y-model and a variable valuation v: X — M, the
semantics v# of terms is defined as follows:

e variables v (z) = v(z)
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Semantics of terms

Given a Y-model and a variable valuation v: X — M, the
semantics v# of terms is defined as follows:

e variables v (z) = v(z)

e applications V#(fw,s(tl, o tn)) = %S(V#(tl), LU (t))
if all components are defined (undefined otherwise)
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Semantics of CASL basic specifications

12

CASL formulae

The set of (3, X )-formulae is defined inductively as follows:

e strong equations t1 = 9
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Semantics of CASL basic specifications

12

CASL formulae
The set of (3, X )-formulae is defined inductively as follows:

e strong equations t1 = 9

e existential equations t; = 5
e predications py(t1,...,t,)

e definedness assertions def(t)

e conjunctions, disjunctions, implications, equivalences of
formulae
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CASL formulae

The set of (3, X )-formulae is defined inductively as follows:
e strong equations t1 = 9

e existential equations t; = 5

e predications py(t1,...,t,)

e definedness assertions def(t)

e conjunctions, disjunctions, implications, equivalences of
formulae

e universal, existential, unique-existential quantifications
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Semantics of CASL basic specifications 13

Satisfaction of atomic formulae

A formula ¢ is satisfied in a model M w.r.t. a valuation
v: X — M (short notation: M, v = ), if

o M. v

— ¢, = ty if V7 (1) = v7(t3) or both sides are

undefined,
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Semantics of CASL basic specifications

13

Satisfaction of atomic formulae

A formula ¢ is satisfied in a model M w.r.t. a valuation
v: X — M (short notation: M, v = ), if

o M,v =t =ty if v7(t;) = 17 (t2) or both sides are
undefined,

o M,v =1t =ty if v7(t1) = 17 (t2) and both sides defined,

~ M,V _pw(tb“ 7tn)
if (v7(t1),...,v7(t,)) is defined and € p,

)
o M,v = def(t) if v7(t) is defined

T .Mossakowski, L. Schréder: CAsL: October 2006 i coommon



Semantics of CASL basic specifications

14

Satisfaction of compound formulae

A standard in first-order logic, i.e.

e a conjuction is satisfied iff all the conjuncts are satisfied
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Satisfaction of compound formulae

A standard in first-order logic, i.e.

e a conjuction is satisfied iff all the conjuncts are satisfied
e similar for disjunction etc.

e a universal (existential) quantification is satisfied when all
(some) of the changes of the valuation for the quantified
variable lead to satisfcation in the model:

M,v =Vx:s. ¢ iff M,& = ¢ for all valuation ¢ that
differ from v only on z : s
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Semantics of CASL basic specifications

Satisfaction of closed formulae

A closed formula (sentences) is satisfied in a model iff it is
satisfied w.r.t. the empty valuation:

MEpift M,0 = ¢
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Sort generation constraints
A Y-sort-generation constraint (S’, F') consists of
e a set of sorts S’ C S

e a set of (qualified) operation symbols F' C TF U PF

M = (S', F') iff the carriers of sorts in S are generated by
terms in I’ (with variables of sorts outside S’)
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Semantics of CASL basic specifications

16

Sort generation constraints

A Y-sort-generation constraint (S’, F') consists of

e aset of sorts 8" C S

e a set of (qualified) operation symbols F' C TF U PF

M = (S', F') iff the carriers of sorts in S are generated by
terms in I’ (with variables of sorts outside S’)
i.e. for each s € S, a € sM, there is some term ¢ (with

variables of sorts outside S’) and some valuation v with
V7 (t) = a.
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Semantics of CASL basic specifications

17

Example X"“-models

e Nat¥ = IN, 0M=0, sucM(z) =z +1,
vy Jx—1,2>0
pre”(z) = { undefined, otherwise

e Nat = IN U {OO}, 0V=0,

N 00, if £ = o0
— < ] :
suc” (x) .z + 1, otherwise
N [z — 1, if 0 <2z # oo
= < : :
pre”(z) | undefined, otherwise

o Nat! = {x}, 01 = %, suc’ (x) = *, pre! (x) = x
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Semantics of CASL basic specifications

18

o Nath = IN, 0 = K, suct(z) = «,

pret (z) = { /

if TM x outputs y on input x

undefined, otherwise

e Nat! = IN — IN, 0/ (z) =0, suc” (f)(z) = f(x) + 1,
pref’ (f) undefined for each f
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Semantics of CASL basic specifications 19

yNal_models revisited

o M = ({Nat},{0, succ}) because
NatM™ consists solely of interpretations of successor terms
0, succ(0), succ(succ(0)), ... (“no junk™)

