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Rooms

e Monday 12:00 - 14:00 MZH 1400
@ Thursday 14:00 - 16:00 MZH 5210

@ Exercises (bring your Laptops with you!)

o Wednesday 8:00 - 10:00 Sportturm C 5130
e or within the course

o Web: www.informatik.uni-bremen.de/agbkb/lehre/
ws09-10/Logik/
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The formal language PL1

PL1 is the formal language of first-order predicate logic

Why do we need a formal language?

= Slides from Prof. Barbara Konig, Universitat Duisburg-Essen
http://www.ti.inf.uni-due.de/teaching/ws0607/logik/folien/
einfuehrung.pdf
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The language of PL1: individual constants

@ Individual constants are symbols that denote a person, thing,

object
@ Examples:
e Numbers: 0, 1, 2, 3, ...
o Names: Max, Claire
o Formal constants: a, b, ¢, d, e, f, n1, n2
@ Each individual constant must denote an existing object
@ No individual constant can denote more than one object
@ An object can have 0, 1, 2, 3 ...names
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The language of PL1: predicate symbols

@ Predicate symbols denote a property of objects, or a relation
between objects

@ Each predicate symbol has an arity that tell us how many
objects are related

@ Examples:

o Arity 0: GateO_is_low, A, B, ...
o Arity 1: Cube, Tet, Dodec, Small, Medium, Large
o Arity 2: Smaller, Larger, LeftOf, BackOf, SameSize, Adjoins

o Arity 3: Between
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The interpretation of predicate symbols

@ In Tarski's world, predicate symbols have a fixed
interpretation, that not always completely coindices with the
natural language interpretation

@ In other PL1 languages, the interpretation of predicate
symbols may vary. For example, < may be an ordering of
numbers, strings, trees etc.

@ Usually, the binary symbol = has a fixed interpretation:
equality
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Atomic sentences

@ in propositional logic (Boole):
e propositional symbols: a, b, c, ...

@ in PL1 (Tarski's world):

o application of predicate symbols to constants: Larger(a,b)
o the order of arguments matters: Larger(a,b) vs. Larger(b,a)
o Atomic sentences denote truth values (true, false)
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Function symbols

@ Function symbols lead to more complex terms that denote
objects. Examples:
e father, mother
o +, -, *, /
@ This leads to new terms denoting objects:
o father(max)  mother(father(max))
o 3%(4+2)
@ This also leads to new atomic sentences:

o Larger(father(max),max)
o 2<3%(4+2)
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Logical validity; satisfiability

A sentence A is a logically valid, if it is true in all circumstances.
A sentence A is a satisfiable, if it is true in at least one
circumstance.

A circumstance is

@ in propositional logic: a valuation of the atomic formulas in
the set { true, false }

@ in Tarski's world: a block world
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Consequences . . .

STAY WITH ME. FOOD 15 FOR EATING—

IF YOU RUN AWRAY 1F You THROW THE Fooo,
I'lL HAWE TE CARRY YOU. VL PUT you Ooen,
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Logical consequence

A sentence B is a logical consequence of A1, ..., Ay, if all
circumstances that make Aq, ..., A, true also make B true.
In symbols: Ay,..., A, E B.

A1,..., A, are called premises, B is called conclusion.

In this case, it is a valid argument to infer B from Ay, ... A, If
also Aj, ... A, are true, then the valid argument is sound.
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Logical consequence — examples

@ All men are mortal. Socrates is a man. So, Socrates is mortal.
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Logical consequence — examples
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Logical consequence — examples

@ All men are mortal. Socrates is a man. So, Socrates is mortal.
(valid, sound)

@ All rich actors are good actors. Brad Pitt is a rich actor. So
he must be a good actor.
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Logical consequence — examples

@ All men are mortal. Socrates is a man. So, Socrates is mortal.
(valid, sound)

@ All rich actors are good actors. Brad Pitt is a rich actor. So
he must be a good actor. (valid, but not sound)

@ All rich actors are good actors. Brad Pitt is a good actor. So
he must be a rich actor. (not valid)
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Fitch notation

All men are mortal
Socrates is a man

So, Socrates is mortal

Ay

An
B
Premise;

Premise,

T Conclusion

Till Mossakowski Logic



Methods for showing (in)validity of arguments
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Methods for showing (in)validity of arguments

Validity To show that an argument is valid, we must provide
a proof. A proof consists of a sequence of proof
steps, each of which must be valid.
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Methods for showing (in)validity of arguments

Validity To show that an argument is valid, we must provide
a proof. A proof consists of a sequence of proof
steps, each of which must be valid.

@ In propositional logic, we also can use truth
tables to show validity. This it not possible in
first-order logic.

