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Recall: Conjunctive Normal Form (CNF)

For each propositional sentence, there is an equivalent sentence of
form

(ϕ1,1 ∨ . . . ∨ ϕ1,m1) ∧ . . . ∧ (ϕn,1 ∨ . . . ∨ ϕn,mn)

where the ϕi ,j are literals, i.e. atomic sentences or negations of
atomic sentences.
A sentence in CNF is called a Horn sentence, if each disjunction of
literals contains at most one positive literal.
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Examples of Horn sentences

¬Home(claire) ∧ (¬Home(max) ∨ Happy(carl))

Home(claire) ∧ Home(max) ∧ ¬Home(carl)

Home(claire) ∨ ¬Home(max) ∨ ¬Home(carl)

Home(claire) ∧ Home(max)∧
(¬Home(max) ∨ ¬Home(max))
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Examples of non-Horn sentences

¬Home(claire) ∧ (Home(max) ∨ Happy(carl))

(Home(claire) ∨ Home(max) ∨ ¬Happy(claire))
∧Happy(carl)

Home(claire) ∨ (Home(max) ∨ ¬Home(carl)
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Alternative notation for the conjuncts
in Horn sentences

¬A1 ∨ . . . ∨ ¬An ∨ B (A1 ∧ . . . ∧ An)→ B

¬A1 ∨ . . . ∨ ¬An (A1 ∧ . . . ∧ An)→ ⊥
B > → B

⊥ 2

Any Horn sentence is equivalent to a conjunction of conditional
statements of the above four forms.
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Satisfaction algorithm for Horn sentences

1 For any conjunct > → B, assign true to B.

2 If for some conjunct (A1 ∧ . . . ∧ An)→ B, you have assigned
true to A1, . . . ,An then assign true to B.

3 Repeat step 2 as often as possible.

4 If there is some conjunct (A1 ∧ . . . ∧ An)→ ⊥ with true
assigned to A1, . . . ,An, the Horn sentence is not satisfiable.
Otherwise, assigning false to the yet unassigned atomic
sentences makes all the conditionals (and hence also the Horn
sentence) true.
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Correctness of the satisfaction algorithm

Theorem The algorithm for the satisfiability of Horn sentences is
correct, in that it classifies as tt-satisfiable exactly the tt-satisfiable
Horn sentences.
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Propositional Prolog

AncestorOf (a, b) : −MotherOf (a, b).
AncestorOf (b, c) : −MotherOf (b, c).
AncestorOf (a, b) : −FatherOf (a, b).
AncestorOf (b, c) : −FatherOf (b, c).
AncestorOf (a, c) : −AncestorOf (a, b), AncestorOf (b, c).
MotherOf (a, b). FatherOf (b, c). FatherOf (b, d).

To ask whether this database entails B, Prolog adds ⊥ ← B and
runs the Horn algorithm. If the algorithm fails, Prolog answers
“yes”, otherwise “no”.
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Clauses

A clause is a finite set of literals.
Examples:

C1 = {Small(a), Cube(a), BackOf (b, a)}
C2 = {Small(a), Cube(b)}
C3 = ∅ ( also written 2)

Any set T of sentences in CNF can be replaced by an equivalent
set S of clauses: each conjunct leads to a clause.
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Resolution

A clause R is a resolvent of clauses C1, C2 if there is an atomic
sentence A with A ∈ C1 and (¬A) ∈ C2, such that

R = C1 ∪ C2 \ {A,¬A}.

Resolution algorithm: Given a set S of clauses, systematically add
resolvents. If you add 2 at some point, then S is not satisfiable.
Otherwise, it is satisfiable.
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Example

We start with the CNF sentence:
¬A ∧ (B ∨ C ∨ B) ∧ (¬C ∨ ¬D) ∧ (A ∨ D) ∧ (¬B ∨ ¬D)

In Clause form:
{¬A}, {B, C}, {¬C ,¬D}, {A, D}, {¬B,¬D}
Apply resolution:

{A,D} {¬A}
{D}

{B,C} {¬C ,¬D}
{B,¬D} {¬B,¬D}

{¬D}
2
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Soundness and completeness

Theorem Resolution is sound and complete. That is, given a set S
of clauses, it is possible to arrive at 2 by successive resolutions if
and only if S is not satisfiable.
This gives us an alternative sound and complete proof calculus by
putting

T ` S

iff with resolution, we can obtain 2 from the clausal form of
T ∪ {¬S}.
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SAT solving

Davis-Putnam-Logemann-Loveland algorithm

backtracking algorithm:

select a literal,
assign a truth value to it,
simplify the formula,
recursively check if the simplified formula is satisfiable

if this is the case, the original formula is satisfiable;
otherwise, do the recursive check with the opposite truth
value.

Implementations: mChaff, zChaff, darwin

Crucial: design of the literal selection function
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Optimizations in DPLL

If a clause is a unit clause, i.e. it contains only a single
unassigned literal, this clause can only be satisfied by
assigning the necessary value to make this literal true ⇒
reduction of search space

Pure literal elimination: If a propositional variable occurs with
only one polarity in the formula, it is called pure ⇒ the
assignment is clear
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DPLL in pseudo code

function DPLL(Φ)
if Φ is a consistent set of literals

then return true;
if Φ contains an empty clause

then return false;
for every unit clause l in Φ

Φ=unit-propagate(l, Φ);
for every literal l that occurs pure in Φ

Φ=pure-literal-assign(l, Φ);
l := select-literal(Φ);
return DPLL(Φ∧l) OR DPLL(Φ∧not(l));
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Common Algebraic Specification Language

nice syntax for propositional logic

logic Propositional
spec Props =
props A,B,C
. A
. not (A /\ B)
. C => B
. not C %implied

end
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Heterogeneous Tool Set

Reads and checks CASL specifications

Can prove %implied sentences using resolution provers and
SAT solvers

use “Prove” menu of a node

Can find models of sets of sentences using DPLL

use “Check consistency” menu of a node, select darwin

available at http://www.dfki.de/sks/hets.

availabel for Linux
Windows users: use the live CD

Till Mossakowski Logic

http://www.dfki.de/sks/hets