T .Mossakowski, L. Schréder: CAsL: October 2006 i coommon



Semantics of CASL basic specifications 19

yNal_models revisited

e M = ({Nat}, {0, succ}) because
NatM™ consists solely of interpretations of successor terms
0, succ(0), succ(succ(0)), ... (“no junk™)

e N [~ ({Nat},{0, succ}) because oo is not obtained by
any successor term

T .Mossakowski, L. Schréder: CAsL: October 2006 i coommon



Semantics of CASL basic specifications 19
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o M = ({Nat},{0, succ}) because
NatM™ consists solely of interpretations of successor terms
0, succ(0), succ(succ(0)), ... (“no junk™)

e N [~ ({Nat},{0, succ}) because oo is not obtained by
any successor term
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o \/

> Ni_models revisited
= ({Nat}, {0, succ}) because

NatM™ consists solely of interpretations of successor terms

01
o V

succ(0), succ(succ(0)), ... (“no junk”)

£ ({Nat}, {0, succ}) because oo is not obtained by

any successor term

o[
o

— ({Nat}, {0, succ}) because * is 07 (0)

£ ({Nat}, {0, succ}): 07 (suc™(0)) is 0 for any n
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o \/

> Ni_models revisited
= ({Nat}, {0, succ}) because

NatM™ consists solely of interpretations of successor terms

01
o V

succ(0), succ(succ(0)), ... (“no junk”)

£ ({Nat}, {0, succ}) because oo is not obtained by

any successor term

o[
o
o [

— ({Nat}, {0, succ}) because * is 07 (0)

£ ({Nat}, {0, succ}): 07 (suc™(0)) is O for any n
£ ({Nat}, {0, succ}) because Nat! is uncountable

(but the set of terms is countable)
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Semantics of basic specifications

e Basic specifications denote a signature and a set of
sentences
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Semantics of basic specifications

e Basic specifications denote a signature and a set of
sentences

e Ultimatetly, the semantics of a basic specification consists
of that signature together with the class of models
satisfying the sentences

T.MossakOWSki, L. Schroder: CASL, October 2006 ’.smmcocumou



Semantics of CASL basic specifications 21
Format of semantic judgements
e ¥ - BASIC-SPEC > (¥, U)
T.Mossakowski, L. Schroder: CasL; October 2006 Pisciico
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Semantics of CASL basic specifications

21

Format of semantic judgements

e X - BASIC-SPEC > (Y, U)
e > is the local environment of previously-declared symbols
e Y extends ¥ with new symbols

e ¥ is 3 set of Y-sentences
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Semantics of CASL basic specifications 22

Example
e ({FElem},0,0,0)

- free type List ::= Nil|Cons(Elem, List)> (3, U)
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Semantics of CASL basic specifications 22

Example
e ({FElem},0,0,0)

- free type List ::= Nil|Cons(Elem, List)> (3, U)

e X' = ({FElem, List},
{Nil : Elem,Cons: Elem x List — List}, (), D)
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Example
e ({FElem},0,0,0)

- free type List ::= Nil|Cons(Elem, List)> (3, U)
e X' = ({FElem, List},
{Nil : Elem,Cons: Elem x List — List}, (), D)

e U consists of axioms stating that

o Cons is injective
o the ranges of Nl and Cons are disjoint

o List is generated by Nl and Cons (i.e.
({List},{Nil : Elem,Cons: Elem *x List — List})

T.MossakOWSki, L. Schroder: CASL, October 2006 ’.smmcocumou



Semantics of CASL basic specifications 23

This means that the models
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This means that the models

e may Iinterpret Elem with any set
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This means that the models

e may Iinterpret Elem with any set

e must interpret List with lists over that set (up to
isomorphism)
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Semantics of CASL basic specifications

23

This means that the models

e may Iinterpret Elem with any set

e must interpret List with lists over that set (up to
isomorphism)

e i.e. terms Nil, Cons(e, Nil) with e € Elem™, . ..
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Semantics of CASL basic specifications 24

Proof system for the CASL institution

] e = false]

0 Y

(Absurdity) faése (Tertium non datur) "
]
s o

(=-intro) % i ” (=-elim) i ?; v
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Semantics of CASL basic specifications 25

(Reflexivity) . if x4 is a variable (V-elim) VE 2‘5 ¥
Ls — Lg

(V-intro) 7 i % where x; occurs freely only in local assump.

(Congruence) ¥ if p|v] defined
rs€FV (p) Ls = V(CES)) = SO[V]

(Totality) T F o ) if w=s1...5,f€TF,

s g oo
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Semantics of CASL basic specifications 26

(Substitution) (/\xSEFV def( (25))) = o[V

if p|v| defined and F'V (p ) occur freely only in local assumpt.