An argument can shown to be by finding a
( ), i.e. a circumstance where
the premises are true, but the conclusion is false.
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Methods for showing (in)validity of arguments

Validity To show that an argument is valid, we must provide
a proof. A proof consists of a sequence of proof
steps, each of which must be valid.

@ In propositional logic, we also can use truth
tables to show validity. This it not possible in
first-order logic.

Invalidity An argument can shown to be invalid by finding a
counterexample (model), i.e. a circumstance where
the premises are true, but the conclusion is false.
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Informal and formal proofs

@ informal reasoning is used in everyday life

@ semi-formal reasoning is used in mathematics and theoretical
computer science

@ balance between readability and precision

o formal proofs: follow some specific rule system,

@ and are entirely rigorous

@ and can be checked by a computer
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An informal proof

@ Since Socrates is a man and all men are mortal, it follows that
Socrates is mortal.
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An informal proof

@ Since Socrates is a man and all men are mortal, it follows that
Socrates is mortal.

@ But all mortals will eventually die, since that is what it means
to be mortal.
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An informal proof

@ Since Socrates is a man and all men are mortal, it follows that
Socrates is mortal.

@ But all mortals will eventually die, since that is what it means
to be mortal.

@ So Socrates will eventually die.

@ But we are given that everyone who will eventually die
sometimes worries about it.
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An informal proof

Since Socrates is a man and all men are mortal, it follows that
Socrates is mortal.

@ But all mortals will eventually die, since that is what it means
to be mortal.

So Socrates will eventually die.

@ But we are given that everyone who will eventually die
sometimes worries about it.

Hence Socrates sometimes worries about dying.
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The need for formal proofs

Bown ¢

MIRACLE | F
OCCURS ..

“1 think you should be more explicit here in step iwo.”
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A formal proof

1. Cube(c)
2.c=b

3. Cube(b) =Elim: 1,2
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A formal proof

1. Cube(c)
2.c=b

3. Cube(b) =Elim: 1,2
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Four principles for the identity relation

© =Elim: If b = c, then whatever holds of b holds of ¢
(indiscernibility of identicals).

The latter two principles follow from the first two.

Till Mossakowski Logic



Four principles for the identity relation

© =Elim: If b = c, then whatever holds of b holds of ¢
(indiscernibility of identicals).

@ =Intro: b = b is always true in FOL (reflexivity of identity).

The latter two principles follow from the first two.

Till Mossakowski Logic



Four principles for the identity relation

@ =Elim: If b = ¢, then whatever holds of b holds of ¢
(indiscernibility of identicals).

@ =Intro: b = b is always true in FOL (reflexivity of identity).

© Symmetry of Identity: If b= ¢, then ¢ = b.

The latter two principles follow from the first two.

Till Mossakowski Logic



Four principles for the identity relation

@ =Elim: If b = ¢, then whatever holds of b holds of ¢
(indiscernibility of identicals).

@ =Intro: b = b is always true in FOL (reflexivity of identity).

© Symmetry of Identity: If b= ¢, then ¢ = b.

@ Transitivity of Identity: If a= b and b= ¢, then a = c.

The latter two principles follow from the first two.

Till Mossakowski Logic



Four principles for the identity relation

@ =Elim: If b = ¢, then whatever holds of b holds of ¢
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Transitivity . ..

Logic: another thing that
penguins aren’t very good at.
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Informal proof of symmetry of identity

@ Suppose that a = b.
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Informal proof of symmetry of identity

@ Suppose that a = b.
@ We know that a = a, by the reflexivity of identity.
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Informal proof of symmetry of identity

@ Suppose that a = b.
@ We know that a = a, by the reflexivity of identity.

@ Now substitute the name b for the first use of the name a in
a = a, using the indiscernibility of identicals.
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Informal proof of symmetry of identity

@ Suppose that a = b.
@ We know that a = a, by the reflexivity of identity.

@ Now substitute the name b for the first use of the name a in
a = a, using the indiscernibility of identicals.

@ We come up with b = a, as desired.
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Formal proofs

P
Q
R
TSl Justification 1
Sn Justification n
S Justification n+1
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Formal proof of symmetry of identity

a=a =lIntro:
.b=a =Elim: 2,1
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Formal proof of symmetry of identity

a=a =lIntro:
.b=a =Elim: 2,1
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Formal proof of symmetry of identity

a=a =lIntro:
.b=a =Elim: 2,1
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Fitch rule: Identity introduction

Identity Introduction (= Intro):
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Fitch rule: Identity elimination

Identity Elimination (= Elim):
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Fitch rule: Reiteration

Reiteration (Reit):

P
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