(Function Strictness) by =t t some subterm of ¢, or iy

def(t)

(Predicate Strictness) pw(éejg(' St“) ie{l,...,n}
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Semantics of CASL basic specifications 27

(5", F')
2} WA AN o)

Nico VE i 5. Uy(x)
S | 1 1, Cf Gk k k
={f1:81.. .8, —58; .5 fkisi...sp,, —S )
W, is a formula with one free variable of sort s, for s € 5,

J
0; =VT1:8],. ., T, * Sy Ty

(d@ffj(xly ey Tmy)) A A@e{1, amj}; sles’ v (%)>
=2'N (fj(ajl, e ,lemj))

(Induction)
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Semantics of CASL basic specifications 28

(List-Induction)

({List}, {nil : List,cons: Elem % List — List})
U(nil) AVe: Elem; L : List. V(L) = Y(cons(e, L))

Vo : List. V(x)

U s a formula with one free variable of sort List

Start induction proof
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) 1 N\ N = Nyeg VT 1 5. ps(T)

(5", F")
ol 1 1. CF .ok k k
={f1is1.. .8, —58; 5 frisi...s,, — ST
the predicates ps: s (s € 5") occur only in local assumpt.,

(Sortgen-intro

. gJ
0; =VT1: 8], -, T * Sy, -

(deffj(llfh e 7xmj)) A /\@'e{l,...,mj}; sles Pyl (xl))
—> psj (f](ajly R 7$mj))
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List-Sortgen-intro

p(nil) A (Ve : Elem; L : List. p(L) = p(cons(e, L)))
= Vx : List. p(x)

({List}, {nil : List,cons: Elem % List — List})

the predicate p : List occurs only in local assumptions
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Exercise

e Prove that your favourite sorting algorithm actually
computes a permutation, using induction on lists
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Course on values-Induction

(List-Induction)

({List}, {nil : List,cons: Elem % List — List})
U(nil) ANVe : Elem; L : List.
(VL1. #L1 < #L = Y(L1)) = Y(cons(e, L))

Vo : List. V(x)

U s a formula with one free variable of sort List
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Soundness and Completeness

Let U be a set of X-sentences, ¢ be a Y-sentence.

o U -y v if ¢ can derived from W using the calculus rules

o U =y ¢ if for every ¥-model, M =5 ¥ implies M = ¢

e [he calculus is sound: W -y ¢ Implies ¥ =y ¢

e [he calculus is complete: ¥ =5 ¢ implies ¥ -5, © only if
sort generation constraints are excluded
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CASL subsorted signatures

A subsorted signature X = (S, TF, PF', P, <) consists of
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CASL subsorted signatures

A subsorted signature X = (S, TF, PF', P, <) consists of

e a many-sorted signature (S, TF, PF, P)
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CASL subsorted signatures

A subsorted signature X = (S, TF, PF', P, <) consists of

e a many-sorted signature (S, TF, PF, P)

e a pre-oder (reflexive transitive relation) < on S
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CASL subsorted signatures

A subsorted signature X = (S, TF, PF', P, <) consists of

e a many-sorted signature (S, TF, PF, P)

e a pre-oder (reflexive transitive relation) < on S

Signature morphisms are many-sorted signature morphisms
preserving the pre-order and the overloading relations
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The overloading relations

fw’,s’ ~F fw”,s” Iﬂ:

T.Mossakowski, L. Schroder: CASL; October 2006

ssssss



Semantics of CASL basic specifications

35

The overloading relations

fw’,s’ ~F fw”,s” Iﬂ:

e there exists w with w < w’ and w < w”, and
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The overloading relations

fw’,s’ ~F fw”,s” Iﬂ:

e there exists w with w < w’ and w < w”, and

e there exists s with s’ < s and s’ < s
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The overloading relations

fw’,s’ ~F fw”,s” Iff

e there exists w with w < w’ and w < w”, and

e there exists s with s’ < s and s’ < s

Operation symbols that are in the overloading relation have
to be interpreted in the “same” way.
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The overloading relations

fw’,s’ ~F fw”,s” Iff

e there exists w with w < w’ and w < w”, and

e there exists s with s’ < s and s’ < s

Operation symbols that are in the overloading relation have
to be interpreted in the “same” way.
Similarly for predicate symbols.
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Translation from subsorted to many-sorted
signatures

Construct many-sorted X7 out of subsorted ¥ as follows:

e Add injections emb: s— s’ for s < &’
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Translation from subsorted to many-sorted
signatures

Construct many-sorted X7 out of subsorted ¥ as follows:
e Add injections emb: s— s’ for s < &

e Add partial projections proj: s’ ——?s for s < s
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Translation from subsorted to many-sorted
signatures

Construct many-sorted X7 out of subsorted ¥ as follows:
e Add injections emb: s— s’ for s < &

e Add partial projections proj: s’ ——?s for s < s

e Add membership predicates elem? : s’ for s < &’
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Translation from subsorted to many-sorted
signatures

Construct many-sorted X7 out of subsorted ¥ as follows:

e Add injections emb: s— s’ for s < &’

e Add partial projections proj: s’ ——?s for s < s

e Add membership predicates elem? : s’ for s < &’

> is complemented by a set of axioms .J, stating injectivity
of embeddings and various compatibility conditions
(including preservation of overloading)
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Subsorted models and sentences

e are just many-sorted X7-models and -sentences

e satisfaction is just many-sorted satisfaction
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